Skip to main content
Log in

DNA typing in wildlife crime: recent developments in species identification

  • Review
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

Species identification has become a tool in the investigation of acts of alleged wildlife crimes. This review details the steps required in DNA testing in wildlife crime investigations and highlights recent developments where not only can individual species be identified within a mixture of species but multiple species can be identified simultaneously. ‘What species is this?’ is a question asked frequently in wildlife crime investigations. Depending on the material being examined, DNA analysis may offer the best opportunity to answer this question. Species testing requires the comparison of the DNA type from the unknown sample to DNA types on a database. The areas of DNA tested are on the mitochondria and include predominantly the cytochrome b gene and the cytochrome oxidase I gene. Standard analysis requires the sequencing of part of one of these genes and comparing the sequence to that held on a repository of DNA sequences such as the GenBank database. Much of the DNA sequence of either of these two genes is conserved with only parts being variable. A recent development is to target areas of those sequences that are specific to a species; this can increase the sensitivity of the test with no loss of specificity. The benefit of targeting species specific sequences is that within a mixture of two of more species, the individual species within the mixture can be identified. This identification would not be possible using standard sequencing. These new developments can lead to a greater number of samples being tested in alleged wildlife crimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Deer Act 1991 Stat. 1991 c54 (1991).

  2. Deer (Scotland) Act 1996 Stat. 1996 c58 (1996).

  3. Conservation of Seals Act 1970, Stat. 1970 c30 (1970).

  4. Conservation of Seals (Scotland) Order 2004, Stat. 2004 No. 283 (2004).

  5. Protection of Badgers Act 1992 Stat. 1992 c51 (1992).

  6. Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). What is CITES. [29 March 2010]; Available from: http://www.cites.org/eng/disc/what.shtml.

  7. Mazák JH. On the sexual dimorphism in the skull of the tiger (Panthera tigris). Mamm Biol. 2004;69(6):392–400.

    Article  Google Scholar 

  8. Kitchener AC. Tiger distribution, phenotypic variation and conservation issues. In: Seidensticker J, Christie S, Jackson P, editors. Riding the tiger, tiger conservation in human-dominated landscapes. Cambridge: Cambridge University Press; 1999. p. 19–39.

    Google Scholar 

  9. Luo S-J, Kim J-H, Johnson WE, Walt JVD, Martenson J, Yuhki N, et al. Phylogeography and Genetic Ancestry of Tigers (Panthera tigris). PLoS Biol. 2004;2(12):e442.

    Article  PubMed  CAS  Google Scholar 

  10. Linacre A. Application of mitochondrial DNA technologies in wildlife investigations—species identification. Forensic Sci Rev. 2006;18(1):1–8.

    Google Scholar 

  11. Berry O, Sarre SD. Gel-free species identification using melt-curve analysis. Mol Ecol Notes. 2006;Primer Notes:1–4.

  12. Hillier ML, Bell LS. Differentiating human bone from animal bone: a review of histological methods. J Forensic Sci. 2007;52(2):249–63.

    Article  PubMed  Google Scholar 

  13. Martiniakova M, Grosskopf B, Omelka R, Vondrakova M, Bauerova M. Differences among species in compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analysis for species identification. J Forensic Sci. 2006;51(6):1235–9.

    Article  PubMed  Google Scholar 

  14. Suchentrunk F, Flux JEC, Flux MM, Ben Slimen H. Multivariate discrimination between East African cape hares (Lepus capensis) and savanna hares (L. victoriae) based on occipital bone shape. Mamm Biol. 2007;72(6):372–83.

    Article  Google Scholar 

  15. Moore JE. A key for the identification of animal hairs. J Forensic Sci Soc. 1988;28(5–6):335–9.

    Article  Google Scholar 

  16. Petraco N, Kubic T. Chapter 6: animal hair identification. Color atlas and manual of microscopy for criminalists, chemists and conservators. London: CRC Press; 2004. p. 69–76.

    Google Scholar 

  17. Bartlett SE, Davidson WS. FINS (Forensically Informative Nucleotide Sequencing)—a procedure for identifying the animal origin of biological specimens. BioTechniques. 1992;12(3):408–11.

    CAS  PubMed  Google Scholar 

  18. Verma SK, Prasad K, Nagesh N, Sultana M, Singh L. Was elusive carnivore a panther? DNA typing of faeces reveals the mystery. Forensic Sci Int. 2003;137(1):16–20.

    Article  CAS  PubMed  Google Scholar 

  19. Saferstein R. Chapter 7: identification and grouping of bloodstains. Forensic science handbook. New Jersey: Prentice Hall, Inc; 1982. p. 267–96.

    Google Scholar 

  20. Balitzki-Korte B, Anslinger K, Bartsch C, Rolf B. Species identification by means of pyrosequencing the mitochondrial 12S rRNA gene. Int J Leg Med. 2005;119(5):291–4.

    Article  CAS  Google Scholar 

  21. Prakash PS, Ghumatkar MS, Nandode SV, Yogesh SK, Shouche YS. Mitochondrial 12S rRNA sequence analysis in wildlife forensics. Curr Sci. 2000;78(10):1239–41.

    CAS  Google Scholar 

  22. Macedo-Silva A, Barbosa SFC, Alkmin MGA, Vaz AJ, Shimokomaki M, Tenuta-Filho A. Hamburger meat identification by dot-ELISA. Meat Sci. 2000;56(2):189–92.

    Article  CAS  Google Scholar 

  23. World Society for the Protection of Animals. Bear detection kits a forensic system for controlling the illegal trade in bear products: WSPA; 2006.

  24. Peppin L, McEwing R, Webster S, Rogers A, Nicholls D, Ogden R. Development of a field test for the detection of illegal bear products. Endanger Species Res 2008 September 18. 2008;9(3):263–70.

  25. Parson W, Pegoraro K, Niederstatter H, Foger M, Steinlechner M. Species identification by means of the cytochrome b gene. Int J Leg Med. 2000;114(1):23–8.

    Article  CAS  Google Scholar 

  26. Bottero MT, Civera T, Nucera D, Rosati S, Sacchi P, Turi RM. A multiplex polymerase chain reaction for the identification of cows’, goats’ and sheep’s milk in dairy products. Int Dairy J. 2003;13(4):277–82.

    Article  CAS  Google Scholar 

  27. Bravi CM, Liron JP, Mirol PM, Ripoli MV, Peral-Garcia P, Giovambattista G. A simple method for domestic animal identification in Argentina using PCR-RFLP analysis of cytochrome b gene. Leg Med. 2004;6(4):246–51.

    Article  CAS  Google Scholar 

  28. Burton RS. Molecular tools in marine ecology. J Exp Mar Biol Ecol. 1996;200(1–2):85–101.

    Article  CAS  Google Scholar 

  29. de los Angeles Barriga-Sosa I, Perez-Ramirez MY, Soto-Aguirre F, Castillo-Rivera M, Arredondo-Figueroa JL. Inter-specific variation of the mitochondrial r16S gene among silversides, “Peces Blancos”, (Atherinopsidae: Menidiinae) and its utilization for species identification. Aquaculture. 2005;250(3–4):637–51.

    Article  CAS  Google Scholar 

  30. Guha S, Kashyap VK. Molecular identification of lizard by RAPD & FINS of mitochondrial 16S rRNA gene. Leg Med. 2006;8(1):5–10.

    Article  CAS  Google Scholar 

  31. Partis L, Croan D, Guo Z, Clark R, Coldham T, Murby J. Evaluation of a DNA fingerprinting method for determining the species origin of meats. Meat Sci. 2000;54(4):369–76.

    Article  CAS  Google Scholar 

  32. Partis L, Wells RJ. Identification of fish species using random amplified polymorphic DNA (RAPD). Mol Cell Probes. 1996;10(6):435–41.

    Article  CAS  PubMed  Google Scholar 

  33. Sasazaki S, Itoh K, Arimitsu S, Imada T, Takasuga A, Nagaishi H, et al. Development of breed identification markers derived from AFLP in beef cattle. Meat Sci. 2004;67(2):275–80.

    Article  CAS  Google Scholar 

  34. Sunnucks P. Efficient genetic markers for population biology. Trends Ecol Evol. 2000;15(5):199–203.

    Article  PubMed  Google Scholar 

  35. Verkaar ELC, Nijman IJ, Boutaga K, Lenstra JA. Differentiation of cattle species in beef by PCR-RFLP of mitochondrial and satellite DNA. Meat Sci. 2002;60(4):365–9.

    Article  CAS  Google Scholar 

  36. Woolfe M, Primrose S. Food forensics: using DNA technology to combat misdescription and fraud. Trends Biotechnol. 2004;22(5):222–6.

    Article  CAS  PubMed  Google Scholar 

  37. Ishizaki S, Yokoyama Y, Oshiro N, Teruya N, Nagashima Y, Shiomu K, et al. Molecular identification of pufferfish species using PCR amplification and restriction analysis of a segment of the 16S rRNA gene. Comp Biochem Physiol Part D Genomics Proteomics. 2006;1(1):139–44.

    Article  PubMed  Google Scholar 

  38. Alacs E, Georges A, FitzSimmons N, Robertson J. DNA detective: a review of molecular approaches to wildlife forensics. Forensic Sci Med Pathol. 2010:(in press).

  39. Abdel-Rahman SM, Ahmed MMM. Rapid and sensitive identification of buffalo’s, cattle’s and sheep’s milk using species-specific PCR and PCR-RFLP techniques. Food Control. 2007;18(10):1246–9.

    Article  CAS  Google Scholar 

  40. Hsieh H-S, Chai T-J, Hwang D-F. Rapid PCR-RFLP method for the identification of 5 billfish species. J Food Sci. 2005;70(4):C246–9.

    Article  CAS  Google Scholar 

  41. Hsieh H-S, Chai T-J, Hwang D-F. Using the PCR-RFLP method to identify the species of different processed products of billfish meats. Food Control. 2007;18(4):369–74.

    Article  CAS  Google Scholar 

  42. Lin W-F, Hwang D-F. Application of PCR-RFLP analysis on species identification of canned tuna. Food Control. 2007;18(9):1050–7.

    Article  CAS  Google Scholar 

  43. Rastogi G, Dharne MS, Walujkar S, Kumar A, Patole MS, Shouche YS. Species identification and authentication of tissues of animal origin using mitochondrial and nuclear markers. Meat Sci. 2007;76(4):666–74.

    Article  CAS  Google Scholar 

  44. Rea S, Storani G, Mascaro N, Stocchi R, Loschi AR. Species identification in anchovy pastes from the market by PCR-RFLP technique. Food Control. 2009;20(5):515–20.

    Article  CAS  Google Scholar 

  45. Goebel AM, Donnelly JM, Atz ME. PCR primers and amplification methods for 12S ribosomal DNA, the control region, cytochrome oxidase I, and cytochrome b in Bufonids and other frogs, and an overview of PCR primers which have amplified DNA in amphibians successfully. Mol Phylogenet Evol. 1999;11(1):163–99.

    Article  CAS  PubMed  Google Scholar 

  46. Kuwayama R, Ozawa T. Phylogenetic relationships among European Red Deer, Wapiti, and Sika Deer inferred from mitochondrial DNA sequences. Mol Phylogenet Evol. 2000;15(1):115–23.

    Article  CAS  PubMed  Google Scholar 

  47. Ludt CJ, Schroeder W, Rottmann O, Kuehn R. Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Mol Phylogenet Evol. 2004;31(3):1064–83.

    Article  CAS  PubMed  Google Scholar 

  48. Matthee CA, Robinson TJ. Cytochrome b phylogeny of the Family Bovidae: resolution within the Alcelaphini, Antilopini, Neotragini, and Tragelaphini. Mol Phylogenet Evol. 1999;12(1):31–46.

    Article  CAS  PubMed  Google Scholar 

  49. Rokas A, Holland PWH. Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol. 2000;15(11):454–9.

    Article  PubMed  Google Scholar 

  50. Su B, Wang Y-X, Lan H, Wang W, Zhang Y. Phylogenetic study of complete cytochrome b genes in musk deer (Genus Moschus) using museum samples. Mol Phylogenet Evol. 1999;12(3):241–9.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang D-X, Hewitt GM. Nuclear integrations: challenges for mitochondrial DNA markers. Trends Ecol Evol. 1996;11(6):247–51.

    Article  Google Scholar 

  52. Zhang Y-P, Wang X-X, Ryder O, Li H-P, Zhang H-M, Yong Y, et al. Genetic diversity and conservation of endangered animal species. Pure Appl Chem. 2002;74(4):575–84.

    Article  CAS  Google Scholar 

  53. Tobe SS, Kitchener A, Linacre A. Cytochrome b or cytochrome c oxidase subunit I for mammalian species identification—An answer to the debate. Forensic Sci Int Genet Sup. 2009;2(1):306–7.

    Article  Google Scholar 

  54. Imaizumi K, Akutsu T, Miyasaka S, Yoshino M. Development of species identification tests targeting the 16S ribosomal RNA coding region in mitochondrial DNA. Int J Leg Med. 2007;121(3):184–91.

    Article  Google Scholar 

  55. Vences M, Thomas M, Meijden AVD, Chiari Y, Vieites DR. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front Zool. 2005;2(5).

  56. Lopez-Calleja I, Gonzalez I, Fajardo V, Martin I, Hernandez PE, Garcia T, et al. Real-time TaqMan PCR for quantitative detection of cows’ milk in ewes’ milk mixtures. Int Dairy J. 2007;17(7):729–36.

    Article  CAS  Google Scholar 

  57. Lopez-Calleja I, Gonzalez I, Fajardo V, Martin I, Hernandez PE, Garcia T, et al. Quantitative detection of goats’ milk in sheep’s milk by real-time PCR. Food Control. 2007;18(11):1466–73.

    Article  CAS  Google Scholar 

  58. Fajardo V, Gonzalez I, Lopez-Calleja I, Martin I, Rojas M, Hernandez PE, et al. Identification of meats from red deer (Cervus elaphus), fallow deer (Dama dama), and roe deer (Capreolus capreolus) using polymerase chain reaction targeting specific sequences from the mitochondrial 12S rRNA gene. Meat Sci. 2007;76(2):234–40.

    Article  CAS  Google Scholar 

  59. Che Man YB, Aida AA, Raha AR, Son R. Identification of pork derivatives in food products by species-specific polymerase chain reaction (PCR) for halal verification. Food Control. 2007;18(7):885–9.

    Article  CAS  Google Scholar 

  60. Pun K-M, Albrecht C, Castella V, Fumagalli L. Species identification in mammals from mixed biological samples based on mitochondrial DNA control region length polymorphism. Electrophoresis. 2009;30(6):1008–14.

    Article  CAS  PubMed  Google Scholar 

  61. Gupta SK, Thangaraj K, Singh L. A simple and inexpensive molecular method for sexing and identification of the forensic samples of elephant origin. J Forensic Sci. 2006;51(4):805–7.

    Article  CAS  PubMed  Google Scholar 

  62. Kitano T, Umetsu K, Tian W, Osawa M. Two universal primer sets for species identification among vertebrates. Int J Leg Med. 2007;121(5):423–7.

    Article  Google Scholar 

  63. Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, et al. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA. 1989;86(16):6196–200.

    Article  CAS  PubMed  Google Scholar 

  64. Nussbaumer C, Korschineck I. Non-human mtDNA helps to exculpate a suspect in a homicide case. Int Congr Ser. 2006;1288:136–8.

    Article  CAS  Google Scholar 

  65. Fumagalli L, Cabrita CJ, Castella V. Simultaneous identification of multiple mammalian species from mixed forensic samples based on mtDNA control region length polymorphism. Forensic Sci Int Genet Sup. 2009;2(1):302–3.

    Article  Google Scholar 

  66. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290(5806):457–65.

    Article  CAS  PubMed  Google Scholar 

  67. Alberts B, Bray D, Johnson A, Lewis J, Raff M, Roberts K. Chapter 13: energy generation in mitochondria and chloroplasts. Essential cell biology: an introduction to the molecular biology of the cell. London: Garland Publishing, Inc; 1998. p. 407–45.

    Google Scholar 

  68. Boonseub S, Tobe SS, Linacre AMT. The use of mitochondrial DNA genes to identify closely related avian species. Forensic Sci Int Genet Sup. 2009;2(1):275–7.

    Article  Google Scholar 

  69. Tobe SS, Linacre AMT. Species testing using DNA Loci. In: Linacre AMT, editor. Wildlife forensic investigation. London: Taylor and Francis; 2009. p. 61–94.

    Chapter  Google Scholar 

  70. Tobe SS, Kitchener AC, Linacre AMT. Reconstructing mammalian phylogenies: a detailed comparison of the cytochrome b and cytochrome oxidase subunit I mitochondrial genes. PLoS ONE. 2010; submitted.

  71. Hsieh H-M, Chiang H-L, Tsai L-C, Lai S-Y, Huang N-E, Linacre A, et al. Cytochrome b gene for species identification of the conservation animals. Forensic Sci Int. 2001;122(1):7–18.

    Article  CAS  PubMed  Google Scholar 

  72. Caine L, Lima G, Pontes L, Abrantes D, Pereira M, Pinheiro MF. Species identification by cytochrome b gene: casework samples. Int Congr Ser. 2006;1288:145–7.

    Article  CAS  Google Scholar 

  73. Colombo F, Marchisio E, Pizzini A, Cantoni C. Identification of the goose species (Anser anser) in Italian “Mortara” salami by DNA sequencing and a polymerase chain reaction with an original primer pair. Meat Sci. 2002;61(3):291–4.

    Article  CAS  Google Scholar 

  74. Hsieh H-M, Huang L-H, Tsai L-C, Kuo Y-C, Meng H-H, Linacre A, et al. Species identification of rhinoceros horns using the cytochrome b gene. Forensic Sci Int. 2003;136(1–3):1–11.

    Article  CAS  PubMed  Google Scholar 

  75. Hsieh H-M, Huang L-H, Tsai L-C, Liu C-L, Kuo Y-C, Hsiao C-T, et al. Species identification of Kachuga tecta using the cytochrome b gene. J Forensic Sci. 2006;51(1):52–6.

    Article  CAS  PubMed  Google Scholar 

  76. Pereira F, Meirinhos J, Amorim A, Pereira L. Analysis of inter-specific mitochondrial DNA diversity for accurate species identification. Int Congr Ser. 2006;1288:103–5.

    Article  CAS  Google Scholar 

  77. Wetton JH, Braidley GL, Tsang CSF, Roney CA, Powell SL, Spriggs AC. Generation of a species-specific DNA sequence library of british mammals. A study by the forensic science service for the joint nature conservation committee and the environment and heritage service, Northern Ireland; 2002. p. 37.

  78. Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc R Soc B Biol Sci. 2003;270(1512):313–21.

    Article  CAS  Google Scholar 

  79. Tobe SS, Linacre AMT. A multiplex assay to identify 18 European mammal species from mixtures using the mitochondrial cytochrome b gene. Electrophoresis. 2008;29(2):340–7.

    Article  CAS  PubMed  Google Scholar 

  80. Beckstead WA, Ebbert MTW, Rowe MJ, McClellan DA. Evolutionary Pressure on Mitochondrial Cytochrome b Is Consistent with a Role of CytbI7T Affecting Longevity during Caloric Restriction. PLoS ONE. 2009;4(6):e5836.

    Article  PubMed  CAS  Google Scholar 

  81. Irwin D, Kocher T, Wilson A. Evolution of the cytochrome b gene of mammals. J Mol Evol. 1991;32(2):128–44.

    Article  CAS  PubMed  Google Scholar 

  82. Tobe SS, Linacre A. A method to identify a large number of mammalian species in the UK from trace samples and mixtures without the use of sequencing. Forensic Sci Int Genet Sup. 2008;1(1):625–7.

    Article  Google Scholar 

  83. Verma SK, Singh L. Novel universal primers establish identity of an enormous number of animal species for forensic application. Mol Ecol Notes. 2003;3(1):28–31.

    Article  CAS  Google Scholar 

  84. de Pancorbo MM, Castro A, Fernandez-Fernandez I, Cuevas N. Cytochrome b for identification of animal species in processed food. Int Congr Ser. 2004;1261:592–4.

    Article  CAS  Google Scholar 

  85. Girish PS, Anjaneyulu ASR, Viswas KN, Anand M, Rajkumar N, Shivakumar BM, et al. Sequence analysis of mitochondrial 12S rRNA gene can identify meat species. Meat Sci. 2004;66(3):551–6.

    Article  CAS  Google Scholar 

  86. Gupta SK, Verma SK, Singh L. Molecular insight into a wildlife crime: the case of a peafowl slaughter. Forensic Sci Int. 2005;154(2–3):214–7.

    Article  CAS  PubMed  Google Scholar 

  87. Wong K-L, Wang J, But PP-H, Shaw P-C. Application of cytochrome b DNA sequences for the authentication of endangered snake species. Forensic Sci Int. 2004;139(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  88. Saigusa K, Takamiya M, Aoki Y. Species identification of the forensically important flies in Iwate prefecture, Japan based on mitochondrial cytochrome oxidase gene subunit I (COI) sequences. Leg Med. 2005;7(3):175–8.

    Article  CAS  Google Scholar 

  89. An J, Lee M-Y, Min M-S, Lee M-H, Lee H. A molecular genetic approach for species identification of mammals and sex determination of birds in a forensic case of poaching from South Korea. Forensic Sci Int. 2007;167(1):59–61.

    Article  CAS  PubMed  Google Scholar 

  90. Meganathan PR, Dubey B, Haque I. Molecular identification of crocodile species using novel primers for forensic analysis. Conserv Genet. 2009;10(3):767–70.

    Article  CAS  Google Scholar 

  91. Lee J, Hsieh H-M, Huang L-H, Kuo Y-C, Wu J-H, Chin S-C, et al. Ivory identification by DNA profiling of cytochrome b gene. Int J Leg Med. 2009;123(2):117–21.

    Article  Google Scholar 

  92. Lee JC-I, Tsai L-C, Yang C-Y, Liu C-L, Huang L-H, Linacre A, et al. DNA profiling of Shahtoosh. Electrophoresis. 2006;27(17):3359–62.

    Article  CAS  PubMed  Google Scholar 

  93. Alvarez-Iglesias V, Jaime JC, Carracedo A, Salas A. Coding region mitochondrial DNA SNPs: Targeting East Asian and Native American haplogroups. Forensic Sci Int Genet. 2007;1(1):44–55.

    Article  CAS  PubMed  Google Scholar 

  94. Sanchez JJ, Børsting C, Balogh K, Berger B, Bogus M, Butler JM, et al. Forensic typing of autosomal SNPs with a 29 SNP-multiplex—Results of a collaborative EDNAP exercise. Forensic Sci Int Genet. 2008;2(3):176–83.

    Article  CAS  PubMed  Google Scholar 

  95. Völgyi A, Zalán A, Szvetnik E, Pamjav H. Hungarian population data for 11 Y-STR and 49 Y-SNP markers. Forensic Sci Int Genet. 2009;3(2):e27–8.

    Article  PubMed  CAS  Google Scholar 

  96. Westen AA, Matai AS, Laros JFJ, Meiland HC, Jasper M, de Leeuw WJF, et al. Tri-allelic SNP markers enable analysis of mixed and degraded DNA samples. Forensic Sci Int Genet. 2009;3(4):233–41.

    Article  CAS  PubMed  Google Scholar 

  97. Mosquera-Miguel A, Álvarez-Iglesias V, Cerezo M, Lareu MV, Carracedo Á, Salas A. Testing the performance of mtSNP minisequencing in forensic samples. Forensic Sci Int Genet. 2009;3(4):261–4.

    Article  CAS  PubMed  Google Scholar 

  98. Grignani P, Turchi C, Achilli A, Peloso G, Alù M, Ricci U, et al. Multiplex mtDNA coding region SNP assays for molecular dissection of haplogroups U/K and J/T. Forensic Sci Int Genet. 2009;4(1):21–5.

    Article  CAS  PubMed  Google Scholar 

  99. Børsting C, Rockenbauer E, Morling N. Validation of a single nucleotide polymorphism (SNP) typing assay with 49 SNPs for forensic genetic testing in a laboratory accredited according to the ISO 17025 standard. Forensic Sci Int Genet. 2009;4(1):34–42.

    Article  PubMed  CAS  Google Scholar 

  100. Krjutskov K, Viltrop T, Palta P, Metspalu E, Tamm E, Suvi S, et al. Evaluation of the 124-plex SNP typing microarray for forensic testing. Forensic Sci Int Genet. 2009;4(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  101. Dixon LA, Murray CM, Archer EJ, Dobbins AE, Koumi P, Gill P. Validation of a 21-locus autosomal SNP multiplex for forensic identification purposes. Forensic Sci Int. 2005;154(1):62–77.

    Article  CAS  PubMed  Google Scholar 

  102. Heaton MP, Harhay GP, Bennett GL, Stone RT, Grosse WM, Casas E. Selection and use of SNP markers for animal identification and paternity analysis in U.S. beef cattle. Mamm Genome. 2002;13(5):272–81.

    Article  CAS  PubMed  Google Scholar 

  103. Andreassen R, Hagen-Larsen H, Sánchez-Ramos I, Lunner S, Høyheim B. STR and bi-allelic polymorphisms in Atlantic salmon: Tools for tracing large scale escapees from salmon farms. Forensic Sci Int Genet Sup. 2008;1(1):586–8.

    Article  Google Scholar 

  104. Sato I, Nakaki S, Murata K, Takeshita H, Mukai T. Forensic hair analysis to identify animal species on a case of pet animal abuse. Int J Leg Med. 2010;124(3):249–56.

    Article  Google Scholar 

  105. Martinsohn JT, Ogden R. FishPopTrace—Developing SNP-based population genetic assignment methods to investigate illegal fishing. Forensic Sci Int Genet Sup. 2009;2(1):294–6.

    Article  Google Scholar 

  106. Araujo R, Amorim A, Gusmão L. Microbial forensics: do aspergillus fumigatus strains present local or regional differentiation? Forensic Sci Int Genet Sup. 2009;2(1):297–9.

    Article  Google Scholar 

  107. Ogden R, McGough HN, Cowan RS, Chua L, Groves M, McEwing R. SNP-based method for the genetic identification of ramin Gonystylus spp. timber and products: applied research meeting CITES enforcement needs. Endanger Species Res. 2010;9(3):255–61.

    Google Scholar 

  108. Nakaki S-I, Hino D, Miyoshi M, Nakayama H, Moriyoshi H, Morikawa T, et al. Study of animal species (human, dog and cat) identification using a multiplex single-base primer extension reaction in the cytochrome b gene. Forensic Sci Int. 2007;173(2–3):97–102.

    Article  CAS  PubMed  Google Scholar 

  109. La Neve F, Civera T, Mucci N, Bottero MT. Authentication of meat from game and domestic species by SNaPshot minisequencing analysis. Meat Sci. 2008;80(2):216–24.

    Article  CAS  Google Scholar 

  110. Lin W-F, Hwang D-F. A multiplex PCR assay for species identification of raw and cooked bonito. Food Control. 2008;19(9):879–85.

    Article  CAS  Google Scholar 

  111. Dubey B, Meganathan PR, Haque I. Multiplex PCR assay for rapid identification of three endangered snake species of India. Conserv Genet. 2009;10(6):1861–4.

    Article  CAS  Google Scholar 

  112. Bellis C, Ashton KJ, Freney L, Blair B, Griffiths LR. A molecular genetic approach for forensic animal species identification. Forensic Sci Int. 2003;134(2–3):99–108.

    Article  CAS  PubMed  Google Scholar 

  113. Dalmasso A, Fontanella E, Piatti P, Civera T, Rosati S, Bottero MT. A multiplex PCR assay for the identification of animal species in feedstuffs. Mol Cell Probes. 2004;18(2):81–7.

    Article  CAS  PubMed  Google Scholar 

  114. Dooley JJ, Paine KE, Garrett SD, Brown HM. Detection of meat species using TaqMan real-time PCR assays. Meat Sci. 2004;68(3):431–8.

    Article  CAS  Google Scholar 

  115. Lahiff S, Glennon M, O’Brien L, Lyng J, Smith T, Maher M, et al. Species-specific PCR for the identification of ovine, porcine and chicken species in meat and bone meal (MBM). Mol Cell Probes. 2001;15(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  116. Lopez-Andreo M, Lugo L, Garrido-Pertierra A, Prieto MI, Puyet A. Identification and quantitation of species in complex DNA mixtures by real-time polymerase chain reaction. Anal Biochem. 2005;339(1):73–82.

    Article  CAS  PubMed  Google Scholar 

  117. Matsunaga T, Chikuni K, Tanabe R, Muroya S, Shibata K, Yamada J, et al. A quick and simple method for the identification of meat species and meat products by PCR assay. Meat Sci. 1999;51(2):143–8.

    Article  CAS  Google Scholar 

  118. Ono K, Satoh M, Yoshida T, Ozawa Y, Kohara A, Takeuchi M, et al. Species identification of animal cells by nested PCR targeted to mitochondrial DNA. In Vitro Cell Dev Biol Anim. 2007;43(5):168–75.

    Article  CAS  PubMed  Google Scholar 

  119. De-Franco B, Mendonca FF, Hashimoto DT, Porto-Foresti F, Oliveira C, Foresti F. Forensic identification of the guitarfish species Rhinobatos horkelli, R-percellens and Zapteryx brevirostris using multiplex-PCR. Mol Ecol Resour. 2010;10(1):197–9.

    Article  CAS  Google Scholar 

  120. Tobe SS, Linacre A. Identifying endangered species from degraded mixtures at low levels. Forensic Sci Int Genet Sup. 2009;2(1):304–5.

    Article  Google Scholar 

  121. Tobe S, Linacre A. Species identification of human and deer from mixed biological material. Forensic Sci Int. 2007;169(2–3):278–9.

    Article  CAS  PubMed  Google Scholar 

  122. Eichmann C, Berger B, Reinhold M, Lutz M, Parson W. Canine-specific STR typing of saliva traces on dog bite wounds. Int J Leg Med. 2004;118(6):337–42.

    Article  Google Scholar 

  123. Serra A, Pinheiro J, Batista L, Bento AM, Balsa F, Costa HA, et al. Human being eaten by his own dogs: Genetic confirmation through analysis of bones recovered in a dog’s stomach content. Forensic Sci Int Genet Sup. 2009;2(1):210–2.

    Article  Google Scholar 

  124. Peppin L, McEwing R, Carvalho GR, Ogden R. A DNA-Based Approach for the Forensic Identification of Asiatic Black Bear (Ursus thibetanus) in a Traditional Asian Medicine. J Forensic Sci. 2008;53(6):1358–62.

    CAS  PubMed  Google Scholar 

  125. Wetton JH, Tsang CSF, Roney CA, Spriggs AC. An extremely sensitive species-specific ARMs PCR test for the presence of tiger bone DNA. Forensic Sci Int. 2004;140(1):139–45.

    Article  PubMed  Google Scholar 

  126. Linacre A, Tobe SS. On the trial of tigers-tracking tiger in Traditional East Asian Medicine. Forensic Sci Int Genet Sup. 2008;1(1):603–4.

    Article  Google Scholar 

  127. Kitpipit T, Linacre A, Tobe SS. Tiger species identification based on molecular approach. Forensic Sci Int Genet Sup. 2009;2(1):310–2.

    Article  Google Scholar 

  128. van Asch B, Pinheiro R, Pereira R, Alves C, Pereira V, Pereira F, et al. A framework for the development of STR genotyping in domestic animal species: Characterization and population study of 12 canine X-chromosome loci. Electrophoresis. 2010;31(2):303–8.

    Article  PubMed  CAS  Google Scholar 

  129. van Asch B, Alves C, Pereira F, Gusmão L, Amorim A. A new autosomal STR multiplex for canine genotyping. Forensic Sci Int Genet Sup. 2008;1(1):628–9.

    Article  Google Scholar 

  130. Robino C, Menegon S, Caratti S, Sona B, Gino S, Torre C. Forensic application of a multiplex PCR system for the typing of pig STRs. Forensic Sci Int Genet Sup. 2008;1(1):614–5.

    Article  Google Scholar 

  131. Müller K, Brugger C, Klein R, Miltner E, Reuther F, Wiegand P. STR typing of hairs from domestic cats. Forensic Sci Int Genet Sup. 2008;1(1):607–9.

    Article  Google Scholar 

  132. Lee JC-I, Tsai L-C, Kuan Y-Y, Chien W-H, Chang K-T, Wu C-H, et al. Racing pigeon identification using STR and chromo-helicase DNA binding gene markers. Electrophoresis. 2007;28(23):4274–81.

    Article  CAS  PubMed  Google Scholar 

  133. Dawnay N, Ogden R, Wetton JH, Thorpe RS, McEwing R. Genetic data from 28 STR loci for forensic individual identification and parentage analyses in 6 bird of prey species. Forensic Sci Int Genet. 2009;3(2):e63–9.

    Article  CAS  PubMed  Google Scholar 

  134. Dawnay N, Ogden R, Thorpe RS, Pope LC, Dawson DA, McEwing R. A forensic STR profiling system for the Eurasian badger: a framework for developing profiling systems for wildlife species. Forensic Sci Int Genet. 2008;2(1):47–53.

    Article  PubMed  Google Scholar 

  135. Singh A, Gaur A, Shailaja K, Satyare Bala B, Singh L. A novel microsatellite (STR) marker for forensic identification of big cats in India. Forensic Sci Int. 2004;141(2–3):143–7.

    Article  CAS  PubMed  Google Scholar 

  136. Eichmann C, Berger B, Steinlechner M, Parson W. Estimating the probability of identity in a random dog population using 15 highly polymorphic canine STR markers. Forensic Sci Int. 2005;151(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  137. Crouse CA, Schumm JW. Investigation of species specificity using nine PCR-based human STR systems. J Forensic Sci. 1995;40(6):952–6.

    CAS  PubMed  Google Scholar 

  138. Meyer E, Wiegand P, Rand SP, Kuhlmann D, Brack M, Brinkmann B. Microsatellite polymorphisms reveal phylogenetic relationships in primates. J Mol Evol. 1995;41(1):10–4.

    Article  CAS  PubMed  Google Scholar 

  139. Minaguchi K, Takenaka O. Structural variations of the VWA locus in humans and comparison with non-human primates. Forensic Sci Int. 2000;113(1–3):9–16.

    Article  CAS  PubMed  Google Scholar 

  140. Wiegand P, Meyer E, Brinkmann B. Microsatellite structures in the context of human evolution. Electrophoresis. 2000;21(5):889–95.

    Article  CAS  PubMed  Google Scholar 

  141. Ago K, Orihara Y, Ago M, Nakagawa S, Ogata M. Evaluation of the species specificity for six human short tandem repeat loci CSF1PO, TPOX, TH01, F13A01, FESFPS and vWA, in the Japanese macaque. Leg Med. 2004;6(2):102–8.

    Article  CAS  Google Scholar 

  142. Toward $1000 Genomes. Science. 2010 January 1, 2010;327(5961):11.

  143. Käller M, Lundeberg J, Ahmadian A. Arrayed identification of DNA signatures. Expert Rev Mol Diagn. 2007;7(1):65–76.

    Article  PubMed  Google Scholar 

  144. Hall TA, Sannes-Lowery KA, McCurdy LD, Fisher C, Anderson T, Henthorne A, et al. Base composition profiling of human mitochondrial DNA using polymerase chain reaction and direct automated electrospray ionization mass spectrometry. Anal Chem. 2009;81(18):7515–26.

    Article  CAS  PubMed  Google Scholar 

  145. Hu X, Gao Y, Feng C, Liu Q, Wang X, Du Z, et al. Advanced technologies for genomic analysis in farm animals and its application for QTL mapping. Genetica. 2009;136(2):371–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Linacre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobe, S.S., Linacre, A. DNA typing in wildlife crime: recent developments in species identification. Forensic Sci Med Pathol 6, 195–206 (2010). https://doi.org/10.1007/s12024-010-9168-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-010-9168-7

Keywords

Navigation