Skip to main content

Advertisement

Log in

Fine-tuning of a three-dimensional microcarrier-based angiogenesis assay for the analysis of endothelial-mesenchymal cell co-cultures in fibrin and collagen gels

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

A prerequisite for successful tissue engineering is the existence of a functional microvascular network. We hypothesized that such networks can be created and quantified in an in vitro setting by co-culturing endothelial cells (ECs) with tissue-specific ‘bystander cells’ in 3-D gel matrices. To test this hypothesis we adapted a previously described in vitro microcarrier-based angiogenesis assay (V. Nehls and D. Drenckhahn, 1995, Microvasc Res 50: 311–322). On optimizing this assay, we noted that the initial EC-microcarrier coverage depended on EC type and seeding technique employed to coat the microcarrier beads with the ECs. A confluent EC monolayer on the microcarrier surfaces formed only when bovine aortic endothelial cells (BAECs) were admixed to the beads under gentle agitation on an orbital shaker. After embedding BAEC-covered microcarrier beads into a sandwich-like arrangement of collagen or fibrin gels, we assessed cellular outgrowth at different serum concentrations in terms of migration distance and sprout formation. Quantifiable sprout formation was highest at 1% fetal bovine serum (FBS) in collagen matrices and at 0.1% FBS in fibrin matrices. At higher serum concentration, excess cell migration and formation of clusters prevented quantitative analysis of sprouting. Following the fine-tuning of this angiogenesis assay, we co-cultured BAECs with adipose tissue-derived fibroblasts (FBs) and vascular smooth muscle cells (SMCs). While FBs were able to increase the average migration distance of BAECs in both matrices, SMCs enhanced BAEC migration in fibrin, but not in collagen gels. By contrast, the number of newly formed sprouts in fibrin gels was increased by both cell types. We conclude that in this model bystander cells enhance EC network formation in a matrix-dependent manner. Additionally, these results stress the importance of carefully selecting␣the experimental parameters of a given in vitro angiogenesis model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

3-D:

three-dimensional

AMD:

average migration distance

BAEC:

bovine aortic endothelial cell

bFGF:

basic fibroblast growth factor (also FGF2)

DMEM:

Dulbecco’s modified Eagle’s medium

EC:

endothelial cell

ECM:

extracellular matrix

ECGS:

endothelial cell growth supplement

FB:

bovine adipose fibroblast cell

FBS:

fetal bovine serum

HAEC:

human aortic endothelial cell

HMEC-1:

transformed human microvascular endothelial cell

HMVEC:

primary human microvascular endothelial cell

PBS:

Dulbecco’s phosphate buffered salt solution

SMC:

porcine pulmonary artery smooth muscle cell

rhEGF:

recombinant human epidermal growth factor

VE-cadherin:

vascular endothelial cadherin

VEGF:

vascular endothelial growth factor

References

  1. Ryan US, Mortara M, Whitaker C (1980) Methods for microcarrier culture of bovine pulmonary artery endothelial cells avoiding the use of enzymes. Tissue Cell 12(4):619–635

    Article  PubMed  CAS  Google Scholar 

  2. Nomi M, Atala A, Coppi PD, Soker S (2002) Principals of neovascularization for tissue engineering. Mol Aspects Med 23(6):463–483

    PubMed  CAS  Google Scholar 

  3. Kannan RY, Salacinski HJ, Sales K, Butler P, Seifalian AM (2005) The roles of tissue engineering and vascularisation in the development of micro-vascular networks: a review. Biomaterials 26(14):1857–1875

    Article  PubMed  CAS  Google Scholar 

  4. Auerbach R, Lewis R, Shinners B, Kubai L, Akhtar N (2003) Angiogenesis assays: a critical overview. Clin Chem 49(1):32–40

    Article  PubMed  CAS  Google Scholar 

  5. Vailhe B, Vittet D, Feige JJ (2001) In vitro models of vasculogenesis and angiogenesis. Lab Invest 81(4):439–452

    PubMed  CAS  Google Scholar 

  6. Cockerill GW, Gamble JR, Vadas MA (1995) Angiogenesis: models and modulators. Int Rev Cytol 159:113–160

    Article  PubMed  CAS  Google Scholar 

  7. Jockenhoevel S, Zund G, Hoerstrup SP, Chalabi K, Sachweh JS, Demircan L et al (2001) Fibrin gel—-advantages of a new␣scaffold in cardiovascular tissue engineering. Eur J Cardiothorac Surg 19(4):424–430

    Article  PubMed  CAS  Google Scholar 

  8. Pepper MS, Ferrara N, Orci L, Montesano R (1992) Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 189(2): 824–831

    Article  PubMed  CAS  Google Scholar 

  9. Xue L, Greisler HP (2002) Angiogenic effect of fibroblast growth factor-1 and vascular endothelial growth factor and their synergism in a novel in vitro quantitative fibrin-based 3-dimensional angiogenesis system. Surgery 132(2):259–267

    Article  PubMed  Google Scholar 

  10. Montesano R, Orci L (1985) Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell 42(2):469–477

    Article  PubMed  CAS  Google Scholar 

  11. Montesano R, Pepper MS, Orci L (1993) Paracrine induction of angiogenesis in vitro by Swiss 3T3 fibroblasts. J Cell Sci 105(Pt 4):1013–1024

    PubMed  CAS  Google Scholar 

  12. Velazquez OC, Snyder R, Liu ZJ, Fairman RM, Herlyn M (2002) Fibroblast-dependent differentiation of human microvascular endothelial cells into capillary-like 3-dimensional networks. Faseb J 16(10):1316–1318

    PubMed  CAS  Google Scholar 

  13. Nehls V, Herrmann R, Huhnken M, Palmetshofer A (1998) Contact-dependent inhibition of angiogenesis by cardiac fibroblasts in three-dimensional fibrin gels in vitro: implications for microvascular network remodeling and coronary collateral formation. Cell Tissue Res 293(3):479–488

    Article  PubMed  CAS  Google Scholar 

  14. Nehls V, Drenckhahn D (1995) A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc Res 50(3):311–322

    Article  PubMed  CAS  Google Scholar 

  15. Nehls V, Drenckhahn D (1995) A microcarrier-based cocultivation system for the investigation of factors and cells involved in angiogenesis in three-dimensional fibrin matrices in vitro. Histochem Cell Biol 104(6):459–466

    Article  PubMed  CAS  Google Scholar 

  16. Grasselli F, Basini G, Tirelli M, Cavalli V, Bussolati S, Tamanini C (2003) Angiogenic activity of porcine granulosa cells co-cultured with endothelial cells in a microcarrier-based three-dimensional fibrin gel. J Physiol Pharmacol 54(3):361–370

    PubMed  CAS  Google Scholar 

  17. Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau W (1998) Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr Biol 8(9):529–532

    Article  PubMed  CAS  Google Scholar 

  18. Nakatsu MN, Sainson RC, Aoto JN, Taylor KL, Aitkenhead M, Perez-del-Pulgar S et al (2003) Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein␣endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and Angiopoietin-1. Microvasc Res 66(2):102–112

    Article  PubMed  CAS  Google Scholar 

  19. Sun XT, Ding YT, Yan XG, Wu LY, Li Q, Cheng N et al (2004) Angiogenic synergistic effect of basic fibroblast growth factor and vascular endothelial growth factor in an in vitro quantitative microcarrier-based three-dimensional fibrin angiogenesis system. World J Gastroenterol. 10(17):2524–2528

    PubMed  CAS  Google Scholar 

  20. Vernon RB, Sage EH (1999) A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices. Microvasc Res 57(2):118–133

    Article  PubMed  CAS  Google Scholar 

  21. Manolopoulos VG, Samet MM, Lelkes PI (1995) Regulation of the adenylyl cyclase signaling system in various types of cultured endothelial cells. J Cell Biochem. 57(4):590–598

    Article  PubMed  CAS  Google Scholar 

  22. Silverman MD, Waters CR, Hayman GT, Wigboldus J, Samet MM, Lelkes PI (1999) Tissue factor activity is increased in human endothelial cells cultured under elevated static pressure. Am J Physiol 277(2 Pt 1):C233–C242

    PubMed  CAS  Google Scholar 

  23. Xu Y, Swerlick RA, Sepp N, Bosse D, Ades EW, Lawley TJ (1994) Characterization of expression and modulation of cell adhesion molecules on an immortalized human dermal microvascular endothelial cell line (HMEC-1). J Invest Dermatol 102(6):833–837

    Article  PubMed  CAS  Google Scholar 

  24. Beck Jr LH, Goodwin AM, D’Amore PA (2004) Culture of large vessel endothelial cells on floating collagen gels promotes a phenotype characteristic of endothelium in vivo. Differentiation 72(4):162–170

    Article  PubMed  Google Scholar 

  25. Collen A, Koolwijk P, Kroon M, van Hinsbergh VW (1998) Influence of fibrin structure on the formation and maintenance of capillary-like tubules by human microvascular endothelial cells. Angiogenesis 2(2):153–165

    PubMed  CAS  Google Scholar 

  26. Nehls V, Herrmann R (1996) The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration. Microvasc Res 51(3):347–364

    Article  PubMed  CAS  Google Scholar 

  27. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9(6):653–660

    Article  PubMed  CAS  Google Scholar 

  28. Bastaki M, Nelli EE, Dell’Era P, Rusnati M, Molinari-Tosatti MP, Parolini S et al (1997) Basic fibroblast growth factor-induced angiogenic phenotype in mouse endothelium A study of aortic and microvascular endothelial cell types. Arterioscler Thromb Vasc Biol 17(3):454–464

    PubMed  CAS  Google Scholar 

  29. Cavallaro U, Tenan M, Castelli V, Perilli A, Maggiano N, Van Meir EG et al (2001) Response of bovine endothelial cells to FGF-2 and VEGF is dependent on their site of origin: Relevance to the regulation of angiogenesis. J Cell Biochem 82(4):619–633

    Article  PubMed  CAS  Google Scholar 

  30. Montesano R, Pepper MS, Vassalli JD, Orci L (1987) Phorbol ester induces cultured endothelial cells to invade a fibrin matrix in the presence of fibrinolytic inhibitors. J Cell Physiol 132(3):509–516

    Article  PubMed  CAS  Google Scholar 

  31. Go RS, Ritman EL, Owen WG (2003) Angiogenesis in rat aortic rings stimulated by very low concentrations of serum and plasma. Angiogenesis 6(1):25–29

    Article  PubMed  CAS  Google Scholar 

  32. Chun TH, Sabeh F, Ota I, Murphy H, McDonagh KT, Holmbeck K et al (2004) MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. J Cell Biol 167(4):757–767

    Article  PubMed  CAS  Google Scholar 

  33. Collen A, Hanemaaijer R, Lupu F, Quax PH, van Lent N, Grimbergen J et al (2003) Membrane-type matrix metalloproteinase-mediated angiogenesis in a fibrin-collagen matrix. Blood 101(5):1810–1817

    Article  PubMed  CAS  Google Scholar 

  34. Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97(11):1093–1107

    Article  PubMed  CAS  Google Scholar 

  35. Clark RA, Tonnesen MG, Gailit J, Cheresh DA (1996) Transient functional expression of alphaVbeta 3 on vascular cells during wound repair. Am J Pathol 148(5):1407–1421

    PubMed  CAS  Google Scholar 

  36. Senger DR, Perruzzi CA, Streit M, Koteliansky VE, de Fougerolles AR, Detmar M (2002) The alpha(1)beta(1) and alpha(2)beta(1) integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am J Pathol 160(1):195–204

    PubMed  CAS  Google Scholar 

  37. Akita M, Murata E, Merker HJ, Kaneko K (1997) Formation of new capillary-like tubes in a three-dimensional in vitro model (aorta/collagen gel). Anat Anz 179(2):137–147

    CAS  Google Scholar 

  38. Orlidge A, D’Amore PA (1987) Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J Cell Biol 105(3):1455–1462

    Article  PubMed  CAS  Google Scholar 

  39. Saunders KB, D’Amore PA (1992) An in vitro model for cell–cell interactions. In Vitro Cell Dev Biol 28A(7–8): 521–528

    PubMed  CAS  Google Scholar 

  40. Korff T, Kimmina S, Martiny-Baron G, Augustin HG (2001) Blood vessel maturation in a 3-dimensional spheroidal coculture model: direct contact with smooth muscle cells regulates endothelial cell quiescence and abrogates VEGF responsiveness. Faseb J 15(2):447–457

    Article  PubMed  CAS  Google Scholar 

  41. Nehls V, Schuchardt E, Drenckhahn D (1994) The effect of fibroblasts, vascular smooth muscle cells, and pericytes on sprout formation of endothelial cells in a fibrin gel angiogenesis system. Microvasc Res 48(3):349–363

    Article  PubMed  CAS  Google Scholar 

  42. Song J, Rolfe BE, Hayward IP, Campbell GR, Campbell JH (2000) Effects of collagen gel configuration on behavior of vascular smooth muscle cells in vitro: association with vascular morphogenesis. In Vitro Cell Dev Biol Anim 36(9):600–610

    Article  PubMed  CAS  Google Scholar 

  43. Kodama M, Naito M, Nomura H, Iguchi A, Thompson WD, Stirk CM et al (2002) Role of D and E domains in the migration of vascular smooth muscle cells into fibrin gels. Life Sci 71(10):1139–1148

    Article  PubMed  CAS  Google Scholar 

  44. Hojo M, Inokuchi S, Kidokoro M, Fukuyama N, Tanaka E, Tsuji C et al (2003) Induction of vascular endothelial growth factor by fibrin as a dermal substrate for cultured skin substitute. Plast Reconstr Surg. 111(5):1638–1645

    Article  PubMed  Google Scholar 

  45. Becker JC, Domschke W, Pohle T (2004) Biological in vitro effects of fibrin glue: fibroblast proliferation, expression and binding of growth factors. Scand J Gastroenterol 39(10):927–932

    Article  PubMed  CAS  Google Scholar 

  46. Lorimier S, Hornebeck W, Godeau G, Pellat B, Gillery P, Maquart FX et al (1998) Morphometric studies of collagen and fibrin lattices contracted by human gingival fibroblasts; comparison with dermal fibroblasts. J Dent Res 77(9):1717–1729

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Nanotechnology Institute of Southeastern Pennsylvania (NTI), the Calhoun Funds, and the National Aeronautics and Space Administration (NASA, NAG-1436, NNJ04HC81G-01, and NCC9–130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter I. Lelkes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietrich, F., Lelkes, P.I. Fine-tuning of a three-dimensional microcarrier-based angiogenesis assay for the analysis of endothelial-mesenchymal cell co-cultures in fibrin and collagen gels. Angiogenesis 9, 111–125 (2006). https://doi.org/10.1007/s10456-006-9037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-006-9037-x

Keywords

Navigation