Skip to main content
Log in

Genetic interaction of DGAT2 and FAAH in the development of human obesity

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

DGAT2 is the critical catalyzing enzyme for triglyceride biosynthesis, and excess triglyceride accumulation in fat tissues is a fundamental process for obesity. Mutations in DGAT2 or other genes interacting with DGAT2 associated with adiposity have not been reported in human to date.

Methods

DGAT2 mutation was identified based on our in-home database-exome sequencing 227 young obese subjects (body-mass index (BMI), 35.1–61.7 kg/m2) and 219 lean controls (BMI, 17.5–23.0 kg/m2), further validated in 1190 lean subjects and the pedigree of the proband. The trios of the proband were further subjected to whole-exome sequencing to explore the candidate genes for obesity. The mutations in DGAT2 and FAAH were functionally evaluated in vitro.

Results

We detected two rare variants in DGAT2 with no significant difference between obese and lean individuals. One novel heterozygous nonsense variant c.382C > T (p.R128*) was identified in one obese subject but not in 219 lean subjects and another 1190 lean subjects. Notably, in vitro study showed that R128* mutation severely damaged the TG-biosynthesis ability of DGAT2, and all other R128* carriers in the pedigree were lean. Thus, we further identified a loss-of-function variant c. 944G > T (p.R315I) in FAAH in the proband inheriting from his obese father. Importantly, FAAH overexpression inhibited DGAT2 expression and TG synthesis, while R315I mutant largely eliminated this inhibitory effect.

Summary

We first report loss-of-function mutations in DGAT2 and FAAH in one obese subject, which may interact with each other to affect the adiposity penetrance, providing a model of genetic interaction associated with human obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Picard, P. dos Santos, B. Catargi, [Diabetes, obesity and heart complications]. Rev. Prat. 63(6), 759–764 (2013)

    PubMed  Google Scholar 

  2. A.G. Comuzzie, The search for human obesity genes. Science 280(5368), 1374–1377 (1998). doi:10.1126/science.280.5368.1374

    Article  CAS  PubMed  Google Scholar 

  3. J.M. Friedman, A war on obesity, not the obese. Science 299(5608), 856–858 (2003). doi:10.1126/science.1079856

    Article  CAS  PubMed  Google Scholar 

  4. S. Ramachandrappa, I.S. Farooqi, Genetic approaches to understanding human obesity. J. Clin. Invest. 121(6), 2080–2086 (2011). doi:10.1172/JCI46044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A.E. Locke, B. Kahali, S.I. Berndt et al., Genetic studies of body mass index yield new insights for obesity biology. Nature 518(7538), 197–206 (2015). doi:10.1038/nature14177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. T.A. Manolio, F.S. Collins, N.J. Cox et al., Finding the missing heritability of complex diseases. Nature 461(7265), 747–753 (2009). doi:10.1038/nature08494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. P. Xu, B.A. Grueter, J.K. Britt et al., Double deletion of melanocortin 4 receptors and SAPAP3 corrects compulsive behavior and obesity in mice. Proc. Natl. Acad. Sci. USA 110(26), 10759–10764 (2013). doi:10.1073/pnas.1308195110

    Article  PubMed  PubMed Central  Google Scholar 

  8. J. Wang, R. Liu, F. Wang et al., Ablation of LGR4 promotes energy expenditure by driving white-to-brown fat switch. Nat. Cell. Biol. 15(12), 1455–1463 (2013). doi:10.1038/ncb2867

    Article  CAS  PubMed  Google Scholar 

  9. H. Jiao, A. Kulyte, E. Naslund, A. Thorell, P.Gerdhem, J. Kere, P. Arner, I. Dahlman, Whole exome sequencing suggests LAMB3 as a susceptibility gene for morbid obesity. Diabetes (2016). doi:10.2337/db16-0522

  10. T. Wang, M. Li, B. Chen et al., Urinary bisphenol A (BPA) concentration associates with obesity and insulin resistance. J. Clin. Endocrinol. Metab. 97(2), E223–E227 (2012). doi:10.1210/jc.2011-1989

    Article  CAS  PubMed  Google Scholar 

  11. C.A. Harris, J.T. Haas, R.S. Streeper et al., DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. J. Lipid Res. 52(4), 657–667 (2011). doi:10.1194/jlr.M013003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S.J. Smith, S. Cases, D.R. Jensen et al., Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat. Genet. 25(1), 87–90 (2000). doi:10.1038/75651

    Article  CAS  PubMed  Google Scholar 

  13. S.J. Stone, Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J. Biol. Chem. 279(12), 11767–11776 (2004). doi:10.1074/jbc.M311000200

    Article  CAS  PubMed  Google Scholar 

  14. K. Saar, F. Geller, F. Ruschendorf et al., Genome scan for childhood and adolescent obesity in German families. Pediatrics 111(2), 321–327 (2003)

    Article  PubMed  Google Scholar 

  15. S. Friedel, K. Reichwald, A. Scherag et al., Mutation screen and association studies in the diacylglycerol O-acyltransferase homolog 2 gene (DGAT2), a positional candidate gene for early onset obesity on chromosome 11q13. BMC Genet. 8(1), 17 (2007). doi:10.1186/1471-2156-8-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. N. Ahituv, N. Kavaslar, W. Schackwitz et al., Medical sequencing at the extremes of human body mass. Am. J. Hum. Genet. 80(4), 779–791 (2007). doi:10.1086/513471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. D. Piomelli, The molecular logic of endocannabinoid signalling. Nat. Rev. Neurosci. 4(11), 873–884 (2003). doi:10.1038/nrn1247

    Article  CAS  PubMed  Google Scholar 

  18. C. Touriño, F. Oveisi, J. Lockney, D. Piomelli, R. Maldonado, FAAH deficiency promotes energy storage and enhances the motivation for food. Int. J. Obes. 34(3), 557–568 (2009). doi:10.1038/ijo.2009.262

    Article  CAS  Google Scholar 

  19. J.C. Cable, G.D. Tan, S.P.H. Alexander, S.E. O Sullivan, The effects of obesity, diabetes and metabolic syndrome on the hydrolytic enzymes of the endocannabinoid system in animal and human adipocytes. Lipids Health Dis. 13(1), 43 (2014). doi:10.1186/1476-511x-13-43

    Article  PubMed  PubMed Central  Google Scholar 

  20. N. Jamshidi, D.A. Taylor, Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br. J. Pharmacol. 134(6), 1151–1154 (2001). doi:10.1038/sj.bjp.0704379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. D. Osei-Hyiaman, M. DePetrillo, P. Pacher, J. Liu, S. Radaeva, S. Batkai, J. Harvey-White, K. Mackie, L. Offertaler, L. Wang, G. Kunos, Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J. Clin. Invest. 115(5), 1298–1305 (2005). doi:10.1172/JCI23057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. D. Cota, G. Marsicano, M. Tschop et al., The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J. Clin. Invest. 112(3), 423–431 (2003). doi:10.1172/JCI17725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. S. Karaliota, A. Siafaka-Kapadai, C. Gontinou, K. Psarra, M. Mavri-Vavayanni, Anandamide increases the differentiation of rat adipocytes and causes PPARγ and CB1 receptor upregulation. Obesity 17(10), 1830–1838 (2009). doi:10.1038/oby.2009.177

    Article  CAS  PubMed  Google Scholar 

  24. R.S. Padwal, S.R. Majumdar, Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet 369(9555), 71–77 (2007). doi:10.1016/s0140-6736(07)60033-6

    Article  CAS  PubMed  Google Scholar 

  25. Q. Wang, X.D. Perrard, J.L. Perrard, A. Mansoori, C.W. Smith, C.M. Ballantyne, H. Wu, Effect of the cannabinoid receptor-1 antagonist rimonabant on inflammation in mice with diet-induced obesity. Obesity (Silver Spring) 19(3), 505–513 (2011). doi:10.1038/oby.2010.213

    Article  CAS  Google Scholar 

  26. J.C. Sipe, J. Waalen, A. Gerber, E. Beutler, Overweight and obesity associated with a missense polymorphism in fatty acid amide hydrolase (FAAH). Int. J. Obes. 29(7), 755–759 (2005). doi:10.1038/sj.ijo.0802954

    Article  CAS  Google Scholar 

  27. P. Monteleone, A. Tortorella, V. Martiadis, C. Di Filippo, B. Canestrelli, M. Maj, The cDNA 385C to A missense polymorphism of the endocannabinoid degrading enzyme fatty acid amide hydrolase (FAAH) is associated with overweight/obesity but not with binge eating disorder in overweight/obese women. Psychoneuroendocrinology 33(4), 546–550 (2008). doi:10.1016/j.psyneuen.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  28. M. Xu, X. Lv, L. Xie et al., Discrete associations of the GCKR variant with metabolic risk in a Chinese population: longitudinal change analysis. Diabetologia 59(2), 307–315 (2016). doi:10.1007/s00125-015-3788-0

    Article  CAS  PubMed  Google Scholar 

  29. J. Liu, S. Batkai, P. Pacher, J. Harvey-White, J.A. Wagner, B.F. Cravatt, B. Gao, G. Kunos, Lipopolysaccharide induces anandamide synthesis in macrophages via CD14/MAPK/phosphoinositide 3-kinase/NF- B independently of platelet-activating factor. J. Biol. Chem. 278(45), 45034–45039 (2003). doi:10.1074/jbc.M306062200

    Article  CAS  PubMed  Google Scholar 

  30. B.F. Zhou, Cooperative Meta-Analysis Group of the Working Group on Obesity in, C., Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed. Environ. Sci. 15(1), 83–96 (2002)

    PubMed  Google Scholar 

  31. G. Arreaza, D.G. Deutsch, Deletion of a proline-rich region and a transmembrane domain in fatty acid amide hydrolase. FEBS Lett. 454(1–2), 57–60 (1999)

    Article  CAS  PubMed  Google Scholar 

  32. M. Bouaboula, S. Hilairet, J. Marchand, L. Fajas, G.L. Fur, P. Casellas, Anandamide induced PPARγ transcriptional activation and 3T3-L1 preadipocyte differentiation. Eur. J. Pharmacol. 517(3), 174–181 (2005). doi:10.1016/j.ejphar.2005.05.032

    Article  CAS  PubMed  Google Scholar 

  33. S. Engeli, J. Jordan, The endocannabinoid system: body weight and metabolic regulation. Clin. Cornerstone 8(Suppl 4), S24–S35 (2006)

    Article  PubMed  Google Scholar 

  34. S.P. Bapat, J. Myoung Suh, S. Fang, S. Liu et al., Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 528(7580), 137–141 (2015). doi:10.1038/nature16151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. H.R. Wurie, L. Buckett, V.A. Zammit, Diacylglycerol acyltransferase 2 acts upstream of diacylglycerol acyltransferase 1 and utilizes nascent diglycerides andde novosynthesized fatty acids in HepG2 cells. FEBS J. 279(17), 3033–3047 (2012). doi:10.1111/j.1742-4658.2012.08684.x

    Article  CAS  PubMed  Google Scholar 

  36. R. Christensen, P.K. Kristensen, E.M. Bartels, H. Bliddal, A. Astrup, Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370(9600), 1706–1713 (2007). doi:10.1016/s0140-6736(07)61721-8

    Article  CAS  PubMed  Google Scholar 

  37. S.A. Tucci, E.K. Rogers, M. Korbonits, T.C. Kirkham, The cannabinoid CB1 receptor antagonist SR141716 blocks the orexigenic effects of intrahypothalamic ghrelin. Br. J. Pharmacol. 143(5), 520–523 (2004). doi:10.1038/sj.bjp.0705968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. A.R. Alvheim, B.E. Torstensen, Y.H. Lin, H.H. Lillefosse, E.-J. Lock, L. Madsen, L. Frøyland, J.R. Hibbeln, M.K. Malde, Dietary linoleic acid elevates the endocannabinoids 2-AG and anandamide and promotes weight gain in mice fed a low fat diet. Lipids 49(1), 59–69 (2013). doi:10.1007/s11745-013-3842-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. B.F. Cravatt, K. Demarest, M.P. Patricelli, M.H. Bracey, D.K. Giang, B.R. Martin, A.H. Lichtman, Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl. Acad. Sci. 98(16), 9371–9376 (2001). doi:10.1073/pnas.161191698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. D. Rohrborn, N. Wronkowitz, J. Eckel, DPP4 in diabetes. Front. Immunol. 6, 386 (2015). doi:10.3389/fimmu.2015.00386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the staff and participants for their contributions. This study was funded by grants from the National Natural Science Foundation of China (81522011, 81570757, 81370963, 81370949, 81500651), National Basic Research Program of China (2015CB553601), National International Science Cooperation Foundation (2015DFA30560).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiqiu Wang or Guang Ning.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. And all applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, T., Zou, Y., Yang, M. et al. Genetic interaction of DGAT2 and FAAH in the development of human obesity. Endocrine 56, 366–378 (2017). https://doi.org/10.1007/s12020-017-1261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-017-1261-1

Keywords

Navigation