Skip to main content

Advertisement

Log in

Modulation of central glucocorticoid receptors in short- and long-term experimental hyperthyroidism

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Hyperthyroidism is associated with a significant increase in circulating glucocorticoid levels and hyperactivity of the hypothalamic–pituitary–adrenal (HPA) axis. The aim of this study was to examine whether the HPA axis hyperactivity observed in hyperthyroidism may be explained by a disturbed feedback inhibition of endogenous glucocorticoids through two specific intracellular receptors in the brain: the high affinity mineralocorticoid receptor (MR) and the lower affinity glucocorticoid receptor (GR). Cytosolic receptor binding and gene expression was assessed in rats with short (7 days) and long standing (60 days) eu- and hyperthyroidism. Glucocorticoid receptor number and binding affinity (Kd) in the hippocampus were measured using [3H2]-dexamethasone radioreceptor assay. In situ hybridization was employed to examine the effects of hyperthyroidism on the GR and MR mRNA levels in the hippocampus and the pituitary. Both short- and long-term hyperthyroid rats showed pronounced reduction in the concentration of cytosolic GR in the hippocampus, without changes in binding affinity or changes in GR expression. In contrast, GR mRNA in the pituitary increased after 7 days and decreased after 60 days of thyroxin treatment. MR mRNA was moderately affected. Hyperthyroidism is associated with significant decreases in hippocampal GR levels supporting the hypothesis that hyperactivity of the HPA axis observed in experimentally induced hyperthyroidism may be attributed, at least in part, to decreased negative feedback at the level of the hippocampus. These findings further support the notion that a central locus is principally responsible for the hyperactivity of the HPA axis observed in hyperthyroidism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Tohei, Studies on the functional relationship between thyroid, adrenal and gonadal hormones. J. Reprod. Dev. 50, 9–20 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. E.O. Johnson, T.C. Kamilaris, A.E. Calogero, M. Konstandi, G.P. Chrousos, Effects of short-and long-duration hypothyroidism on function of the rat hypothalamic-pituitary-adrenal axis. J. Endocrinol. Investig. 36, 104–110 (2012)

    Google Scholar 

  3. E.O. Johnson, A.E. Calogero, M. Konstandi, T.C. Kamilaris, S. La Vignera, G.P. Chrousos, Effects of short- and long-duration hypothyroidism on hypothalamic-pituitary-adrenal axis function in rats: in vitro and in situ studies. Endocrine. 42(3), 684–693 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. T.C. Kamilaris, C.R. DeBold, E.O. Johnson, E. Mamalaki, S.J. Listwak, A.E. Calogero, K.T. Kalogeras, P.W. Gold, D.N. Orth, Effects of short and long duration hypothyroidism and hyperthyroidism on the plasma adrenocorticotropin and corticosterone responses to ovine corticotropin-releasing hormone in rats. Endocrinology. 128(5), 2567–2576 (1991)

    Article  CAS  PubMed  Google Scholar 

  5. A. Tohei, M. Akai, T. Tomabechi, M. Mamada, K. Taya, Adrenal and gonadal function in hypothyroid adult make rats. J. Endocrinol. 152, 147–154 (1997)

    Article  CAS  PubMed  Google Scholar 

  6. A. Tsatsoulis, E.O. Johnson, C.H. Kalogera, K. Seferiadis, O. Tsolas, The effect of thyrotoxicosis on adrenocortical reserve. Eur. J. Endocrinol. 142(3), 231–235 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. C.W.H. Harvard, V.F. Saldanha, R. Bird, R. Gardner, Adrenal function in hyperthyroidism. Br. Med. J. 1(5692), 337–339 (1970)

    Article  Google Scholar 

  8. G. Giustina, E. Reschini, F. Valentini, L. Cantalamess, Growth hormone and cortisol responses to insulin-induced hypoglycemia in thyrotoxicosis. J. Clin. Endocrinol. Metab. 32(4), 571–574 (1971)

    Article  CAS  PubMed  Google Scholar 

  9. M.E. Levin, W.H. Daughaday, The influence of the thyroid on adrenocortical function. J. Clin. Endocrinol. Metab. 15(12), 1499–1511 (1955)

    Article  CAS  PubMed  Google Scholar 

  10. R.E. Peterson, The influence of the thyroid on adrenal cortical function. J. Clin. Invest. 37(5), 736–743 (1958)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. F. Sanchez-Franco, L. Fernandez, G. Fernandez, L. Cacicedo, Thyroid hormone action on ACTH secretion. Horm. Metab. Res. 21(10), 550–552 (1989)

    Article  CAS  PubMed  Google Scholar 

  12. B.G. Steinetz, V.L. Beach, Some influences of thyroid on the pituitary-adrenal axis. Endocrinology. 72, 45–58 (1963)

    Article  CAS  PubMed  Google Scholar 

  13. J. D’Agostino, S.J. Henning, Role of thyroxine in coordinate control of corticosterone and CBG in postnatal development. Am. J. Physiol. 242(1), E33–E39 (1982)

    PubMed  Google Scholar 

  14. G.G. Gordon, A.L. Southren, Thyroid hormone effects on steroid hormone metabolism. Bull. N. Y. Acad. Med. 53(3), 241–259 (1977)

    CAS  PubMed Central  PubMed  Google Scholar 

  15. T.C. Kamilaris, C.R. DeBold, S.N. Pavlou, D.P. Island, A. Hoursanidis, D.N. Orth, Effect of altered thyroid hormone levels on hypothalamic-pituitary-adrenal function. J. Clin. Endocrinol. Metab. 65(5), 994–999 (1987)

    Article  CAS  PubMed  Google Scholar 

  16. E.O. Johnson, T.C. Kamilaris, A.E. Calogero, P.W. Gold, G.P. Chrousos, Experimentally-induced hyperthyroidism is associated with activation of the rat hypothalamic-pituitary-adrenal axis. Eur. J. Endocrinol. 153(1), 177–185 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. E.O. Johnson, A.E. Calogero, M. Konstandi, T.C. Kamilaris, S. La Vignera, G.P. Chrousos, Effects of experimentally induced hyperthyroidism on central hypothalamic-pituitary-adrenal axis function in rats: in vitro and in situ studies. Pituitary. 16(2), 275–286 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. F. Lizcano, J. Salvador, Effects of different treatments for hyperthyroidism on the hypothalamic-pituitary-adrenal axis. Clin. Exp. Pharmacol. Physiol. 35(9), 1085–1090 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. F. Lizcano, J.S. Rodríguez, Thyroid hormone therapy modulates hypothalamo-pituitary-adrenal axis. Endocr. J. 58(2), 137–142 (2011)

    Article  CAS  PubMed  Google Scholar 

  20. M. Kawaguchi, S. Iwata, Y. Kamiya, F. Hayakawa, T. Fujii, J. Ito, N. Sakuma, T. Fujinami, Thyroid storm associated with probable subclinical hypoadrenocortiscism in an elderly woman. Intern. Med. 31(10), 1236–1238 (1992)

    Article  CAS  PubMed  Google Scholar 

  21. M.E.Z. Mazzaferri, T.G. Skillman, Thyroid storm. Arch. Intern. Med. 124(6), 684–690 (1969)

    Article  CAS  PubMed  Google Scholar 

  22. K. Agbaht, S. Gullu, Adrenocortical reserves in hyperthyroidism. Endocrine 45, 136–143 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. S.H. Ingbar, Management of emergencies. IX. Thyroid storm. N. Engl. J. Med. 274(22), 1252–1254 (1966)

    Article  CAS  PubMed  Google Scholar 

  24. H.B. Burch, L. Wartofsky, Life-threatening thyrotoxicosis. Endocrinol. Metab Clin N. Am. 22(2), 263–277 (1993)

    CAS  Google Scholar 

  25. M. Karl, B.M. Onumah, J. Cole, J. Golding, K.D. Burman, L. Wartofsky, Hypocortisolemia in Graves hyperthyroidism. Endocr. Pract. 15, 220–224 (2009)

    Article  PubMed  Google Scholar 

  26. M.N. Silverman, E.M. Sternberg, Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann. N. Y. Acad. Sci. 1261, 55–63 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. A.M. Bao, D.F. Swaab, Corticotropin-releasing hormone and arginine vasopressin in depression focus on the human postmortem hypothalamus. Vitam. Horm. 82, 339–365 (2010)

    Article  CAS  PubMed  Google Scholar 

  28. L. Jacobson, Hypothalamic–pituitary–adrenocortical axis regulation. Endocrinol. Metab. Clin. N. Am. 34(2), 271–292 (2005). (vii)

    Article  CAS  Google Scholar 

  29. A.P. Harris, M.C. Holmes, E.R. de Kloet, K.E. Chapman, J.R. Seckl, Mineralocorticoid and glucocorticoid receptor balance in control of HPA axis and behaviour. Psychoneuroendocrinology. 38(5), 648–658 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. R.M. Sapolsky, L.M. Romero, A.U. Munck, How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21(1), 55–89 (2000)

    CAS  PubMed  Google Scholar 

  31. R. Berardelli, I. Karamouzis, V. D’Angelo, C. Zichi, B. Fussotto, R. Giordano, E. Ghigo, E. Arvat, Role of mineralocorticoid receptors on the hypothalamus-pituitary-adrenal axis in humans. Endocrine. 43(1), 51–58 (2013)

    Article  CAS  PubMed  Google Scholar 

  32. D. Liu, J. Diorio, B. Tannenbaum, C. Caldji, D. Francis, A. Freedman, S. Sharma, D. Pearson, P.M. Plotsky, M.J. Meaney, Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science. 277(5332), 1659–1662 (1997)

    Article  CAS  PubMed  Google Scholar 

  33. C. Anacker, P.A. Zunszain, L.A. Carvalho, C.M. Pariante, The glucocorticoid receptor: pivot of depression and of antidepressant treatment? Psychoneuroendocrinology. 36(3), 415–425 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. K. Mizoguchi, A. Ishige, M. Aburada, T. Tabira, Chronic stress attenuates glucocorticoid negative feedback: involvement of the prefrontal cortex and hippocampus. Neuroscience 119(3), 887–897 (2003)

    Article  CAS  PubMed  Google Scholar 

  35. K. Mizoguchi, R. Ikeda, H. Shoji, Y. Tanaka, W. Maruyama, T. Tabira, Aging attenuates glucocorticoid negative feedback in rat brain. Neuroscience. 159(1), 259–270 (2009)

    Article  CAS  PubMed  Google Scholar 

  36. E. Kitraki, D. Karandrea, C. Kittas, Long-lasting effects of stress on glucocorticoid receptor gene expression in the rat brain. Neuroendocrinology. 69(5), 331–338 (1999)

    Article  CAS  PubMed  Google Scholar 

  37. M.A. Tichomirowa, M.E. Keck, H.J. Schneider, M. Paez-Pereda, U. Renner, F. Holsboer, G.K. Stalla, Endocrine disturbances in depression. J. Endocrinol. Invest. 28(1), 89–99 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. C.B. Nemeroff, The corticotropin-releasing factor (CRF) hypothesis of depression: new findings and new directions. Mol. Psychiatry. 1(4), 336–342 (1996)

    CAS  PubMed  Google Scholar 

  39. C.M. Pariante, A.H. Miller, Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol. Psychiatry. 49(5), 391–404 (2001)

    Article  CAS  PubMed  Google Scholar 

  40. G.N. Pandey, H.S. Rizavi, X. Ren, Y. Dwivedi, M. Palkovits, Region-specific alterations in glucocorticoid receptor expression in the postmortem brain of teenage suicide victims. Psychoneuroendocrinology. 38(11), 2628–2639 (2013)

    Article  CAS  PubMed  Google Scholar 

  41. G. Scatchard, The attraction of proteins for small molecules and ions. Ann. N.Y. Acad. Sci. 51, 660–672 (1949)

    Article  CAS  Google Scholar 

  42. S.L. Lightman, W.S. Young 3rd, Influence of steroids on the hypothalamic corticotropin-releasing factor and preproenkephalin mRNA responses to stress. Proc. Natl. Acad. Sci. USA 86(11), 4306–4310 (1989)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. D.M. Wetzel, M.C. Bohn, R.W. Hamill, Postmortem stability of mRNA for glucocorticoid and mineralocorticoid receptor mRNA in methodology for localization of glucocorticoid receptor mRNA in rat brain: a detailed study. Cell. Mol. Neurobiol. 10, 145–157 (1994)

    Google Scholar 

  44. E.O. Johnson, L. Brady, P.W. Gold, G.P. Chrousos, Distribution of hippocampal mineralocorticoid and glucocorticoid receptor mRNA in a glucocorticoid resistant nonhuman primate. Steroids 61, 69–73 (1996)

    Article  CAS  PubMed  Google Scholar 

  45. W.S. Young 3rd, In situ hybridization histochemical detection of neuropeptide mRNA using DNA and RNA probes. Methods Enzymol. 168, 702–710 (1989)

    Article  CAS  PubMed  Google Scholar 

  46. A.E. Calogero, T.C. Kamilaris, E.O. Johnson, M.E. Tartaglia, G. Chrousos, Recovery of the rat hypothalamic-pituitary-adrenal axis after discontinuation of prolonged treatment with the synthetic glucocorticoid agonist dexamethasone. Endocrinology. 127(4), 1574–1579 (1990)

    Article  CAS  PubMed  Google Scholar 

  47. J.M. Reul, E.R. de Kloet, Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology. 117(6), 2505–2511 (1985)

    Article  CAS  PubMed  Google Scholar 

  48. P.D. Patel, J.F. Lopez, D.M. Lyons, S. Burke, M. Wallace, A.F. Schatzberg, Glucocorticoid and mineralocorticoid receptor mRNA expression in squirrel monkey brain. J. Psychiatr. Res. 34(6), 383–392 (2000)

    Article  CAS  PubMed  Google Scholar 

  49. M.S. Oitzl, M. Fluttert, W. Sutanto, E.R. de Kloet, Continuous blockade of brain glucocorticoid receptors facilitates spatial learning and memory in rats. Eur. J. Neurosci. 10(12), 3759–3766 (1998)

    Article  CAS  PubMed  Google Scholar 

  50. S.M. Hollenberg, C. Weinberger, E.S. Ong, G. Cerelli, A. Oro, R. Lebo, E.B. Thompson, M.G. Rosenfeld, R.M. Evans, Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature. 318(6047), 635–641 (1985)

    Article  CAS  PubMed  Google Scholar 

  51. R.H. Oakley, M. Sar, J.A. Cidlowski, The human glucocorticoid receptor beta isoform. Expression, biochemical properties, and putative function. J. Biol. Chem. 271(16), 9550–9559 (1996)

    Article  CAS  PubMed  Google Scholar 

  52. R.H. Oakley, J.A. Cidlowski, Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. J Biol Chem. 286(5), 3177–3184 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. L. Pujols, J. Mullol, J. Roca-Ferrer, A. Torrego, A. Xaubet, J.A. Cidlowski, C. Picado, Expression of glucocorticoid receptor alpha- and beta-isoforms in human cells and tissues. Am. J. Physiol. Cell. Physiol. 283(4), C1324–C1331 (2002)

    Article  CAS  PubMed  Google Scholar 

  54. H. Fan, E. F. Morand. The role of GILZ in anti-inflammatory and immunosuppressive actions of glucocorticoids, Glucocorticoids—New recognition of our familiar friend. InTech (Vol., X. Qian, (Ed.) (2012)

  55. E. Ayroldi, C. Riccardi, Glucocorticoid-induced leucine zipper (GILZ): a new important mediator of glucocorticoid action. FASEB J. 23(11), 3649–3658 (2009)

    Article  CAS  PubMed  Google Scholar 

  56. E. Beaulieu, E.F. Morand, Role of GILZ in immune regulation, glucocorticoid actions and rheumatoid arthritis. Nat. Rev. Rheumatol. 7(6), 340–348 (2011)

    Article  CAS  PubMed  Google Scholar 

  57. E.K. Murphy, R.L. Spencer, K.J. Sipe, J.P. Herman, Decrements in nuclear glucocorticoid receptor (GR) protein levels and DNA binding in aged rat hippocampus. Endocrinology. 143(4), 1362–1370 (2002)

    Article  CAS  PubMed  Google Scholar 

  58. R.M. Sapolsky, L.C. Krey, B.S. McEwen, Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proc. Natl. Acad. Sci. USA 81(19), 6174–6177 (1984)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. A.M. Magariños, G. Somoza, A.F. De Nicola, Glucocorticoid negative feedback and glucocorticoid receptors after hippocampectomy in rats. Horm. Metab. Res. 19(3), 105–109 (1987)

    Article  PubMed  Google Scholar 

  60. J.P. Herman, M.K. Schäfer, E.A. Young, R. Thompson, J. Douglass, H. Akil, S.J. Watson, Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis. J. Neurosci. 9(9), 3072–3082 (1989)

    CAS  PubMed  Google Scholar 

  61. R.M. Sapolsky, B.S. McEwen, T.C. Rainbow, Quantitative autoradiography of [3H]corticosterone receptors in rat brain. Brain Res. 271(2), 331–334 (1983)

    Article  CAS  PubMed  Google Scholar 

  62. H.M. Reichardt, F. Tronche, A. Bauer, G. Schütz, Molecular genetic analysis of glucocorticoid signaling using the Cre/loxP system. Biol. Chem. 381(9–10), 961–964 (2000)

    CAS  PubMed  Google Scholar 

  63. M.J. Meaney, R.M. Sapolsky, D.H. Aitken, B.S. McEwen, [3H]dexamethasone binding in the limbic brain of the fetal rat. Brain Res. 355(2), 297–300 (1985)

    Article  CAS  PubMed  Google Scholar 

  64. T.Y. Zhang, B. Labonté, X.L. Wen, G. Turecki, M.J. Meaney, Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology. 38(1), 111–123 (2013)

    Article  PubMed Central  PubMed  Google Scholar 

  65. I.C. Hellstrom, S.K. Dhir, J.C. Diorio, M.J. Meaney, Maternal licking regulates hippocampal glucocorticoid receptor transcription through a thyroid hormone-serotonin-NGFI-A signalling cascade. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367(1601), 2495–2510 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. B. Mellström, C. Pipaón, J.R. Naranjo, A. Perez-Castillo, A. Santos, Differential effect of thyroid hormone on NGFI-A gene expression in developing rat brain. Endocrinology. 135(2), 583–588 (1994)

    PubMed  Google Scholar 

  67. M.J. Meaney, J. Diorio, D. Francis, S. Weaver, J. Yau, K. Chapman, J.R. Seckl, Postnatal handling increases the expression of cAMP-inducible transcription factors in the rat hippocampus: the effects of thyroid hormones and serotonin. J. Neurosci. 20(10), 3926–3935 (2000)

    CAS  PubMed  Google Scholar 

  68. J.P. Herman, P.D. Patel, H. Akil, S.J. Watson, Localization and regulation of glucocorticoid and mineralocorticoid receptor messenger RNAs in the hippocampal formation of the rat. Mol. Endocrinol. 3(11), 1886–1894 (1989)

    Article  CAS  PubMed  Google Scholar 

  69. Q. Wang, J. Van Heerikhuize, E. Aronica, M. Kawata, L. Seress, M. Joels, D.F. Swaab, P.J. Lucassen, Glucocorticoid receptor protein expression in human hippocampus Stability with age. Neurobiol. Aging 34, 1662–1673 (2013)

    Article  CAS  PubMed  Google Scholar 

  70. J.A. Van Eekelen, W. Jiang, E.R. De Koet, M.C. Bohn, Distribution of the mineralocorticoid and glucocorticoid receptor mRNAs in the rat hippocampus. J. Neurosci. Res. 21, 88–94 (1988)

    Article  PubMed  Google Scholar 

  71. R.A. Sarabdjitsingh, O.C. Meijer, E.R. de Kloet, Specificity of glucocorticoid receptor primary antibodies for analysis of receptor localization patterns in cultured cells and rat hippocampus. Brain Res. 1331, 1–11 (2010)

    Article  CAS  PubMed  Google Scholar 

  72. J.R. Seckle, K.L. Dickson, C. Yates, G. Fink, Distribution of glucocorticoid and mineralocorticoid receptor messenger RNA expression in human postmortem hippocampus. Brain Res. 561, 332–337 (1991)

    Article  Google Scholar 

  73. D.L. McCullers, J.P. Herman, Adrenocorticoisteroid receptor blockade and excitotoxic challenge regulate adrenocorticosteroid receptor mRNA levels in hippocampus. J. Neurosci. Res. 64, 277–283 (2001)

    Article  CAS  PubMed  Google Scholar 

  74. J.E. Kalinyak, R.I. Dorin, A.R. Hoffman, A.J. Perlman, Tissue-specific regulation of glucocorticoid receptor mRNA by dexamethasone. J. Biol. Chem. 262(22), 10441–10444 (1987)

    CAS  PubMed  Google Scholar 

  75. J.A. McCormick, V. Lyons, M.D. Jacobson, J. Noble, J. Diorio, M. Nyirenda, S. Weaver, W. Ester, J.L. Yau, M.J. Meaney, J.R. Seckl, K.E. Chapman, 5’-heterogeneity of glucocorticoid receptor messenger RNA is tissue specific: differential regulation of variant transcripts by early-life events. Mol. Endocrinol. 14(4), 506–517 (2000)

    CAS  PubMed  Google Scholar 

  76. Laryea G, Muglia L, Arnett M, Muglia LJ. Dissection of glucocorticoid receptor-mediated inhibition of the hypothalamic-pituitary-adrenal axis by gene targeting in mice. Front Neuroendocrinol. (2014). doi:10.1016/j.yfrne.2014.09.002. [Epub ahead of print]

  77. R.M. Sapolsky, L.C. Krey, B.S. McEwen, Stress down-regulates corticosterone receptors in a site-specific manner in the brain. Endocrinology. 114, 287–292 (1984)

    Article  CAS  PubMed  Google Scholar 

  78. K.E. Sheppard, J.L. Roberts, Blum M Differential regulation of type II corticosteroid receptor messenger ribonucleic acid expression in the rat anterior pituitary and hippocampus. Endocrinology. 127, 431–439 (1990)

    Article  CAS  PubMed  Google Scholar 

  79. K.V. Wagner, X.D. Wang, C. Liebl, S.H. Scharf, M.B. Muller, M.V. Schmidt, Pituitary glucocorticoid receptor deletion reduces vulnerability to chronic stress. Psychoneuroendocrinology.36, 579–587 (2011)

    Article  CAS  PubMed  Google Scholar 

  80. Erdmann G, Schütz G, Berger S. Loss of glucocorticoid receptor function in the pituitary results in early postnatal lethality. Endocrinology. 149(7), 3446–3451 (2008)

    Article  CAS  PubMed  Google Scholar 

  81. M. Ising, C.J. Lauer, F. Holsboer, S. Modell, The Munich vulnerability study on affective disorders: premorbid neuroendocrine profile of affected high-risk probands. J. Psychiatr. Res. 39(1), 21–28 (2005)

    Article  CAS  PubMed  Google Scholar 

  82. M.V. Schmidt, V. Sterlemann, K. Wagner, B. Niederleitner, K. Ganea, C. Liebl, J.M. Deussing, S. Berger, G. Schütz, F. Holsboer, M.B. Müller, Postnatal glucocorticoid excess due to pituitary glucocorticoid receptor deficiency: differential short- and long-term consequences. Endocrinology. 150(6), 2709–2716 (2009)

    Article  CAS  PubMed  Google Scholar 

  83. H.M. Chao, P.H. Choo, B.S. McEwen, Glucocorticoid and mineralocorticoid receptor mRNA experesion in rat brain. Neuroendocrin 50, 365–371 (1989)

    Article  CAS  Google Scholar 

  84. B.G. Steinetz, V.L. Beach, Some influences of thyroid on the pituitary-adrenal axis. Endocrinology. 72, 45–72 (1963)

    Article  CAS  PubMed  Google Scholar 

  85. M.F. Dallman, S.K. Akana, C.S. Cascio, D.N. Darlington, L. Jacobson, N. Levin, Regulation of ACTH secretion: variations on a theme of B. Recent Prog. Horm. Res. 43, 113–167 (1987)

    CAS  PubMed  Google Scholar 

  86. J. D’Agostino, S.J. Henning, Role of thyroxin in coordinate control of corticosterone and CBG in postnatal development. Am. J. Physiol. 242, E33–E39 (1982)

    PubMed  Google Scholar 

  87. A.S. Thiagarajah, L.E. Eades, P.R. Thomas, E.K. Guymer, E.F. Morand, D.M. Clarke, M. Leech, GILZ: Glitzing up our understanding of the glucocorticoid receptor in psychopathology. Brain Res. 1574, 60–69 (2014)

    Article  CAS  PubMed  Google Scholar 

  88. Q. Wang, M. Joels, D.F. Swaab, P.J. Lucassen, Hippocampal GR expression is increased in elderly depressed females. Neuropharmacology. 62(1), 527–533 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Material for the rat TSH RIA was provided by the National Hormone and Pituitary Program.

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Ethical standards

All procedures were approved by the NIH Committee for the use and welfare of laboratory animals, conformed to the International Ethical Standards (86/609-EEC) for the care and use of laboratory animals and conformed to the guidelines in the UFAW Handbook on the Care and Management of Laboratory Animals (published by the Universities Federation for Animal Welfare).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth O. Johnson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolopoulou, E., Mytilinaios, D., Calogero, A.E. et al. Modulation of central glucocorticoid receptors in short- and long-term experimental hyperthyroidism. Endocrine 49, 828–841 (2015). https://doi.org/10.1007/s12020-015-0528-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0528-7

Keywords

Navigation