Skip to main content
Log in

ATP mediates a negative autocrine signal on stimulus-secretion coupling in mouse pancreatic β-cells

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

The role of ATP, which is secreted by pancreatic β-cells, is still a matter of debate. It has been postulated that extracellular ATP acts as a positive auto- or paracrine signal in β-cells amplifying insulin secretion. However, there is rising evidence that extracellular ATP may also mediate a negative signal.

Methods

We evaluated whether extracellular ATP interferes with the Ca2+-mediated negative feedback mechanism that regulates oscillatory activity of β-cells.

Results

To experimentally uncover the Ca2+-induced feedback we applied a high extracellular Ca2+ concentration. Under this condition ATP (100 µM) inhibited glucose-evoked oscillations of electrical activity and hyperpolarized the membrane potential. Furthermore, ATP acutely increased the interburst phase of Ca2+ oscillations and reduced the current through L-type Ca2+ channels. Accordingly, ATP (500 µM) decreased glucose-induced insulin secretion. The ATP effect was not mimicked by AMP, ADP, or adenosine. The use of specific agonists and antagonists and mice deficient of large conductance Ca2+-dependent K+ channels revealed that P2X, but not P2Y receptors, and Ca2+-dependent K+ channels are involved in the underlying signaling cascade induced by ATP. The effectiveness of ATP to interfere with parameters of stimulus-secretion coupling is markedly reduced at low extracellular Ca2+ concentration.

Conclusion

It is suggested that extracellular ATP which is co-secreted with insulin in a pulsatile manner during glucose-stimulated exocytosis provides a negative feedback signal driving β-cell oscillations in co-operation with Ca2+ and other signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

V m :

cell membrane potential

Δψ :

mitochondrial membrane potential

[Ca2+]c :

cytosolic Ca2+ concentration

BK-KO:

BK channel knock-out

References

  1. K. Sawada, N. Echigo, N. Juge, T. Miyaji, M. Otsuka, H. Omote, A. Yamamoto, Y. Moriyama, Identification of a vesicular nucleotide transporter. Proc. Natl. Acad. Sci. USA 105(15), 5683–5686 (2008). https://doi.org/10.1073/pnas.0800141105

    Article  PubMed  Google Scholar 

  2. J.C. Hutton, E.J. Penn, M. Peshavaria, Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem. J. 210(2), 297–305 (1983)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J.W. Leitner, K.E. Sussman, A.E. Vatter, F.H. Schneider, Adenine nucleotides in the secretory granule fraction of rat islets. Endocrinology 96(3), 662–677 (1975). https://doi.org/10.1210/endo-96-3-662

    Article  CAS  PubMed  Google Scholar 

  4. S. Obermuller, A. Lindqvist, J. Karanauskaite, J. Galvanovskis, P. Rorsman, S. Barg, Selective nucleotide-release from dense-core granules in insulin-secreting cells. J. Cell. Sci. 118(Pt 18), 4271–4282 (2005). https://doi.org/10.1242/jcs.02549

    Article  CAS  PubMed  Google Scholar 

  5. M. Cieslak, K. Roszek, Purinergic signaling in the pancreas and the therapeutic potential of ecto-nucleotidases in diabetes. Acta Biochim. Pol. 61(4), 655–662 (2014)

    Article  Google Scholar 

  6. J.R. Weitz, M. Makhmutova, J. Almaca, J. Stertmann, K. Aamodt, M. Brissova, S. Speier, R. Rodriguez-Diaz, A. Caicedo, Mouse pancreatic islet macrophages use locally released ATP to monitor beta cell activity. Diabetologia 61(1), 182–192 (2018). https://doi.org/10.1007/s00125-017-4416-y

    Article  CAS  PubMed  Google Scholar 

  7. P. Petit, A.D. Lajoix, R. Gross, P2 purinergic signalling in the pancreatic beta-cell: control of insulin secretion and pharmacology. Eur. J. Pharm. Sci. 37(2), 67–75 (2009). https://doi.org/10.1016/j.ejps.2009.01.007

    Article  CAS  PubMed  Google Scholar 

  8. P. Petit, G. Bertrand, W. Schmeer, J.C. Henquin, Effects of extracellular adenine nucleotides on the electrical, ionic and secretory events in mouse pancreatic beta-cells. Br. J. Pharmacol. 98(3), 875–882 (1989)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. C.R. Poulsen, K. Bokvist, H.L. Olsen, M. Hoy, K. Capito, P. Gilon, J. Gromada, Multiple sites of purinergic control of insulin secretion in mouse pancreatic beta-cells. Diabetes 48(11), 2171–2181 (1999)

    Article  CAS  PubMed  Google Scholar 

  10. S. Amisten, S. Meidute-Abaraviciene, C. Tan, B. Olde, I. Lundquist, A. Salehi, D. Erlinge, ADP mediates inhibition of insulin secretion by activation of P2Y13 receptors in mice. Diabetologia 53(9), 1927–1934 (2010). https://doi.org/10.1007/s00125-010-1807-8

    Article  CAS  PubMed  Google Scholar 

  11. M. Ohtani, K. Ohura, T. Oka, Involvement of P2X receptors in the regulation of insulin secretion, proliferation and survival in mouse pancreatic beta-cells. Cell. Physiol. Biochem. 28(2), 355–366 (2011). https://doi.org/10.1159/000331752

    Article  CAS  PubMed  Google Scholar 

  12. M. Ohtani, J. Suzuki, K.A. Jacobson, T. Oka, Evidence for the possible involvement of the P2Y(6) receptor in Ca (2+) mobilization and insulin secretion in mouse pancreatic islets. Purinergic Signal 4(4), 365–375 (2008). https://doi.org/10.1007/s11302-008-9122-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. C. Leon, M. Freund, O. Latchoumanin, A. Farret, P. Petit, J.P. Cazenave, C. Gachet, The P2Y(1) receptor is involved in the maintenance of glucose homeostasis and in insulin secretion in mice. Purinergic Signal 1(2), 145–151 (2005). https://doi.org/10.1007/s11302-005-6209-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. Meister, D. Le Duc, A. Ricken, R. Burkhardt, J. Thiery, H. Pfannkuche, T. Polte, J. Grosse, T. Schoneberg, A. Schulz, The G protein-coupled receptor P2Y14 influences insulin release and smooth muscle function in mice. J. Biol. Chem. 289(34), 23353–23366 (2014). https://doi.org/10.1074/jbc.M114.580803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. F. Blachier, W.J. Malaisse, Effect of exogenous ATP upon inositol phosphate production, cationic fluxes and insulin release in pancreatic islet cells. Biochim. Biophys. Acta 970(2), 222–229 (1988)

    Article  CAS  PubMed  Google Scholar 

  16. P. Petit, D. Hillaire-Buys, M. Manteghetti, S. Debrus, J. Chapal, M.M. Loubatieres-Mariani, Evidence for two different types of P2 receptors stimulating insulin secretion from pancreatic B cell. Br. J. Pharmacol. 125(6), 1368–1374 (1998). https://doi.org/10.1038/sj.bjp.0702214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. P. Petit, M. Manteghetti, R. Puech, M.M. Loubatieres-Mariani, ATP and phosphate-modified adenine nucleotide analogues. Effects on insulin secretion and calcium uptake. Biochem. Pharmacol. 36(3), 377–380 (1987)

    Article  CAS  PubMed  Google Scholar 

  18. Y.F. Zhao, R. Xu, M. Hernandez, Y. Zhu, C. Chen, Distinct intracellular Ca2+ response to extracellular adenosine triphosphate in pancreatic beta-cells in rats and mice. Endocrine 22(3), 185–192 (2003). https://doi.org/10.1385/ENDO:22:3:185

    Article  CAS  PubMed  Google Scholar 

  19. E. Grapengiesser, H. Dansk, B. Hellman, Pulses of external ATP aid to the synchronization of pancreatic beta-cells by generating premature Ca(2+) oscillations. Biochem. Pharmacol. 68(4), 667–674 (2004). https://doi.org/10.1016/j.bcp.2004.04.018

    Article  CAS  PubMed  Google Scholar 

  20. B. Hellman, H. Dansk, E. Grapengiesser, Pancreatic beta-cells communicate via intermittent release of ATP. Am. J. Physiol. Endocrinol. Metab. 286(5), E759–765 (2004). https://doi.org/10.1152/ajpendo.00452.2003

    Article  CAS  PubMed  Google Scholar 

  21. E. Gylfe, E. Grapengiesser, H. Dansk, B. Hellman, The neurotransmitter ATP triggers Ca2 + responses promoting coordination of pancreatic islet oscillations. Pancreas 41(2), 258–263 (2012). https://doi.org/10.1097/MPA.0b013e3182240586

    Article  CAS  PubMed  Google Scholar 

  22. B. Gier, P. Krippeit-Drews, T. Sheiko, L. Aguilar-Bryan, J. Bryan, M. Düfer, G. Drews, Suppression of KATP channel activity protects murine pancreatic beta-cells against oxidative stress. J. Clin. Invest. 119(11), 3246–3256 (2009). https://doi.org/10.1172/JCI38817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A. Edalat, P. Schulte-Mecklenbeck, C. Bauer, S. Undank, P. Krippeit-Drews, G. Drews, M. Düfer, Mitochondrial succinate dehydrogenase is involved in stimulus-secretion coupling and endogenous ROS formation in murine beta cells. Diabetologia 58(7), 1532–1541 (2015). https://doi.org/10.1007/s00125-015-3577-9

    Article  CAS  PubMed  Google Scholar 

  24. G. Grynkiewicz, M. Poenie, R.Y. Tsien, A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260(6), 3440–3450 (1985)

    CAS  PubMed  Google Scholar 

  25. M. Düfer, D. Haspel, P. Krippeit-Drews, L. Aguilar-Bryan, J. Bryan, G. Drews, Oscillations of membrane potential and cytosolic Ca2+ concentration in SUR1-/- beta cells. Diabetologia 47(3), 488–498 (2004). https://doi.org/10.1007/s00125-004-1348-0

    Article  CAS  PubMed  Google Scholar 

  26. J.C. Henquin, Glucose-induced electrical activity in beta-cells. Feedback control of ATP-sensitive K+ channels by Ca2+? [corrected]. Diabetes 39(11), 1457–1460 (1990)

    Article  CAS  PubMed  Google Scholar 

  27. P. Krippeit-Drews, M. Düfer, G. Drews, Parallel oscillations of intracellular calcium activity and mitochondrial membrane potential in mouse pancreatic B-cells. Biochem. Biophys. Res. Commun. 267(1), 179–183 (2000). doi:10.1006/bbrc.1999.1921 S0006-291X(99)91921-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  28. T.D. Plant, Properties and calcium-dependent inactivation of calcium currents in cultured mouse pancreatic B-cells. J. Physiol. 404, 731–747 (1988)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maczewsky, J., Sikimic, J., Bauer, C., Krippeit-Drews, P., Wolke, C., Lendeckel, U., Barthlen, W., Drews, G. The LXR ligand T0901317 acutely inhibits insulin secretion by affecting mitochondrial metabolism. Endocrinology (2017). https://doi.org/10.1210/en.2016-1941

  30. A. Salehi, S.S. Qader, E. Grapengiesser, B. Hellman, Inhibition of purinoceptors amplifies glucose-stimulated insulin release with removal of its pulsatility. Diabetes 54(7), 2126–2131 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. M. Düfer, B. Gier, D. Wolpers, P. Krippeit-Drews, P. Ruth, G. Drews, Enhanced glucose tolerance by SK4 channel inhibition in pancreatic beta-cells. Diabetes 58, 1835–1843 (2009). doi:db08-1324 [pii] 10.2337/db08-1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M. Düfer, Y. Neye, K. Hörth, P. Krippeit-Drews, A. Hennige, H. Widmer, H. McClafferty, M.J. Shipston, H.U. Häring, P. Ruth, G. Drews, BK channels affect glucose homeostasis and cell viability of murine pancreatic beta cells. Diabetologia 54(2), 423–432 (2011). https://doi.org/10.1007/s00125-010-1936-0

    Article  CAS  PubMed  Google Scholar 

  33. G. Burnstock, Purinergic signalling in endocrine organs. Purinergic Signal 10(1), 189–231 (2014). https://doi.org/10.1007/s11302-013-9396-x

    Article  CAS  PubMed  Google Scholar 

  34. G. Burnstock, Purine and pyrimidine receptors. Cell. Mol. Life Sci. 64(12), 1471–1483 (2007). https://doi.org/10.1007/s00018-007-6497-0

    Article  CAS  PubMed  Google Scholar 

  35. S.N. Yang, P.O. Berggren, The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocr. Rev. 27(6), 621–676 (2006). https://doi.org/10.1210/er.2005-0888

    Article  CAS  PubMed  Google Scholar 

  36. E. Gylfe, B. Hellman, External ATP mimics carbachol in initiating calcium mobilization from pancreatic beta-cells conditioned by previous exposure to glucose. Br. J. Pharmacol. 92(2), 281–289 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. N. Porksen, M. Hollingdal, C. Juhl, P. Butler, J.D. Veldhuis, O. Schmitz, Pulsatile insulin secretion: detection, regulation, and role in diabetes. Diabetes 51(Suppl 1), S245–254 (2002)

    Article  CAS  PubMed  Google Scholar 

  38. A. Hazama, S. Hayashi, Y. Okada, Cell surface measurements of ATP release from single pancreatic beta cells using a novel biosensor technique. Pflug. Arch. 437(1), 31–35 (1998)

    Article  CAS  Google Scholar 

  39. K. Nakazawa, K. Fujimori, A. Takanaka, K. Inoue, An ATP-activated conductance in pheochromocytoma cells and its suppression by extracellular calcium. J. Physiol. 428, 257–272 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. J.F. Rolland, J.C. Henquin, P. Gilon, Feedback control of the ATP-sensitive K+ current by cytosolic Ca2+ contributes to oscillations of the membrane potential in pancreatic beta-cells. Diabetes 51(2), 376–384 (2002)

    Article  CAS  PubMed  Google Scholar 

  41. Q. Gong, M. Kakei, N. Koriyama, M. Nakazaki, S. Morimitsu, K. Yaekura, C. Tei, P2Y-purinoceptor mediated inhibition of L-type Ca2+ channels in rat pancreatic beta-cells. Cell Struct. Funct. 25(5), 279–289 (2000)

    Article  CAS  PubMed  Google Scholar 

  42. M.C. Jacques-Silva, M. Correa-Medina, O. Cabrera, R. Rodriguez-Diaz, N. Makeeva, A. Fachado, J. Diez, D.M. Berman, N.S. Kenyon, C. Ricordi, A. Pileggi, R.D. Molano, P.O. Berggren, A. Caicedo, ATP-gated P2X3 receptors constitute a positive autocrine signal for insulin release in the human pancreatic beta cell. Proc. Natl. Acad. Sci. USA 107(14), 6465–6470 (2010). doi:0908935107 [pii] 10.1073/pnas.0908935107

    Article  PubMed  Google Scholar 

  43. J. Fernandez-Alvarez, D. Hillaire-Buys, M.M. Loubatieres-Mariani, R. Gomis, P. Petit, P2 receptor agonists stimulate insulin release from human pancreatic islets. Pancreas 22(1), 69–71 (2001)

    Article  CAS  PubMed  Google Scholar 

  44. Khan, S., Yan-Do, R., Duong, E., Wu, X., Bautista, A., Cheley, S., MacDonald, P.E., Braun, M. Autocrine activation of P2Y receptors couples Ca influx to Ca release in human pancreatic beta cells. Diabetologia (2014). https://doi.org/10.1007/s00125-014-3368-8

  45. P.E. MacDonald, M. Braun, J. Galvanovskis, P. Rorsman, Release of small transmitters through kiss-and-run fusion pores in rat pancreatic beta cells. Cell. Metab. 4(4), 283–290 (2006). https://doi.org/10.1016/j.cmet.2006.08.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Isolde Breuning for excellent technical assistance. BK-KO mice were kindly provided by Prof. Dr. Peter Ruth, Institute of Pharmacy, University of Tübingen.

Author's contribution

C.B., J.K., and J.S. researched data; P.K.-D. evaluated data and edited the manuscript; M.D. contributed to discussion and study design and edited the manuscript; G.D. designed the study, wrote and edited the manuscript, and contributed to discussion. G.D. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisela Drews.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, C., Kaiser, J., Sikimic, J. et al. ATP mediates a negative autocrine signal on stimulus-secretion coupling in mouse pancreatic β-cells. Endocrine 63, 270–283 (2019). https://doi.org/10.1007/s12020-018-1731-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1731-0

Keywords

Navigation