Skip to main content

Advertisement

Log in

Elucidating the Association Between the Upregulation of Angiotensin Type 1-Receptors and the Development of Gastrointestinal Malignancies

  • Review Article
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

The renin-angiotensin system (RAS) is a major regulator of body fluid hemostasis and blood pressure. Angiotensin type 1 receptors (AT1R) are one of the major components of this system and are widely expressed in different organs, including the gastrointestinal (GI) system. Very little known about the physiological roles of AT1R in GI tract but evidence has reported that local AT1Rs are upregulated in pathological conditions like GI malignancies and play role in stimulation of signaling pathways associated with GI cancers progression. AT1Rs axes signaling in tumor microenvironments stimulate inflammation and facilitate vascularization around the tumor cell to display invasive behavior. AT1Rs in stroma cells promote tumor-associated angiogenesis by upregulated of vessel endothelial growth factor (VEGF). Also, AT1Rs by the activation of molecular mechanisms such as PI3/Akt/NF-κB pathways increase the invasion of tumor cells. Experimental and clinical studies have reported that AT1R antagonists have beneficial influences by increasing the survival of patients with GI malignancies and reduction in the proliferation of GI cancer cell lines in vitro, and the growth and metastasis of tumors in vivo, therefore, AT1Rs antagonist have the potential for future anticancer strategies. This review focuses on the pathological roles of AT1Rs in GI malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AngII:

Angiotensin II

RAS:

Renin angiotensin system

AT1R:

Angiotensin type 1 receptor

ACE:

Angiotensin convert enzyme

COX-2:

Cyclooxygenase-2

EGFR:

Epithermal growth factor receptor

FGF:

Fibroblast growth factor

GI:

Gastrointestinal

HIF1α:

hypoxia inducible factor 1α

MAPK:

Mitogen activation protein kinase

NF-kB:

Nuclear factor kappa B

PKC:

Protein kinase C

TAMs:

Tumor-associated macrophages

PDGF:

Platelet-derived growth factor

PKB:

Protein kinase B

PPARγ:

Peroxisome proliferator–activated receptor γ

VEGF:

Vessel endothelial growth factor

References

  1. Yang T, Xu C. Physiology and pathophysiology of the intrarenal renin-angiotensin system: an update. J Am Soc Nephrol. 2017;28:1040–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yin G, Yan C, Berk BC. Angiotensin II signaling pathways mediated by tyrosine kinases. Int J Biochem Cell Biol. 2003;35:780–3.

    Article  CAS  PubMed  Google Scholar 

  3. Deshayes F, Nahmias C. Angiotensin receptors: a new role in cancer? Trends Endocrinol Metab. 2005;16:293–9.

    Article  CAS  PubMed  Google Scholar 

  4. Escobar E, Rodriguez-Reyna TS, Arrieta O, Sotelo J. Angiotensin II, cell proliferation and angiogenesis regulator: biologic and therapeutic implications in cancer. Curr Vasc Pharmacol. 2004;2:385–99.

    Article  CAS  PubMed  Google Scholar 

  5. Smith GR, Missailidis S. Cancer, inflammation and the AT1 and AT2 receptors. J Inflamm. 2004;1(1):3.

    Article  CAS  Google Scholar 

  6. Chen X, Meng Q, Zhao Y, Liu M, Li D, Yang Y, et al. Angiotensin II type 1 receptor antagonists inhibit cell proliferation and angiogenesis in breast cancer. Cancer Lett. 2013;328:318–24.

    Article  CAS  PubMed  Google Scholar 

  7. Kosugi M, Miyajima A, Kikuchi E, Kosaka T, Horiguchi Y, et al. Effect of angiotensin II type 1 receptor antagonist on tumor growth and angiogenesis in a xenograft model of human bladder cancer. Hum Cell. 2007;20:1–9.

    Article  PubMed  Google Scholar 

  8. Huang W, Wu Y-L, Zhong J, Jiang F-X, Tian X-l, et al. Angiotensin II type 1 receptor antagonist suppress angiogenesis and growth of gastric cancer xenografts. Dig Dis Sci. 2008;53:1206–10.

    Article  CAS  PubMed  Google Scholar 

  9. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.

    Article  PubMed  Google Scholar 

  10. Shorning BY, Jardé T, McCarthy A, Ashworth A, De Leng WW, et al. Intestinal renin–angiotensin system is stimulated after deletion of Lkb1. Gut. 2012;61:202–13.

    Article  CAS  PubMed  Google Scholar 

  11. Spak E, Casselbrant A, Olbers T, Lönroth H, Fändriks L. Angiotensin II-induced contractions in human jejunal wall musculature in vitro. Acta Physiol. 2008;193:181–90.

    Article  CAS  Google Scholar 

  12. Lavoie JL, Sigmund CD. Minireview: overview of the renin-angiotensin system—an endocrine and paracrine system. Endocrinology. 2003;144:2179–83.

    Article  CAS  PubMed  Google Scholar 

  13. Casselbrant A, Edebo A, Wennerblom J, Lonroth H, Helander HF, et al. Actions by angiotensin II on esophageal contractility in humans. Gastroenterology. 2007;132:249–60.

    Article  CAS  PubMed  Google Scholar 

  14. Koga H, Yang H, Haxhija EQ, Teitelbaum DH. The role of angiotensin II type 1a receptor on intestinal epithelial cells following small bowel resection in a mouse model. Pediatr Surg Int. 2008;24:1279–86.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jin XH, Wang ZQ, Siragy HM, Guerrant RL, Carey RM. Regulation of jejunal sodium and water absorption by angiotensin subtype receptors. Am J Physiol. 1998;275:R515–23.

    Article  CAS  PubMed  Google Scholar 

  16. Fishlock DJ, Gunn A. The action of angiotensin on the human colon in vitro. Br J Pharmacol. 1970;39:34–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carlsson PO, Berne C, Jansson L. Angiotensin II and the endocrine pancreas: effects on islet blood flow and insulin secretion in rats. Diabetologia. 1998;41:127–33.

    Article  CAS  PubMed  Google Scholar 

  18. Lau T, Carlsson PO, Leung PS. Evidence for a local angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin II in isolated pancreatic islets. Diabetologia. 2004;47:240–8.

    Article  CAS  PubMed  Google Scholar 

  19. Fink AS, Wang Y, Mendez T, Worrell RT, Eaton D, Nguyen TD, et al. Angiotensin II evokes calcium-mediated signaling events in isolated dog pancreatic epithelial cells. Pancreas. 2002;25:290–5.

    Article  PubMed  Google Scholar 

  20. Cox HM, Cuthbert AW, Munday KA. The effect of angiotensin II upon electrogenic ion transport in rat intestinal epithelia. Br J Pharmacol. 1987;90:393–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bjorkman E, Edebo A, Fandriks L, Casselbrant A. Angiotensin IV and the human esophageal mucosa: an exploratory study in healthy subjects and gastroesophageal reflux disease patients. J Renin Angiotensin Aldosterone Syst. 2015;16:570–7.

    Article  PubMed  CAS  Google Scholar 

  22. Hallersund P, Elfvin A, Helander HF, Fändriks L. The expression of renin-angiotensin system components in the human gastric mucosa. J Renin Angiotensin Aldosterone Syst. 2011;12:54–64.

    Article  CAS  PubMed  Google Scholar 

  23. Carl-McGrath S, Gräntzdörffer I, Lendeckel U, Ebert MP, Röcken C. Angiotensin II-generating enzymes, angiotensin-converting enzyme (ACE) and mast cell chymase (CMA1), in gastric inflammation may be regulated by H. pylori and associated cytokines. Pathology. 2009;41:419–27.

    Article  CAS  PubMed  Google Scholar 

  24. Lüdtke FE, Golenhofen K, Schubert F. Angiotensin II stimulates human gastric smooth muscle in vitro. J Auton Pharmacol. 1989;9:139–48.

    Article  PubMed  Google Scholar 

  25. Tahmasebi M, Puddefoot J, Inwang E, Vinson G. The tissue renin-angiotensin system in human pancreas. J Endocrinol. 1999;161:317–22.

    Article  CAS  PubMed  Google Scholar 

  26. Ewert S, Spak E, Olbers T, Johnsson E, Edebo A, Fandriks L. Angiotensin II induced contraction of rat and human small intestinal wall musculature in vitro. Acta Physiol. 2006;188:33–40.

    Article  CAS  Google Scholar 

  27. Hirasawa K, Sato Y, Hosoda Y, Yamamoto T, Hanai H. Immunohistochemical localization of angiotensin II receptor and local renin-angiotensin system in human colonic mucosa. J Histochem Cytochem. 2002;50:275–82.

    Article  CAS  PubMed  Google Scholar 

  28. Arrieta O, Pineda-Olvera B, Guevara-Salazar P, Hernández-Pedro N, Morales-Espinosa D, Cerón-Lizarraga TL, et al. Expression of AT1 and AT2 angiotensin receptors in astrocytomas is associated with poor prognosis. Br J Cancer. 2008;99:160–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arrieta O, Villarreal-Garza C, Vizcaíno G, Pineda B, Hernández-Pedro N, Guevara-Salazar P, et al. Association between AT1 and AT2 angiotensin II receptor expression with cell proliferation and angiogenesis in operable breast cancer. Tumor Biol. 2015;36:5627–34.

    Article  CAS  Google Scholar 

  30. Sugimoto M, Ohno T, Yamaoka Y. Expression of angiotensin II type 1 and type 2 receptor mRNAs in the gastric mucosa of Helicobacter pylori-infected Mongolian gerbils. J Gastroenterol. 2011;46:1177–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kinoshita J, Fushida S, Harada S, Yagi Y, Fujita H, Kinami S, et al. Local angiotensin II-generation in human gastric cancer: Correlation with tumor progression through the activation of ERK1/2, NF-κB and survivin. Int J Oncol. 2009;34:1573–82.

    Article  CAS  PubMed  Google Scholar 

  32. Li S-H, Lu H-I, Chang AY, Huang W-T, Lin W-C, et al. Angiotensin II type I receptor (AT1R) is an independent prognosticator of esophageal squamous cell carcinoma and promotes cells proliferation via mTOR activation. Oncotarget. 2016;7:67150–65.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nguyen L, Ager EI, Neo J, Christophi C. Regulation of colorectal cancer cell epithelial to mesenchymal transition by the renin angiotensin system. J Gastroenterol Hepatol. 2016;31:1773–82.

    Article  CAS  PubMed  Google Scholar 

  34. Fujita M, Hayashi I, Yamashina S, Fukamizu A, Itoman M, Majima M. Angiotensin type 1a receptor signaling-dependent induction of vascular endothelial growth factor in stroma is relevant to tumor-associated angiogenesis and tumor growth. Carcinogenesis. 2005;26:271–9.

    Article  CAS  PubMed  Google Scholar 

  35. Egami K, Murohara T, Shimada T, Sasaki K-i, Shintani S, et al. Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J Clin Invest. 2003;112:67–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J. Inflammation and angiotensin II. Int J Biochem Cell Biol. 2003;35:881–900.

    Article  CAS  PubMed  Google Scholar 

  37. Alvarez A, Cerdá-Nicolás M, Naim Abu Nabah Y, Mata M, Issekutz AC, et al. Direct evidence of leukocyte adhesion in arterioles by angiotensin II. Blood. 2004;104:402–8.

    Article  CAS  PubMed  Google Scholar 

  38. Brasier AR, Recinos A III, Eledrisi MS. Vascular inflammation and the renin-angiotensin system. Arterioscler Thromb Vasc Biol. 2002;22:1257–66.

    Article  CAS  PubMed  Google Scholar 

  39. Takai S, Shiota N, Sakaguchi M, Muraguchi H, Matsumura E, et al. Characterization of chymase from human vascular tissues. Clin Chim Acta. 1997;265:13–20.

    Article  CAS  PubMed  Google Scholar 

  40. Ayza MA, Khalid B. Renin-angiotensin system as a therapeutic target for colorectal cancer liver metastasis. RRJoOH. 2018;7(2):1–14.

    Google Scholar 

  41. Uemura H, Ishiguro H, Nakaigawa N, Nagashima Y, Miyoshi Y, Fujinami K, et al. Angiotensin II receptor blocker shows antiproliferative activity in prostate cancer cells: a possibility of tyrosine kinase inhibitor of growth factor. Mol Cancer Ther. 2003;2:1139–47.

    CAS  PubMed  Google Scholar 

  42. Arrieta O, Guevara P, Escobar E, García-Navarrete R, Pineda B, Sotelo J. Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma. Br J Cancer. 2005;92:1247–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Greco S, Muscella A, Elia M, Salvatore P, Storelli C, et al. Angiotensin II activates extracellular signal regulated kinases via protein kinase C and epidermal growth factor receptor in breast cancer cells. J Cell Physiol. 2003;196:370–7.

    Article  CAS  PubMed  Google Scholar 

  44. Brunet A, Roux D, Lenormand P, Dowd S, Keyse S, Pouysségur J. Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J. 1999;18:664–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Amaya K, Ohta T, Kitagawa H, Kayahara M, Takamura H, et al. Angiotensin II activates MAP kinase and NF-κB through angiotensin II type I receptor in human pancreatic cancer cells. Int J Oncol. 2004;25:849–56.

    CAS  PubMed  Google Scholar 

  46. Okamoto K, Tajima H, Ohta T, Nakanuma S, Hayashi H, et al. Angiotensin II induces tumor progression and fibrosis in intrahepatic cholangiocarcinoma through an interaction with hepatic stellate cells. Int J Oncol. 2010;37:1251–9.

    Article  CAS  PubMed  Google Scholar 

  47. Samukawa E, Fujihara S, Oura K, Iwama H, Yamana Y, Tadokoro T, et al. Angiotensin receptor blocker telmisartan inhibits cell proliferation and tumor growth of cholangiocarcinoma through cell cycle arrest. Int J Oncol. 2017;51:1674–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Masamune A, Hamada S, Kikuta K, Takikawa T, Miura S, Nakano E, et al. The angiotensin II type I receptor blocker olmesartan inhibits the growth of pancreatic cancer by targeting stellate cell activities in mice. Scand J Gastroenterol. 2013;48:602–9.

    Article  CAS  PubMed  Google Scholar 

  49. Lee RT, Collins T. Nuclear factor-kB and cell survival: IAPs call for support. 2001;88(3):262–4.

    CAS  Google Scholar 

  50. Steelman L, Pohnert S, Shelton J, Franklin R, Bertrand F, et al. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia. 2004;18:189–218.

    Article  CAS  PubMed  Google Scholar 

  51. Chehl N, Gong Q, Chipitsyna G, Aziz T, Yeo CJ, Arafat HA. Angiotensin II regulates the expression of monocyte chemoattractant protein-1 in pancreatic cancer cells. J Gastrointest Surg. 2009;13:2189–200.

    Article  PubMed  Google Scholar 

  52. Anandanadesan R, Gong Q, Chipitsyna G, Witkiewicz A, Yeo CJ, Arafat HA. Angiotensin II induces vascular endothelial growth factor in pancreatic cancer cells through an angiotensin II type 1 receptor and ERK1/2 signaling. J Gastrointest Surg. 2008;12:57–66.

    Article  PubMed  Google Scholar 

  53. Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol. 2004;6:499–506.

    Article  CAS  PubMed  Google Scholar 

  54. Liotta LA, Stracke ML. Tumor invasion and metastases: biochemical mechanisms. Cancer Treat Res. 1988;40:223–38.

    Article  CAS  PubMed  Google Scholar 

  55. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990;82:4–6.

    Article  CAS  PubMed  Google Scholar 

  56. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992;359:843–5.

    Article  CAS  PubMed  Google Scholar 

  57. Shweiki D, Neeman M, Itin A, Keshet E. Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proc Natl Acad Sci U S A. 1995;92:768–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shi R-Z, Wang J-C, Huang S-H, Wang X-J, Li Q-P. Angiotensin II induces vascular endothelial growth factor synthesis in mesenchymal stem cells. Exp Cell Res. 2009;315:10–5.

    Article  CAS  PubMed  Google Scholar 

  59. De Francesco EM, Lappano R, Santolla MF, Marsico S, Caruso A, et al. HIF-1alpha/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs). Breast Cancer Res. 2013;15:R64.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shi YH, Fang WG. Hypoxia-inducible factor-1 in tumour angiogenesis. World J Gastroenterol. 2004;10:1082–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ryan HE, Lo J, Johnson RS. HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J. 1998;17:3005–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Imanishi M, Tomita S, Ishizawa K, Kihira Y, Ueno M, Izawa-Ishizawa Y, et al. Smooth muscle cell-specific Hif-1alpha deficiency suppresses angiotensin II-induced vascular remodelling in mice. Cardiovasc Res. 2014;102:460–8.

    Article  CAS  PubMed  Google Scholar 

  63. Kim JH, Kim JH, Yu YS, Cho CS, Kim KW. Blockade of angiotensin II attenuates VEGF-mediated blood-retinal barrier breakdown in diabetic retinopathy. J Cereb Blood Flow Metab. 2009;29(3):621–8.

    Article  CAS  PubMed  Google Scholar 

  64. Liu C, Zhang JW, Hu L, Song YC, Zhou L, et al. Activation of the AT1R/HIF-1 alpha /ACE axis mediates angiotensin II-induced VEGF synthesis in mesenchymal stem cells. Biomed Res Int. 2014;2014:627380.

    PubMed  PubMed Central  Google Scholar 

  65. Si W, Xie W, Deng W, Xiao Y, Karnik SS, Xu C, et al. Angiotensin II increases angiogenesis by NF-kappaB-mediated transcriptional activation of angiogenic factor AGGF1. FASEB J. 2018;32:5051–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Basseres D, Baldwin A. Nuclear factor-κ B and inhibitor of κ B kinase pathways in oncogenic initiation and progression. Oncogene. 2006;25:6817–30.

    Article  CAS  PubMed  Google Scholar 

  67. Patel M, Horgan PG, McMillan DC, Edwards J. NF-κB pathways in the development and progression of colorectal cancer. Transl Res. 2018;197:43–56.

    Article  CAS  PubMed  Google Scholar 

  68. Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21:11–9.

    Article  CAS  PubMed  Google Scholar 

  69. Arnold SA, Rivera LB, Carbon JG, Toombs JE, Chang C-L, Bradshaw AD, et al. Losartan slows pancreatic tumor progression and extends survival of SPARC-null mice by abrogating aberrant TGFβ activation. PLoS One. 2012;7(2):e31384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. George AJ, Thomas WG, Hannan RD. The renin–angiotensin system and cancer: old dog, new tricks. Nat Rev Cancer. 2010;10:745–59.

    Article  CAS  PubMed  Google Scholar 

  71. Arafat HA, Gong Q, Chipitsyna G, Rizvi A, Saa CT, Yeo CJ. Antihypertensives as novel antineoplastics: angiotensin-I-converting enzyme inhibitors and angiotensin II type 1 receptor blockers in pancreatic ductal adenocarcinoma. J Am Coll Surg. 2007;204:996–1005.

    Article  PubMed  Google Scholar 

  72. Gong Q, Davis M, Chipitsyna G, Yeo CJ, Arafat HA. Blocking angiotensin II type 1 receptor triggers apoptotic cell death in human pancreatic cancer cells. Pancreas. 2010;39:581–94.

    Article  CAS  PubMed  Google Scholar 

  73. Oura K, Tadokoro T, Fujihara S, Morishita A, Chiyo T, Samukawa E, et al. Telmisartan inhibits hepatocellular carcinoma cell proliferation in vitro by inducing cell cycle arrest. Oncol Rep. 2017;38:2825–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee LD, Mafura B, Lauscher JC, Seeliger H, Kreis ME, et al. Antiproliferative and apoptotic effects of telmisartan in human colon cancer cells. Oncol Lett. 2014;8:2681–6.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Arjmand M-H, Zahedi-Avval F, Barneh F, Mousavi SH, Asgharzadeh F, Hashemzehi M, et al. Intraperitoneal administration of telmisartan prevents postsurgical adhesion band formation. J Surg Res. 2020;248:171–81.

    Article  CAS  PubMed  Google Scholar 

  76. Okazaki M, Fushida S, Harada S, Tsukada T, Kinoshita J, Oyama K, et al. The angiotensin II type 1 receptor blocker candesartan suppresses proliferation and fibrosis in gastric cancer. Cancer Lett. 2014;355:46–53.

    Article  CAS  PubMed  Google Scholar 

  77. Makar GA, Holmes JH, Yang Y-X. Angiotensin-converting enzyme inhibitor therapy and colorectal cancer risk. J Natl Cancer Inst. 2014;106(2):djt374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Wen Q, Dunne PD, O’Reilly PG, Li G, Bjourson AJ, McArt DG, et al. KRAS mutant colorectal cancer gene signatures identified angiotensin II receptor blockers as potential therapies. Oncotarget. 2017;8:3206–25.

    Article  PubMed  Google Scholar 

  79. Busby J, McMenamin Ú, Spence A, Johnston B, Hughes C, et al. Angiotensin receptor blocker use and gastro-oesophageal cancer survival: a population-based cohort study. Aliment Pharmacol Ther. 2018;47:279–88.

    Article  CAS  PubMed  Google Scholar 

  80. Morris ZS, Saha S, Magnuson WJ, Morris BA, Borkenhagen JF, Ching A, et al. Increased tumor response to neoadjuvant therapy among rectal cancer patients taking angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. Cancer. 2016;122:2487–95.

    Article  CAS  PubMed  Google Scholar 

  81. Kim ST, Park KH, Oh SC, Seo JH, Kim JS, Shin SW, et al. How does inhibition of the renin-angiotensin system affect the prognosis of advanced gastric cancer patients receiving platinum-based chemotherapy? Oncology. 2012;83:354–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mohammad-Hassan Arjmand designed the work, interpreted data, and approved the final version to be published.

Corresponding author

Correspondence to Mohammad-Hassan Arjmand.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arjmand, MH. Elucidating the Association Between the Upregulation of Angiotensin Type 1-Receptors and the Development of Gastrointestinal Malignancies. J Gastrointest Canc 52, 399–406 (2021). https://doi.org/10.1007/s12029-020-00547-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-020-00547-0

Keywords

Navigation