Skip to main content

Thyroid Axis and Energy Balance: Focus on Animals and Implications for Humankind

  • Living reference work entry
  • First Online:
Handbook of Famine, Starvation, and Nutrient Deprivation

Abstract

Research on animals has revealed multiple mechanisms, brain circuits, and peripheral signals that coordinate energy homeostasis. This review summarizes information relevant to the hypothalamic-pituitary-thyroid axis, one of the outputs that the central nervous system uses to control energy utilization. It is hierarchically organized and controlled by paraventricular nucleus hypophysiotropic thyrotropin-releasing hormone neurons integrating central and peripheral information. These neurons regulate thyrotropin secretion from anterior pituitary and thyroid hormone production. Tissue concentrations of thyroid hormones depend in addition on transporters and deiodinases expressed by target tissues. Thyroid hormones control basal metabolic rate, thermogenesis, lipolysis, and glycolysis, as well as the development and performance of immune and nervous systems; they exert feedback control on the axis at multiple levels. Fasting, food restriction, malnutrition, stress, and disease downregulate the activity of the thyroid axis, an adaptation that minimizes energy utilization. In contrast, diet-induced obesity activates the axis, although deiodinase activities limit its capacity to compensate for energy excess. Maternal nutritional status or stress during gestation, and/or lactation, programs offspring’s body weight, neuroendocrine axes, and energy metabolism in the adult. Studies in animals contributed to identify pathophysiological events of the thyroid axis associated with human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Note:

Italics are used for gene or mRNA names, i.e., Trh for animals and TRH for humans, and capital letters, i.e., TRH, for peptides/proteins (HUGO Gene nomenclature Committee; Mouse genome informatics)

11-β-HSD:

11-β hydroxysterol dehydrogenase

3V:

third ventricle

Abd:

abdominal

AC:

adenylyl cyclase

Act:

activity

ACTH:

adrenocorticotropin hormone

AgRP:

agouti-related peptide

Apit:

anterior pituitary

AR:

adrenergic receptor

Arc:

hypothalamic arcuate nucleus

ATP:

adenosine triphosphate

Avp:

arginine vasopressin

BAT:

brown adipose tissue

BBB:

blood–brain barrier

BDNF:

brain–derived neurotrophic factor

BP:

blood pressure

BW:

body weight

CART:

cocaine- and amphetamine-activated transcript

CAs:

catecholamines

Ch:

cholesterol

Cort:

corticosterone

CREB:

cAMP-response element-binding protein

CRH:

corticotropin-releasing hormone

Cx:

cortex

d:

days

db :

diabetes mice

Dio1:

deiodinase type 1

Dio2:

deiodinase type 2

Dio3:

deiodinase type 3

DMN:

hypothalamic dorsomedial nucleus

E:

embryonic

F:

female

FA:

fatty acids

FFA:

free fatty acids

FR:

food restriction

FT3:

free triiodo-L-thyronine

FT4:

free thyroxine

G:

gestation

GABA:

γ-aminobutyric acid

GC:

glucocorticoids

GH:

growth hormone

GR:

glucocorticoid receptor

Gs:

signal-transducing G protein

Hc:

hippocampus

HFD:

high-fat diet

HOMA-IR:

homeostatic model assessment for insulin resistance

HPA:

hypothalamic-pituitary adrenal axis

HPT:

hypothalamic-pituitary-thyroid axis

Ht:

hypothalamus

I− excess + LP:

iodine excess plus a low protein diet

I:

iodine

Ins:

insulin

InsR:

insulin receptor

JAK2:

janus kinase 2

KO:

knockout

L:

lactation

LC:

locus coeruleus

LDL-c:

low-density lipoprotein cholesterol

LH:

lateral hypothalamus

LP:

low protein diet

Lpl:

lipoprotein lipase

LPS:

lipopolysaccharide

M:

male

MBH:

mediobasal hypothalamus

Mc4R:

melanocortin 4 receptor

Mct10:

monocarboxylate transporter 10

Mct8:

monocarboxylate transporter 8

ME:

median eminence

mo:

months old

Mr:

mineralocorticoid receptor

MS:

maternal separation

NE:

norepinephrine

NEFA:

non-esterified fatty acids

NPY:

neuropeptide Y

Nr3c1 :

GR gene

NTIS:

non-thyroidal illness syndrome

NTS:

nucleus tractus solitarius

OATP1C1:

organic anion transporter family member 1C1

Ob :

obese mice

ObRb:

leptin’s receptor b isoform

PD:

postnatal day

Pepck:

phosphoenolpyruvate carboxykinase

Pit:

pituitary

PKA:

protein kinase A

POMC:

proopiomelanocortin

Ppargc1a:

peroxisome proliferator-activated receptor gamma coactivator 1-alpha

PPit:

posterior pituitary

PTU:

propylthiouracil

PVN:

hypothalamic-paraventricular nucleus

RMR:

resting metabolic rate

SCh:

suprachiasmatic nucleus

SOCS3:

suppressor of cytokine signaling 3

STAT3:

signal transducer and activator of transcription 3

T-131I uptake:

thyroid 131iodine uptake

T3:

triiodo-L-thyronine

T4:

thyroxine

TBG:

thyroxine-binding globulin

Tg:

thyroglobulin

TG:

triglyceride

TH:

thyroid hormone

TPO:

thyroid peroxidase

TR or Thr:

thyroid hormone receptor

TRE:

thyroid response element

TRH:

thyrotropin-releasing hormone

TRHDE:

TRH-degrading ectoenzyme

TRHR1:

TRH receptor-1

TSH:

thyrotropin

TSH-R Tshr:

TSH-receptor

TT3:

total triiodo-L-thyronine

TT4:

total thyroxine

UCP1:

uncoupling protein 1

VMN:

hypothalamic ventromedial nucleus

W:

weight

WAT:

white adipose tissue

wk:

week

Y1/Y5R:

NPY receptor-1/5

yrs:

years old

αMSH:

α-melanocyte-stimulating hormone

References

  • Ahmed OM, Ahmed RG, El-Gareib AW et al (2012) Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: II-the developmental pattern of neurons in relation to oxidative stress and antioxidant defense system. Int J Dev Neurosci 30:517–537

    Article  CAS  PubMed  Google Scholar 

  • Araujo RL, Andrade BM, Padrón AS et al (2010) High-fat diet increases thyrotropin and oxygen consumption without altering circulating 3,5,3′-triiodothyronine (T3) and thyroxine in rats: the role of iodothyronine deiodinases, reverse T3 production, and whole-body fat oxidation. Endocrinology 151:3460–3469

    Article  CAS  PubMed  Google Scholar 

  • Bastian TW, Prohaska JR, Georgieff MK et al (2014) Fetal and neonatal iron deficiency exacerbates mild thyroid hormone insufficiency effects on male thyroid hormone levels and brain thyroid hormone-responsive gene expression. Endocrinology 155:1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Bianco AC, Anderson G, Forrest D et al (2014) American thyroid association guide to investigating thyroid hormone economy and action in rodent and cell models. Report of the American Thyroid Association task force on approaches and strategies to investigate thyroid hormone economy and action. Thyroid 24:88–168

    Article  PubMed  PubMed Central  Google Scholar 

  • Boelen A, Wiersinga WM, Fliers E (2008) Fasting-induced changes in the hypothalamus-pituitary-thyroid axis. Thyroid 18:123–129

    Article  CAS  PubMed  Google Scholar 

  • Carbone DL, Zuloaga DG, Lacagnina AF et al (2012) Exposure to dexamethasone during late gestation causes female-specific decreases in core body temperature and prepro-thyrotropin-releasing hormone expression in the paraventricular nucleus of the hypothalamus in rats. Physiol Behav 108:6–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correira-Branco A, Keating E, Martel F (2015) Maternal undernutrition and fetal developmental programming of obesity: the glucocorticoid connection. Reprod Sci 22:138–145

    Article  Google Scholar 

  • de Moura EG, Lisboa PC, Passos MC (2008) Neonatal programming of neuroimmunomodulation – role of adipocytokines and neuropeptides. Neuroimmunomodulation 15:176–188

    Article  PubMed  Google Scholar 

  • de Vries EM, Fliers E, Boelen A (2015a) The molecular basis of the non-thyroidal illness syndrome. J Endocrinol 225:R67–R81

    Article  PubMed  Google Scholar 

  • de Vries EM, van Beeren HC, Ackermans MT et al (2015b) Differential effects of fasting vs food restriction on liver thyroid hormone metabolism in male rats. J Endocrinol 224:25–35

    Article  PubMed  Google Scholar 

  • Dearden L, Ozanne SE (2015) Early life origins of metabolic disease: developmental programming of hypothalamic pathways controlling energy homeostasis. Front Neuroendocrinol 39:3–16

    Article  PubMed  Google Scholar 

  • Duntas LH (2015) Chemical contamination and the thyroid. Endocrine 48:53–64

    Article  CAS  PubMed  Google Scholar 

  • Fekete C, Lechan RM (2014) Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev 35:159–194

    Article  CAS  PubMed  Google Scholar 

  • Fetoui H, Bouaziz H, Mahjoubi-Samet A et al (2006) Food restriction induced thyroid changes and their reversal after refeeding in female rats and their pups. Acta Biol Hung 57:391–402

    Article  PubMed  Google Scholar 

  • Fliers E, Kalsbeek A, Boelen A (2014) Beyond the fixed setpoint of the hypothalamus-pituitary-thyroid axis. Eur J Endocrinol 171:R197–R208

    Article  CAS  PubMed  Google Scholar 

  • Fontenelle LC, Feitosa MM, Severo JS et al (2016) Thyroid function in human obesity: underlying mechanisms. Horm Metab Res 48:787–794

    Article  CAS  PubMed  Google Scholar 

  • Forhead AJ, Fowden AL (2014) Thyroid hormones in fetal growth and prepartum maturation. J Endocrinol 221:R87–R103

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich E, Wahl R (2016) Impact of isolated TSH levels in and out of normal range on different tissues. Eur J Endocrinol 174:R29–R41

    Article  PubMed  Google Scholar 

  • Gao J, Lin X, Liu X et al (2013) Effect of combined excess iodine and low-protein diet on thyroid hormones and ultrastructure in Wistar rats. Biol Trace Elem Res 155:416–422

    Article  CAS  PubMed  Google Scholar 

  • Gereben B, McAninch EA, Ribeiro MO et al (2015) Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat Rev Endocrinol 11:642–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert ME, Hedge JM, Valentín-Blasini L et al (2013) An animal model of marginal iodine deficiency during development: the thyroid axis and neurodevelopmental outcome. Toxicol Sci 132:177–195

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Tasker JG (2016) Paraventricular hypothalamic mechanisms of chronic stress adaptation. Front Endocrinol 7:137

    Article  Google Scholar 

  • Hess SY, Zimmermann MB (2004) The effect of micronutrient deficiencies on iodine nutrition and thyroid metabolism. Int J Vitam Nutr Res 74:103–115

    Article  CAS  PubMed  Google Scholar 

  • Jaimes-Hoy L, Gutiérrez-Mariscal M, Vargas Y et al (2016) Neonatal maternal separation alters, in a sex-specific manner, the expression of TRH, of TRH-degrading ectoenzyme in the rat hypothalamus, and the response of the thyroid axis to starvation. Endocrinology 157:3253–3265

    Article  CAS  PubMed  Google Scholar 

  • Johnsen L, Kongsted AH, Nielsen MO (2013) Prenatal undernutrition and postnatal overnutrition alter thyroid hormone axis function in sheep. J Endocrinol 216:389–402

    Article  CAS  PubMed  Google Scholar 

  • Joseph-Bravo P, Jaimes-Hoy L, Charli JL (2015a) Regulation of TRH neurons and energy homeostasis-related signals under stress. J Endocrinol 224(3):R139–R159

    Article  CAS  PubMed  Google Scholar 

  • Joseph-Bravo P, Jaimes-Hoy L, Uribe RM et al (2015b) 60 years of neuroendocrinology: TRH, the first hypophysiotropic releasing hormone isolated: control of the pituitary-thyroid axis. J Endocrinol 226(2):T85–T100

    Article  CAS  PubMed  Google Scholar 

  • Joseph-Bravo P, Jaimes-Hoy L, Charli JL (2016) Advances in TRH signaling. Rev Endocr Metab Disord 17:545–558

    Article  CAS  PubMed  Google Scholar 

  • Kahl S, Elsasser TH, Rhoads RP et al (2015) Environmental heat stress modulates thyroid status and its response to repeated endotoxin challenge in steers. Domest Anim Endocrinol 52:43–50

    Article  CAS  PubMed  Google Scholar 

  • Keogh K, Waters SM, Kelly AK et al (2015) Feed restriction and realimentation in Holstein-Friesian bulls: II. Effect on blood pressure and systemic concentrations of metabolites and metabolic hormones. J Anim Sci 93:3590–3601

    Article  CAS  PubMed  Google Scholar 

  • Lavado-Autric R, Calvo RM, de Mena RM et al (2013) Deiodinase activities in thyroids and tissues of iodine-deficient female rats. Endocrinology 154:529–536

    Article  CAS  PubMed  Google Scholar 

  • Lino CA, da Silva IB, Shibata CE et al (2015) Maternal hyperthyroidism increases the susceptibility of rat adult offspring to cardiovascular disorders. Mol Cell Endocrinol 416:1–8

    Article  CAS  PubMed  Google Scholar 

  • Lisboa PC, de Oliveira E, Manhães AC et al (2015) Effects of maternal nicotine exposure on thyroid hormone metabolism and function in adult rat progeny. J Endocrinol 224:315–325

    Article  CAS  PubMed  Google Scholar 

  • Manojlović-Stojanoski MN, Filipović BR, Nestorović NM et al (2014) Morpho-functional characteristics of rat fetal thyroid gland are affected by prenatal dexamethasone exposure. Steroids 84:22–29

    Article  PubMed  Google Scholar 

  • Mendoza A, Hollenberg AN (2017) New insights into thyroid hormone action. Pharmacol Ther 173:135–145

    Article  CAS  PubMed  Google Scholar 

  • Moisiadis VG, Matthews SG (2014) Glucocorticoids and fetal programming part 2: mechanisms. Nat Rev Endocrinol 10:403–411

    Article  CAS  PubMed  Google Scholar 

  • Moog NK, Entringer S, Heim C et al (2015) Influence of maternal thyroid hormones during gestation on fetal brain development. Neuroscience 342:68–100

    Article  PubMed  Google Scholar 

  • Morris MJ, Beilharz JE, Maniam J et al (2015) Why is obesity such a problem in the 21st century? The intersection of palatable food, cues and reward pathways, stress, and cognition. Neurosci Biobehav Rev 58:36–45

    Article  PubMed  Google Scholar 

  • Mullur R, Liu YY, Brent GA (2014) Thyroid hormone regulation of metabolism. Physiol Rev 94:355–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers MG, Leibel RL (2015) Lessons from rodent models of obesity. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A (eds) Endotext [Internet]. MDText.com, Inc., South Dartmouth. Accessed 01 May 2017

    Google Scholar 

  • Palou M, Priego T, Romero M et al (2015) Moderate calorie restriction during gestation programs offspring for lower BAT thermogenic capacity driven by thyroid and sympathetic signaling. Int J Obes (Lond) 39:339–345

    Article  CAS  Google Scholar 

  • Perello M, Cakir I, Cyr NE et al (2010) Maintenance of the thyroid axis during diet-induced obesity in rodents is controlled at the central level. Am J Physiol Endocrinol Metab 299:E976–E989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portolés M, Sanchis R, Guerri C (1988) Thyroid hormone levels in rats exposed to alcohol during development. Horm Metab Res 20:267–270

    Article  PubMed  Google Scholar 

  • Préau L, Fini JB, Morvan-Dubois G et al (2015) Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption. Biochim Biophys Acta 1849:112–121

    Google Scholar 

  • Ramadoss J, Tress U, Chen WJ et al (2008) Maternal adrenocorticotropin, cortisol, and thyroid hormone responses to all three-trimester equivalent repeated binge alcohol exposure: ovine model. Alcohol 42:199–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymaekers SR, Darras VM (2017) Thyroid hormones and learning-associated neuroplasticity. Gen Comp Endocrinol 247:26–33

    Article  CAS  PubMed  Google Scholar 

  • Sotelo-Rivera I, Cote-Vélez A, Uribe RM et al (2017) Glucocorticoids curtail stimuli-induced CREB phosphorylation in TRH neurons through interaction of the glucocorticoid receptor with the catalytic subunit of protein kinase A. Endocrine 55:861–871

    Article  CAS  PubMed  Google Scholar 

  • Sutton AK, Myers MG Jr, Olson DP (2016) The role of PVH circuits in leptin action and energy balance. Annu Rev Physiol 78:207–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turecki G, Meaney MJ (2016) Effects of the social environment and stress on glucocorticoid receptor gene methylation: a systematic review. Biol Psychiatry 79:87–96

    Article  CAS  PubMed  Google Scholar 

  • van Bodegom M, Homberg JR, Henckens MJAG (2017) Modulation of the hypothalamic-pituitary-adrenal axis by early life stress exposure. Front Cell Neurosci 11:87

    PubMed  PubMed Central  Google Scholar 

  • Vesper HW, Myers GL, Miller WG (2016) Current practices and challenges in the standardization and harmonization of clinical laboratory tests. Am J Clin Nutr 104(Suppl):907S–912S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wattez JS, Delahaye F, Lukaszewski MA et al (2013) Perinatal nutrition programs the hypothalamic melanocortin system in offspring. Horm Metab Res 45:980–990

    Article  CAS  PubMed  Google Scholar 

  • Webber ES, Bonci A, Krashes MJ (2015) The elegance of energy balance: insight from circuit-level manipulations. Synapse 69:461–474

    Article  CAS  PubMed  Google Scholar 

  • Xia SF, Duan XM, Hao LY et al (2015) Role of thyroid hormone homeostasis in obesity-prone and obesity-resistant mice fed a high-fat diet. Metabolism 64:566–579

    Article  CAS  PubMed  Google Scholar 

  • Yam KY, Naninck EF, Schmidt MV et al (2015) Early-life adversity programs emotional functions and the neuroendocrine stress system: the contribution of nutrition, metabolic hormones and epigenetic mechanisms. Stress 18:328–342

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by grants from CONACYT (CB2015-254960, PN2015-562) and DGAPA-UNAM (IN208515, IN204316, IA200417). The enthusiastic collaboration of our staff and students is deeply recognized; we thank the technical aid of M. Cisneros, F. Romero, S. Ainsworth, and R. Rodríguez. We apologize to authors whose work is cited only in reviews due to space constrains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Joseph-Bravo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Joseph-Bravo, P., Gutiérrez-Mariscal, M., Jaimes-Hoy, L., Charli, JL. (2017). Thyroid Axis and Energy Balance: Focus on Animals and Implications for Humankind. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-40007-5_76-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40007-5_76-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40007-5

  • Online ISBN: 978-3-319-40007-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics