Skip to main content

Advertisement

Log in

Expression and Clinical Significance of Wnt Players and Survivin in Pituitary Tumours

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Deregulation of the Wnt pathway has been implicated in oncogenesis of numerous tissues including the pituitary gland. Immunohistochemical localization and quantification of β-catenin, Cyclin D1, c-MYC and Survivin expression in 47 pituitary adenomas (35 non-functioning, seven GH-secreting, three prolactinomas, two ACTH-secreting tumour) and six normal controls was undertaken in this study and correlation of protein expression to patient and tumour characteristics analysed. β-catenin was strictly membrane-bound with no difference observed between normal and tumour tissue. In contrast, Cyclin D1 and c-MYC localization was nuclear and significantly higher in tumour versus normal tissue (p < 0.05). c-MYC expression correlated negatively with age at diagnosis (p = 0.006, R = −0.395) while Cyclin D1 expression correlated positively with age (p = 0.036, R = 0.306) and was higher in males than in females (p = 0.036). c-MYC expression was significantly lower in patients with functional tumours requiring octreotide treatment and in patients with non-functioning tumours suffering from hypopituitarism. Survivin expression was extremely low in tumours and absent in normal controls. Involvement of the canonical Wnt pathway appears to be minimal, given the segregation of β-catenin to the membrane. Our data suggest that c-MYC may have an important role in early pituitary tumorigenesis while Cyclin D1 is likely to promote tumour growth at a later stage. We also report a novel gender difference in Cyclin D1 expression, the biological significance of which merits further analysis. The reported reduction of c-MYC in functional tumours subsequently treated with octreotide further supports a role of c-MYC in early tumorigenesis and not in recurrence. The decrease in c-MYC in patients with hypopituitarism provides the first in vivo evidence for hormonal regulation of c-MYC expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boikos SA & Stratakis CA. Molecular Genetics of the cAMP-dependent protein kinase pathway and of sporadic pituitary tumorigenesis. Human Molecular Genetics. 16 (1) R80–R87, 2007.

    Article  PubMed  CAS  Google Scholar 

  2. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R & Ben-Ze’ev A. The Cyclin D1 gene is a target of the B-catenin/LEF-1 pathway. PNAS, 96: 5522–5527, 1999.

    Article  PubMed  CAS  Google Scholar 

  3. Polakis P. Wnt signaling and cancer. Genes & Development. 14: 1837–1851, 2000.

    CAS  Google Scholar 

  4. Luo J, Chen J, Deng ZL, Luo X, Song WX, Sharff KA, Tang N, Haydon RC, Luu HH & He TC. Wnt signaling and human diseases: what are the therapeutic implications? Laboratory Investigation, 87: 97–103, 2007.

    Article  PubMed  CAS  Google Scholar 

  5. Elston MS, Gill AJ, Conaglen JV, Clarkson A, Shaw JM, Law AJJ, Cook RJ, Little NC, Clifton-Bligh RJ, Robinsom BG & McDonald KL. Wnt Pathway Inhibitors Are Strongly Down-Regulated in Pituitary Tumours. Endocrinology, 149 (2): 1235–1242, 2008.

    PubMed  CAS  Google Scholar 

  6. Jiang Z, Gui S & Zhang Y. Analysis of differential gene expression by fiber-optic BeadArray and pathway in prolactinomas. Endocrine. 38 (3): 360–368, 2010.

    Article  PubMed  CAS  Google Scholar 

  7. Gaston-Massueta C, Andoniadoua CL, Signorea M, Jayakodya SA, Charolidia N, Kyeyuneb R, Vernaya B, Jacquesa TS, Taketoc MM, Le Tissierd P, Dattanie MT & Martinez-Barberaa JP. Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. PNAS. 108 (28): 11482–11487, 2001.

    Article  Google Scholar 

  8. Geourguiev M & Grossman AB. Pituitary gland and β-catenin signaling: from ontogeny to oncogenesis. Pituitary. 12: 245–255, 2009.

    Article  Google Scholar 

  9. Sun C, Yamato T, Kondo E, Furukawa T, Ikeda H, Horii A. Infrequent mutation of APC, AXIN1, and GSK3B in human pituitary adenomas with abnormal accumulation of CTNNB1. Journal of Neuro-oncology. 73 (2): 131–134, 2005.

    Article  PubMed  CAS  Google Scholar 

  10. Semba S, Han S, Ikeda H & Horii A. Frequent Nuclear Accumulation of B-catenin in Pituitary Adenoma. Cancer, 91 (1): 42–48, 2001.

    Article  PubMed  CAS  Google Scholar 

  11. Qian ZR, Li CC, Yamasaki H, Mizusawa N, Yoshimoto K, Yamada S, Tashiro R, Horiguchi H, Wakatsuki S, Hirokawa M, & Sano T. Role of E-Cadherin, α-, β-, and γ-Catenins, and p120(Cell Adhesion Molecules) in Prolactinoma Behavior. Modern Pathology. 15 (12): 1357–1365.

  12. Xu B, Sano T, Yoshimoto K & Yamada S. Downregulation of E-cadherin and undercoat proteins in pituitary growth hormone cell adenomas with prominent fibrous bodies. Endocrine Pathology. 13(4): 341–351, 2002.

    Article  PubMed  CAS  Google Scholar 

  13. Oikonomou E, Barreto DC, Soares B, De Marco L, Buchfelder M & Adams EF. Beta-catenin mutation in craniopharyngiomas and pituitary adenomas. J Neurooncol, 73 (3): 205–209, 2005.

    Article  PubMed  CAS  Google Scholar 

  14. Tziortzioti V, Ruebel KH, Kuroki T, Jin L, Scheithauer BW & Lloyd RV. Analysis of beta-catenin mutations and alpha-, beta-, and gamma-catenin expression in normal and neoplastic human pituitary tissues. Endocr Pathol, 12 (2): 125–136, 2001.

    Article  PubMed  CAS  Google Scholar 

  15. Howng SL, Wu CH, Cheng TS, Sy WD, Lin PK, Wang C & Hong YR. Differential expression of Wnt genes, β-catenin and E-cadherin in brain tumours. Cancer Letters. 183 (1): 95–101, 2002.

    Article  PubMed  CAS  Google Scholar 

  16. Buslei R, Nolde M, Hofmann B, Meissner S, Eyupoglu IY, Siebzehnrubl F, Hahnen E, Kreutzer J & Fahlbusch R. Common mutations of β-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region. Acta Nueropathologica. 109: 589–597, 2005.

    Article  CAS  Google Scholar 

  17. Sherr CJ. D-type Cyclins. Trends Biochem Sci, 20 (5): 187–190, 1995.

    Article  PubMed  CAS  Google Scholar 

  18. Klein EA & Assoian RK. Transcriptional regulation of the Cyclin D1 gene at a glance. Journal of Cell Science. 121; 3853–3857, 2008.

    Article  PubMed  CAS  Google Scholar 

  19. Hibberts NA, Simpson DJ, Bicknell JE, Broome JC, Hoban PR, Clayton RN & Farrell WE. Analysis of Cyclin D1 (CCND1) Allelic Imbalance and Overexpression in sporadic Human Pituitary Tumors. Clinical Cancer Research. 5: 2133–2139, 1999.

    PubMed  CAS  Google Scholar 

  20. Gazioglu N, Erensoy N, Kadioglu P, Sayitoglu MA, Ersoy IH, Hatirnaz O, Kisacik B, Oz B, Sar M, Ozbek U, Ciplak N & Cagatay P. Altered cyclin D1 genotype distribution in human sporadic pituitary adenomas. Medical Science Monitor. 13 (10): CR-457–463, 2007

    CAS  Google Scholar 

  21. Qian X, Kulig E, Jin L & Lloyd RV. Expression of D-Type Cyclins in Normal and Neoplastic Rat Pituitary. Endocrinology. 139 (4): 2058–2067, 1998.

    Article  PubMed  CAS  Google Scholar 

  22. Saeger W, Schreiber S & Ludecke DK. Cyclins D1 and D3 and Topoisomerase IIa in Inactive Pituitary Adenomas. Endocrine Pathology. 12 (1): 39–47, 2001.

    Article  PubMed  CAS  Google Scholar 

  23. Dworakowska D, Wlodek E, Leontiou CA, Igreja S, Cakir M, Teng M, Prodromou N, Goth MI, Grozinsky-Glasberg S, Gueorguiev M, Kola B, Korbonits M & Grossman AB. Activation of RAF/MEK/ERK and PI3K/AKT/mTOR pathways in pituitary adenomas and their effects on downstream effectors. Endocrine-Related Cancer. 16: 132901338, 2009.

    Article  Google Scholar 

  24. Jordan S. Lidhar K, Korbonits M, Lowe DG & Grossman AB. Cyclin D and Cyclin E expression in normal and adenomatous pituitary. European Journal of Endocrinology. 143 (1): R1–R6, 2000.

    Article  PubMed  CAS  Google Scholar 

  25. Kremenevskaya N, Khattak MN & Buchfelder M. The Involvement of the Wnt/beta-catenin pathway in pituitary adenomas. Abstract presented at the 58th Annual Meeting of the German Society of Neurosurgery, 2007

  26. Wang DG, Johnston CF, Atkinson AB, Heaney AP, Mirakhur M. & Buchanan FD. Expression of bcl-2 oncoprotein in pituitary tumours: comparison with c-myc. J Clin Pathol. 49; 795–797, 1996.

    Article  PubMed  CAS  Google Scholar 

  27. Woloschak M, Roberts JL, Post K. c-myc, c-fos, and c-myb gene expression in human pituitary adenomas. JCEM, 79 (1): 253–257, 1994.

    PubMed  CAS  Google Scholar 

  28. Macchiavelli GA, Rivolta CM, Artese R, Basso A & Burdman JA. Expression of c-myc and c-fos and binding sites for estradiol and progesterone in human pituitary tumors. Neurol Res. 20 (8): 709–712, 1998

    Google Scholar 

  29. Raghanan R, Harrison D, Ince PG, James RA, Daniels M, Birch P, Caldwell GI & Kendall-Taylor P. Oncoprotein Immunoreactivity in human pituitary tumours. Clinical Endocrinology. 40 (1): 117–126, 1994.

    Article  Google Scholar 

  30. Ghosh JC, Dohi T, Kang BH & Altieri DC. Hsp60 REGULATION OF TUMOR CELL APOPTOSIS. Journal of Biological Chemistry, 283 (8), 5188–5194, 2008.

    Article  PubMed  CAS  Google Scholar 

  31. Altieri DC. Survivin in apoptosis control and cell cycle regulation in cancer. Progress in Cell Cycle Research, 5: 447–452, 2003.

    PubMed  Google Scholar 

  32. Ku JH, Kwak C, Lee HS, Park HK, Lee E & Lee Se. Expression of Survivin, a novel inhibitor of apoptosis, in superficial transitional cell carcinoma of the bladder. Journal of Urology, 171: 631–635, 2004.

    Article  PubMed  CAS  Google Scholar 

  33. Ikeguchi M, Ueda T, Sakatani T, Hirooka Y & Kaibara N. Expression of Survivin messenger RNA correlated with poor prognosis in patients with hepatocellular carcinoma. Diagn Mol Pathol, 11 (1): 33–49, 2002.

    Article  PubMed  Google Scholar 

  34. Wasko R, Waligorska-Stachura J, Jankowska A, Warchol JB, Liebert W & Sowinski J. Coexpression of Survivin and PCNA in pituitary tumors and normal pituitary. Neuro Endocrinol Lett. 30(4): 477–481, 2009.

    PubMed  CAS  Google Scholar 

  35. Hassounah M, Lach B, Allam A, Al-Khalaf H, Siddiqui Y, Pangue-Cruz N, Al-Omeir A, Al-Ahdal M & Aboussekhra A. Benign tumors from the human nervous system express high levels of Survivin and are resistant to spontaneous and radiation-induced apoptosis. Journal of Neuro-Oncology. 72: 203–208, 2005.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang YC, Gao J, Xin T, Zheng ZM, Teng LZ. Expression of Survivin in invasive pituitary adenoma. Saudi Med J. 29 (11): 1589–1592, 2008.

    PubMed  Google Scholar 

  37. Jankowska A, Wasko R, Waligorska-Stachura J, Andrusiewicz M, Jaskula M, Liebert W & Sowinski J. Survivin products in pituitary tumours. Neuro Endocrinol Lett. 29 (6):1033–1037, 2008.

    PubMed  CAS  Google Scholar 

  38. Kang BH & Altieri DC. Regulation of Survivin stability by the aryl hydrocarbon receptor-interacting protein. The Journal of Biological Chemistry, 201 (34): 24721–24727, 2006.

    Article  Google Scholar 

  39. Kang BH, Xia F, Pop R, Dohl T, Socolovsky M & Altieri DC. Developmental control of apoptosis by the immunophilin aryl hydrocardbon receptor-interacting protein (AIP) involves mitochondrial import of the Survivin protein. J Biol Chem. 286 (19): 16758–16767, 2011.

    Article  PubMed  CAS  Google Scholar 

  40. Kenny FS, Hui R, Musgrove EA, Gee JM, Blamey RW, Nicholson RI, Sutherland RL, Robertson JF. Overexpression of Cyclin D1 messenger RNA predicts for poor prognosis in estrogen receptor-positive breast cancer. Clin Cancer Res, 5: 2069–2076, 1999.

    PubMed  CAS  Google Scholar 

  41. Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ. CDK-independent activation of estrogen receptor by Cyclin D1. Cell. 88 (3): 405–415, 1997.

    Article  PubMed  CAS  Google Scholar 

  42. Knudsen KE, Cavenee WK, Arden KC. D-type Cyclins complex with the androgen receptor and inhibit its transcriptional transactivation ability. Cancer Research. 15 (59): 2297–2301, 1999.

    Google Scholar 

  43. Zhan X, Horwitz GA, Heaney AP, Nakashima M, Prezant TR, Bronstein MD, Melmed S. Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. JCEM, 84 (2): 761–767, 1999.

    Google Scholar 

  44. Pei L. Identification of c-myc as a downstream target for Pituitary Tumor-Transforming Gene. The Journal of Biological Chemistry. 276 (11): 8481–8491, 2001.

    Article  Google Scholar 

  45. Zhu T, Starling-Emerald B, Zhang X, Lee KO, Gluckman PD, Mertani HC & Lobie PE. Oncogenic transformation of human mammary epithelial cells by autocrine human growth hormone. Cancer Research. 65(1): 317–324, 2005.

    PubMed  CAS  Google Scholar 

  46. Hällstrom IP, Gustafsson JA & Blanck. Hypothalamo-pituitary regulation of the c-myc gene in rat liver. Journal of Molecular Endocrinology. 5:267–274, 1990.

    Article  PubMed  Google Scholar 

  47. Hällstrom IP, Gustafsson JA & Blanck A. Effects of growth hormone on the expression of c-myc and c-fos during early stages of sex-differentiated rat liver carcinogenesis in the resitatant hepatocyte model. Carcinogenesis. 10 (12): 2339–2343, 1989.

    Article  PubMed  Google Scholar 

  48. Fleming WH, Murphy PR, Murphy LJ, Hatton TW, Matusik RJ & Friesen HG. Human growth hormone induces and maintains c-myc gene expression in Nb2 lymphoma cells. Endocrinology. 117 (6): 2547–2549, 1985.

    Article  PubMed  CAS  Google Scholar 

  49. Prochownik EV. c-Myc: linking transformation and genomic instability. Curr Mol Med, 8 (6): 446–458, 2008.

    Article  PubMed  CAS  Google Scholar 

  50. Neiman PE, Elsaesser K, Loring G & Kimmel R. Myc oncogene-induced genomic instability: DNA palindromes in bursal lymphomagenesis. PLoS Genetics, 4 (7): e1000132, 2008.

    Article  PubMed  Google Scholar 

  51. Jenkins PJ, Emery M, Howling SJ, Evanson J, Besser GM & Monson JP. Predicting Therapeutic Response and Degree of Pituitary Tumour Shrinkage during Treatment of Acromegaly with Octreotide LAR. Hormone Research in Paediatrics. 62 (5)227–232, 2004.

    CAS  Google Scholar 

  52. Vance ML & Harris AG. Long-term treatment of 189 acromegalic patients with the somatostatin analog octreotide: result of the international multicenter acromegaly study group. Arch Intern Med. 151: 1573–1578, 1991.

    Article  PubMed  CAS  Google Scholar 

  53. Asa SL, Felix I, Kovacs K & Ramyar L. Effects of somatostatin on somatotroph adenomas of the human pituitary: an in vitro functional and morphological study. Endocrine Pathology. 1: 236–244, 1990.

    Article  Google Scholar 

  54. Pelicci G, Pagliacci LC, Lanfrancone L, Pelicci PG, Grignani E & Nicoletti I. Inhibitory effect of the somatostatin analogue octreotide on rat pituitary tumor cell (GH3) proliferation in vitro. J Endocrinol Invest. 13 (8): 657–662, 1990.

    PubMed  CAS  Google Scholar 

  55. Chen JS, Liang QM, Li HS, Yang J, Wang S & Long JW. Octreotide inhibits growth of colonic cancer SW480 cells by modulating the Wnt/β-catenin pathway. Pharmazie. 64 (2): 126–131, 2009.

    PubMed  CAS  Google Scholar 

  56. Molitch ME. Clinical manifestations of acromegaly. Endocrinology and metabolism clinics of North America. 21 (3): 597–614, 1992.

    CAS  Google Scholar 

  57. Vierimaa O, Goergitsi M, Lehtonen R, Vahteristo P, Kokko A, Raitila A, Tuppurainen K, Ebeling TML, Salmela PI, Paschke R, Gundogdu S, De Menis E, Makinen MJ, Launonen V, Karhu A & Aaltonen LA. Pituitary Adenoma Predisposition Caused by Germline Mutations in the AIP Gene. Science, 312, 1128–1230, 2006.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Department of Pathology at Mater Dei Hospital for allowing the use of its laboratories and facilities for the purposes of this research.

Declaration of Interest

There are no conflicts of interest between any of the authors or funding bodies.

Funding

This research has been funded by the Malta Government Grant Scheme (vote no. 88-019) and the University of Malta Research Fund Committee Allocation (vote no. PHBRP07-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Formosa or Josanne Vassallo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Formosa, R., Gruppetta, M., Falzon, S. et al. Expression and Clinical Significance of Wnt Players and Survivin in Pituitary Tumours. Endocr Pathol 23, 123–131 (2012). https://doi.org/10.1007/s12022-012-9197-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-012-9197-8

Keywords

Navigation