Skip to main content

Tumor invasion and metastases: biochemical mechanisms

  • Chapter
Breast Cancer: Cellular and Molecular Biology

Part of the book series: Cancer Treatment and Research ((CTAR,volume 40))

Abstract

Tumor invasion and metastases is the major cause of treatment failure for cancer patients. Approximately 30% of patients with newly diagnosed solid tumors (excluding skin cancers other than melanoma) already have clinically detectable metastases. This percentage has increased somewhat in recent years due to the widespread adoption of new imaging technology resulting in the detection of metastases at an earlier stage in their growth. Of those 60% of cancer patients which are clinically free of metastases, approximately half can be cured by local tumor therapy alone [1]. The remaining patients have clinically occult micrometastases which ultimately become manifest. The patient with metastatic disease succumbs to the direct anatomic compromise caused by the metastases or to complications associated with therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sugarbaker EV: Patterns of metastasis in human malignancies. Cancer Biol Rev 2:235,1981.

    Google Scholar 

  2. Weiss L, Gilbert HA: Bone Metastases. Boston, GK Hall, Medical Publishers, 1981.

    Google Scholar 

  3. Schirrmacher V: Cancer metastasis: Experimental approaches, theoretical concepts, and impacts for treatment strategies. Advances Cancer Res 43:1–73, 1985.

    Article  CAS  Google Scholar 

  4. Liotta LA: Tumor invasion and metastases—role of the extracellular matrix: Rhoads Memorial Award Lecture. Cancer Res 46:1–7, 1986.

    Article  PubMed  CAS  Google Scholar 

  5. Nicolson GL: Tumor cell instability, diversification, and progression to the metastatic pheno-type: From oncogene to oncofetal expression. Cancer Res 47:1473, 1987.

    PubMed  CAS  Google Scholar 

  6. Furcht LT: Editorial: Critical factors controlling angiogenesis: Cell products, cell matrix, and growth factors. Lab Invest 55:505, 1986.

    PubMed  CAS  Google Scholar 

  7. Lam WC, Delikatny JE, Orr FW, Wass J, Varani J, Ward PA: The chemotactic response of tumor cells: A model for cancer metastasis. Am J Pathol 104:69–76, 1981.

    PubMed  CAS  Google Scholar 

  8. McCarthy JB, Basara ML, Palm SL, Sas DF, Furcht LT: Stimulation of haptotaxis and migration of tumor cells by serum spreading factor. Cancer Metastasis Rev 4:125–152,1985.

    Article  PubMed  CAS  Google Scholar 

  9. Anzano MA, Roberts AB, Smith JM, Sporn MB, De Larco JE: Sarcoma growth factors from conditioned media of virally transformed cells composed of both type a and type ß growth factors. Proc Natl Acad Sci USA 80:6264–6268, 1983.

    Article  PubMed  CAS  Google Scholar 

  10. Liotta LA, Mandler R, Murano G, Katz DA, Gordon RK, Chiang PK, Schiffmann E: Tumor cell autocrine motility factor. Proc Natl Acad Sci USA 83:3302–3306, 1986.

    Article  PubMed  CAS  Google Scholar 

  11. Zigmond SH, Hirsch JG: Leukocyte locomotion and Chemotaxis. New methods for evaluation, and demonstration of cell-derived chemotactic factor. J Exp Med 137:387–410, 1973.

    Article  PubMed  CAS  Google Scholar 

  12. Bokoch GM, Gilman AG: Inhibition of receptor-mediated release of arachidonic acid by pertussis toxin. Cell 39:301–308, 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Smith CD, Cox CC, Snyderman R: Receptor-coupled activation of phosphoinositide-specific phospholipase C by an N protein. Science 232:97–100, 1986.

    Article  PubMed  CAS  Google Scholar 

  14. Stracke ML, Guirguis R, Liotta LA, Schiffmann E: Pertussis toxin inhibits stimulated motility independently of the adenylate cyclase pathway in human melanoma cells. Biochem Biophys Res Commun 146:339–345, 1987.

    Article  PubMed  CAS  Google Scholar 

  15. Katada T, Ui M: Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc Natl Acad Sci USA 79:3129–3133, 1982.

    Article  PubMed  CAS  Google Scholar 

  16. Okajima F, Ui M: ADP-ribosylation of the specific membrane protein by islet-activating protein, pertussis toxin, associated with inhibition of a chemotactic peptide-induced arachi-donate release in neutrophils. A possible role of the toxin substrate in Ca2+-mobilizing biosignaling. J Biol Chem 259:13863–13871, 1984.

    PubMed  CAS  Google Scholar 

  17. Kikuchi A, Kozawa O, Kaibuchi K, Katada T, Ui M, Takai Y: Direct evidence for involvement of a guanine nucleotide-binding protein in chemotactic peptide-stimulated formation of inositol bisphosphate and trisphosphate in differentiated human leukemia (HL-60) cells. Re-constitution with Gi or Go of the plasma membranes ADP-ribosylated by pertussis toxin. J Biol Chem 261:11558–11562, 1986.

    PubMed  CAS  Google Scholar 

  18. Hescheler J, Rosenthal W, Trautwein W, Schultz G: The GTP-binding protein, Go, regulates neuronal calcium channels. Nature 325:445–447, 1987.

    Article  PubMed  CAS  Google Scholar 

  19. Molski TF, Naccache PH, Marsh ML, Kermode J, Becker EL, Sha’afi RI: Pertussis toxin inhibits the rise in the intracellular concentration of free calcium that is induced by chemotactic factors in rabbit neutrophils: possible role of the ‘G proteins’ in calcium mobilization. Biochem Biophys Res Commun 124:644–650, 1984.

    Article  PubMed  CAS  Google Scholar 

  20. Lad PM, Olson CV, Grewal IS, Scott SJ: A pertussis toxin-sensitive GTP-binding protein in the human neutrophil regulates multiple receptors, calcium mobilization, and lectin-induced capping. Proc Natl Acad Sci USA 82:8643–8647, 1985.

    Article  PubMed  CAS  Google Scholar 

  21. Guranowski A, Montgomery JA, Cantoni GL, Chiang PK: Adenosine analogues as substrates and inhibitors of S-adenosylhomocysteine hydrolase. Biochemistry 20:110–115,1981.

    Article  PubMed  CAS  Google Scholar 

  22. Boike GM, Sloane BF, Deppe G, Stracke M, Schiffmann E, Liotta LA, Honn KV: The role of calcium and arachidonic acid metabolism in the Chemotaxis of a new murine tumor line. Am Assoc Cancer Res 28:82, 1987.

    Google Scholar 

  23. He XM, Fligiel SE, Varani J: Modulation of tumor cell motility by prostaglandins and inhibitors of prostaglandin synthesis. Exp Cell Biol 54:128–137, 1986.

    PubMed  Google Scholar 

  24. Pontremoli S, Melloni E, Michetti M, Sacco O, Salamino F, Separatere B, Horecker BL: Biochemical responses in activated human neutrophils mediated by protein kinase C and a Ca2+-requiring proteinase. J Biol Chem 261:8309–8313, 1986.

    PubMed  CAS  Google Scholar 

  25. Guirguis R, Margulier I, Taraboletti G, Schiffmann E, Liotta L: Cytokine-induced pseudopodial protrusion is coupled to tumor cell migration. Nature 329:261–263, 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Wewer UM, Liotta LA, Jaye M, Ricca GA, Drohan WN, Claysmith AP, Rao CN Wirth P, Coligan JE, Albrechtsen R, Mudryj M, Sobel ME: Altered levels of laminin receptor mRNA in various human carcinoma cells that have different abilities to bind laminin. Proc Natl Acad Sci USA 83:7137–7141, 1986.

    Article  PubMed  CAS  Google Scholar 

  27. Hynes RO: Integrins: A family of cell surface receptors. Cell 48:549, 1987.

    Article  PubMed  CAS  Google Scholar 

  28. Slamon DJ, Clark GM, Wong SG, et al: Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177, 1987.

    Article  PubMed  CAS  Google Scholar 

  29. Garbisa S, Pozzatti R, Muschel RJ, Saffiotti U, Ballin M, Goldfarb RH, Khoury G, Liotta LA: Secretion of type IV collagenolytic protease and metastatic phenotype: Induction by transfection with c-Ha-ras but not c-Ha-ras plus Ad2-Ela. Cancer Res 47:1523–1528, 1987.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers, Boston/Dordrecht/London

About this chapter

Cite this chapter

Liotta, L.A., Stracke, M.L. (1988). Tumor invasion and metastases: biochemical mechanisms. In: Lippman, M.E., Dickson, R.B. (eds) Breast Cancer: Cellular and Molecular Biology. Cancer Treatment and Research, vol 40. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1733-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1733-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8975-3

  • Online ISBN: 978-1-4613-1733-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics