Skip to main content
Log in

Murine macrophage response from peritoneal cavity requires signals mediated by chemokine receptor CCR-2 during Staphylococcus aureus infection

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

C–C chemokine receptor-2 (CCR-2) is a cognate receptor for monocyte chemotactic protein-1 (MCP-1), and recent studies revealed that MCP-1–CCR-2 signaling is involved in several inflammatory diseases characterized by macrophage infiltration. Currently, there is no study on the involvement of CCR-2 in the killing of S. aureus by macrophages of Swiss albino mice, and its substantial role in host defense against S. aureus infection in murine macrophages is still unclear. Therefore, the present study was aimed to investigate the functional and interactive role of CCR-2 and MCP-1 in regulating peritoneal macrophage responses with respect to acute S. aureus infection. We found that phagocytosis of S. aureus can serve as an important stimulus for MCP-1 production by peritoneal macrophages, which is dependent directly or indirectly on cytokines, reactive oxygen species and nitric oxide. Neutralization of CCR-2 in macrophages leads to increased production of IL-10 and decreased production of IFN-γ and IL-6. In CCR-2 blocked macrophages, pretreatment with specific blocker of NF-κB or p38-MAPK causes elevation in MCP-1 level and subsequent downregulation of CCR-2 itself. We speculate that CCR-2 is involved in S. aureus-induced MCP-1 production via NF-κB or p38-MAPK signaling. We also hypothesized that unnaturally high level of MCP-1 that build up upon CCR-2 neutralization might allow promiscuous binding to one or more other chemokine receptors, a situation that would not occur in CCR-2 non-neutralized condition. This may be the plausible explanation for such observed Th-2 response in CCR-2 blocked macrophages infected with S. aureus in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

Abbreviations

ATZ:

Amino triazole

CPCSEA:

Committee for the Purpose of Control and Supervision of Experiments on Animal

CCL-2:

C–C chemokine ligand-2

CCR-2:

C–C chemokine receptor-2

DDC:

Diethyl dithio carbamic acid

DTH:

Delayed type hypersensitivity

FBS:

Foetal bovine serum

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MCP:

Monocyte chemotactic protein-1

NaNO3 :

Sodium nitrate

NF-κB:

Nuclear factor kappa beta

PAMPs:

Pathogen-associated molecular patterns

References

  1. Matsushima K, Larsen CG, Dubois GC, Oppenheim JJ. Purification and characterization of a novel Monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med. 1989;169:1485–90.

    Article  PubMed  CAS  Google Scholar 

  2. Premack BA, Schall TJ. Chemokine receptors: gateways to inflammation and infection. Nat Med. 1996;2:1174–8.

    Article  PubMed  CAS  Google Scholar 

  3. Rollins BJ. Chemokines. Blood 1997;90:909–28.

    PubMed  CAS  Google Scholar 

  4. Baggiolini M, Dewald B, Moser B. Human chemokines: an update. Annu Rev Immunol. 1997;15:675–705.

    Article  PubMed  CAS  Google Scholar 

  5. Boring L, Gosling J, Chensue SW, et al. Impaired monocytes migration and reduced type I (Th1) cytokine responses in C–C chemokines receptor 2 knockout mice. J Clin Invest. 1997;100:2552–61.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant p-1 (MCP-1): an overview. J Interf Cytok Res. 2009;29:313–26.

    Article  CAS  Google Scholar 

  7. Kurihara T, Warr G, Loy J, Bravo R. Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med. 1997;186:1757–62.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Wada T, Yokoyama H, Furuichi K, et al. Intervention of crescentic glomerulonephritis by antibodies to monocyte chemotactic and activating factor (MCAF/MCP-1). FASEB J. 1996;10:1418–25.

    PubMed  CAS  Google Scholar 

  9. Kimura H, Kasahara Y, Kurosu K, et al. Alleviation of monocrotaline-induced pulmonary hypertension by antibodies to monocyte chemotactic and activating factor/monocyte chemoattractant protein-1. Lab Invest. 1998;78:571–81.

    PubMed  CAS  Google Scholar 

  10. Moore BB, Kolodsick JE, Thannickal VJ, et al. CCR2- mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am J Pathol. 2005;166:675–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Izikson BL, Klein RS, Charo IF, Weiner HL, Luster AD. Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR) 2. J Exp Med. 2000;192:1075–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Shahrara S, Proudfoot AEI, Park CC, et al. Inhibition of monocyte chemoattractant protein-1 ameliorates rat adjuvant-induced arthritis. J Immunol. 2008;180:3447–56.

    Article  PubMed  CAS  Google Scholar 

  13. Taylor PR, Martinez- Pomares L, Stacey M, et al. Macrophage receptors and immune recognition. Ann Rev Immunol. 2005;23:901–44.

    Article  CAS  Google Scholar 

  14. Andres PG, Beck PL, Mizoguchi E, et al. Mice with a selective deletion of the cc chemokine receptors 5 or 2 are protected from dextran sodium sulfate-mediated colitis: lack of cc chemokine receptor 5 expression results in a nk1.1+ lymphocyte-associated th2-type immune response in the intestine. J Immunol. 2000;164:6303–12.

    Article  PubMed  CAS  Google Scholar 

  15. Sato N, Ahuja SK, Quinones M, et al. CC chemokine receptor (CCR)2 is required for langerhans cell migration and localization of T helper cell type 1 (Th1)-inducing dendritic cells: absence of CCR2 shifts the leishmania major–resistant phenotype to a susceptible state dominated by Th2 cytokines, B cell outgrowth, and sustained neutrophilic inflammation. J Exp Med. 2000;192:205–18.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol. 2006;7:311–7.

    Article  PubMed  CAS  Google Scholar 

  17. Amano H, Morimoto K, Senba M, et al. Essential contribution of monocyte chemoattractant protein-1/C-C chemokine ligand-2 to resolution and repair processes in acute bacterial pneumonia. J Immunol. 2004;172:398–409.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang K, Kermani MG, Jones ML, Warren JS, Phan SH. Lung monocyte chemoattractant protein-1 gene expression in bleomycin-induced pulmonary fibrosis. J Immunol. 1994;153:4733–41.

    PubMed  CAS  Google Scholar 

  19. Barna BP, Thomassen MJ, Zhou P, et al. Activation of alveolar macrophage TNF and MCP-1 expression in vivo by a synthetic peptide of C-reactive protein. J Leukoc Biol. 1996;59:397–402.

    PubMed  CAS  Google Scholar 

  20. Flory CM, Jones ML, Warren JS. Pulmonary granuloma formation in the rat is partially dependent on monocyte chemoattractant protein 1. Lab Invest. 1993;69:396–404.

    PubMed  CAS  Google Scholar 

  21. Carollo M, Hogaboam CM, Kunkel SL, et al. Analysis of the temporal expression of chemokines and chemokine receptors during experimental granulomatous inflammation: role and expression of MIP-1α and MCP-1. Br J Pharmacol. 2001;134:1166–79.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Popivanova BK, Kostadinova FI, Furuichi K, et al. Blockade of a chemokine, CCL2, reduces chronic colitis-associated carcinogenesis in mice. Cancer Res. 2009;69:7884–92.

    Article  PubMed  CAS  Google Scholar 

  23. Fantuzzi L, Borghi P, Ciolli V, et al. Loss of CCR2 expression and functional response to monocyte chemotactic protein (MCP-1) during the differentiation of human monocytes: role of secreted MCP-1 in the regulation of the chemotactic response. Blood. 1999;94:875–83.

    PubMed  CAS  Google Scholar 

  24. Yuhong Z, Yang Y, Warr G, Bravo R. LPS down-regulates the expression of chemokine receptor CCR2 in mice and abolishes macrophage infiltration in acute inflammation. J Leukoc Biol. 1999;65:265–9.

    Google Scholar 

  25. Kengo F, Gao JL, Horuk R, et al. Chemokine receptor CCR1 regulates inflammatory cell infiltration after renal ischemia-reperfusion injury. J Am Soc Nephrol. 2003;14:2503–15.

    Article  Google Scholar 

  26. Rose CE Jr, Sung SS, Fu SM. Significant involvement of CCL2 (MCP-1) in inflammatory disorders of the lung. Microcirculation. 2003;10:273–88.

    Article  PubMed  CAS  Google Scholar 

  27. Mack M, Cihak J, Simonis C, et al. Expression and characterization of the chemokine receptors CCR2 and CCR5 in mice. J Immunol. 2001;166:4697–704.

    Article  PubMed  CAS  Google Scholar 

  28. Sunderkotter C, Nikolic T, Dillon MJ, et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol. 2004;172:4410–7.

    Article  PubMed  Google Scholar 

  29. Saccani A, Saccani S, Orlando S, et al. Redox regulation of chemokine receptor expression. Proc Natl Acad Sci USA. 2000;97:2761–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Mariana GA, Chunha TD, Gomes RN, et al. Bacterial clearance is improved in septic mice by platelet-activating factor-acetylhydrolase (PAF-AH) administration. PLoS ONE. 2013;8:e74567.

    Article  CAS  Google Scholar 

  31. Lowy FD. Staphylococcus aureus infections. N Eng J Med. 1998;339:520–32.

    Article  CAS  Google Scholar 

  32. Wang ZM, Liu C, Dziarski R. Chemokines are the main proinflammatory mediators in human monocytes activated by Staphylococcus aureus, peptidoglycan, and endotoxin. J Biol Chem. 2000;275:20260–7.

    Article  PubMed  CAS  Google Scholar 

  33. Servina NV, Jia T, Hohl TM, Pamer EG. Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol. 2008;26:421–52.

    Article  CAS  Google Scholar 

  34. Bishayi B, Bandyopadhyay D, Majhi A, Adhikary R. Possible role of toll like receptor-2 (TLR-2) in the intracellular survival of Staphylococcus aureus in murine peritoneal macrophages: involvement of cytokines and anti-oxidant enzymes. Scand J Immunol. 2014;80:127–43.

    Article  PubMed  CAS  Google Scholar 

  35. Nandi A, Dey S, Biswas J, et al. Differential induction of inflammatory cytokines and reactive oxygen species in murine peritoneal macrophages and resident fresh bone marrow cells by acute Staphylococcus aureus infection: contribution of toll like receptor-2 (TLR-2). Inflammation. 2014;38:224–44.

    Article  CAS  Google Scholar 

  36. Feterowski C, Mack M, Weighardt H, et al. CC chemokine receptor 2 regulates leukocyte recruitment and IL-10 production during acute polymicrobial sepsis. Eur J Immunol. 2004;34:3664–73.

    Article  PubMed  CAS  Google Scholar 

  37. Bishayi B, Bandyopadhyay D, Majhi A, Adhikary R. Expression of CXCR1 (interleukin-8 receptor) in murine macrophages after Staphylococcus aureus infection and its possible implication on intracellular survival correlating with cytokines and bacterial anti-oxidant enzymes. Inflammation. 2014;38:812–27.

    Article  CAS  Google Scholar 

  38. Krut O, Utermöhlen O, Schlossherr X, Krönke M. Strain-specific association of cytotoxic activity and virulence of clinical Staphylococcus aureus isolates. Infect Immun. 2003;71:2716–23.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Bishayi B, Bandyopadhyay D, Majhi A, Adhikary R. Effect of exogenous MCP-1 on TLR-2 neutralized murine macrophages and possible mechanisms of CCR-2/TLR-2 and MCP-1 signalling during Staphylococcus aureus infection. Immunobiology. 2015;220:350–62.

    Article  PubMed  CAS  Google Scholar 

  40. Das D, Bishayi B. Staphylococcal catalase protects intracellularly survived bacteria by destroying H2O2 produced by the murine peritoneal macrophages. Microb Pathog. 2009;47:57–67.

    Article  PubMed  CAS  Google Scholar 

  41. Dey S, Majhi A, Mahanti S, Dey I, Bishayi B. In vitro anti inflammatory and immunomodulatory effects of ciprofloxacin and azithromycin in staphylococcus aureus stimulated murine marcophages are beneficial in presence of cytochalasin D. Inflammation. 2015;38:1050–69.

    Article  PubMed  CAS  Google Scholar 

  42. Mal P, Dutta S, Bandyopadhyay D, Dutta K, Basu A, Bishayi B. Gentamicin in combination with ascorbic acid regulates the severity of Staphylococcus aureus infection-induced septic arthritis in mice. Scand J Immunol. 2012;76:528–40.

    Article  PubMed  CAS  Google Scholar 

  43. Azenabor AA, Muili K, Akoachere JF, Chaudhry A. Macrophage antioxidant enzymes regulate Chlamydia pneumoniae chronicity: evidence of the effect of redox balance on host-pathogen relationship. Immunobiology. 2006;211:325–39.

    Article  PubMed  CAS  Google Scholar 

  44. Wang H, Xu L, Zhao J, et al. Regulatory mechanism of pyrrolidine dithiocarbamate is mediated by nuclear factor-κB and inhibits neutrophil accumulation in ARDS mice. Exp Ther Med. 2014;8:614–22.

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Jarnicki AG, Conroy H, Brereton C, et al. Attenuating regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signaling in dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics. J Immunol. 2008;180:3797–806.

    Article  PubMed  CAS  Google Scholar 

  46. Wada T, Yokoyama H, Matsushima K, Kobayashi K. Monocyte chemoattractant protein-1: does it play a role in diabetic nephropathy? Nephrol Dial Transpl. 2003;18:457–9.

    Article  CAS  Google Scholar 

  47. Gomes RN, Teixeira-Cunha MGA, Figueiredo RT, et al. Bacterial clearance in septic mice is modulated by MCP-1/CCL-2 and nitric oxide. Shock. 2013;39:63–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Hackel D, Pflücke D, Neumann S, et al. The connection of monocytes and reactive oxygen species in pain. PLoS ONE. 2013;8:e63564.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Knuefermann P, Sakata Y, Baker JS, et al. Toll-like receptor 2 mediates Staphylococcus aureus-induced myocardial dysfunction and cytokine production in the heart. Circulation. 2004;110:3693–8.

    Article  PubMed  CAS  Google Scholar 

  50. DeYulia GJ Jr, Carcamo JM, Borquez-Ojeda O, Shelton CC, Golde DW. Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilitates cell signaling. Proc Natl Acad Sci USA. 2005;102:5044–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. DeForge LE, Preston AM, Takeuchi E, Kenney J, Boxer LA, Remick DG. Regulation of interleukin 8 gene expression by oxidant stress. J Biol Chem. 1993;268:25568–76.

    PubMed  CAS  Google Scholar 

  52. Seki E, Minicis SD, Inokuchi S, et al. CCR2 promotes hepatic fibrosis in mice. Hepatology. 2009;50:185–97.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Chen X, Zhang Q, Zhao R, Medford RM. Superoxide, H2O2, and iron are required for TNF-α-induced MCP-1 gene expression in endothelial cells: role of Rac1 and NADPH oxidase. Am J Physiol Heart Circ Physiol. 2004;286:1001–7.

    Article  Google Scholar 

  54. Van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, Gosbell IB. Predictors of mortality in Staphylococcus aureus Bacteremia. Clin Microbiol Rev. 2012;25:362–86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Schulte W, Bernhagen J, Bucala R. Cytokines in Sepsis: potent immunoregulators and potential therapeutic targets—an updated view. Mediat Inflamm. 2013;2013:165974.

    Google Scholar 

  56. Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol. 2000;18:217–42.

    Article  PubMed  CAS  Google Scholar 

  57. Giese NA, Gabriele L, Doherty TM, et al. Interferon (IFN) consensus sequence-binding protein, a transcription factor of the IFN regulatory factor family, regulates immune responses in vivo through control of interleukin 12 expression. J Exp Med. 1997;186:1535–46.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Soell M, Lett E, Holveck F, Scholler M, Wachsmann D, Klein JP. Activation of human monocytes by streptococcal rhamnose glucose polymers is mediated by CD14 antigen, and mannan binding protein inhibits TNF-alpha release. J Immunol. 1995;154:851–60.

    PubMed  CAS  Google Scholar 

  59. Rende N, Xianlong Z, Xiaokui G. Qingtian Li. Staphylococcus aureus regulates secretion of interleukin-6 and monocyte chemoattractant protein-1 through activation of nuclear factor kappa B signaling pathway in human osteoblasts. Braz J Infect Dis. 2011;15:189–94.

    Article  Google Scholar 

  60. Hogaboam CM, Bone-Larson CL, Lipinski S, et al. Differential monocyte chemoattractant protein-1 and chemokine receptor 2 expression by murine lung fibroblasts derived from Th1- and Th2-type pulmonary granuloma models. J Immunol. 1999;163:2193–201.

    PubMed  CAS  Google Scholar 

  61. Hardison JL, Kuziel WA, Manning JE, Lane TE. Chemokine CC receptor 2 is important for acute control of cardiac parasitism but does not contribute to cardiac inflammation after infection with trypanosoma cruzi. J Infect Dis. 2006;193:1584–8.

    Article  PubMed  CAS  Google Scholar 

  62. Traynor TR, Kuziel WA, Toews GB, Huffnagle GB. CCR2 expression determines T1 versus T2 polarization during pulmonary cryptococcus neoformans infection. J Immunol. 2000;164:2021–7.

    Article  PubMed  CAS  Google Scholar 

  63. Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature. 2000;404:407–11.

    Article  PubMed  CAS  Google Scholar 

  64. Kuziel WA, Morgan SJ, Dawson TC, et al. Severe reduction in leukocyte adhesion and monoctye extravasation in mice deficient in CC chemokine receptor 2. Proc Natl Acad Sci USA. 1997;94:12053–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Schweickart VL, Epp A, Raport CJ, Gray PW. CCR11 is a functional receptor for the monocyte chemoattractant protein family of chemokines. J Biol Chem. 2000;275:9550–6.

    Article  PubMed  CAS  Google Scholar 

  66. Kim Y, Sung S, Kuziel WA, Feldman S, Fu SM, Rose CE Jr. Enhanced airway Th2 response after allergen challenge in mice deficient in CC chemokine receptor-2 (CCR2). J Immunol. 2001;166:5183–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Science and Technology, Government of India, for providing the DST-INSPIRE fellowship to Mrs. Ajeya Nandi [Grant Number: DST INSPIRE Fellowship/2013/1118, dated June 23, 2014] for funding this project. Part of this work was also supported by the Department of Science and Technology (DST), Science and Engineering Research Board (SERB), Ministry of Science and Technology, Government of India, New Delhi, India [Grant Number: SR/SO/HS/0013/2012, dated May 21, 2013, to Biswadev Bishayi]. The author (BB) is indebted to Department of Science and Technology, Government of India, for providing them with the instruments procured under the DST-PURSE programme to the Department of Physiology, University of Calcutta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswadev Bishayi.

Ethics declarations

Conflict of interest

For the manuscript entitled “Murine macrophage response from peritoneal cavity requires signals mediated by chemokine receptor CCR-2 during Staphylococcus aureus infection” by Ajeya Nandi and Biswadev Bishayi, authors declared that they have no conflict of interest for this manuscript toward submission in Immunol. Res. The authors also state that they do not have a direct financial relation with the commercial identities mentioned in this manuscript that might lead to a conflict of interest for any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandi, A., Bishayi, B. Murine macrophage response from peritoneal cavity requires signals mediated by chemokine receptor CCR-2 during Staphylococcus aureus infection. Immunol Res 64, 213–232 (2016). https://doi.org/10.1007/s12026-015-8739-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8739-9

Keywords

Navigation