Skip to main content
Log in

New evidence for an association between liver enzymes and pancreatic islet β-cell dysfunction in young obese patients

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

To explore the relationship between serum liver enzymes and both the glucose tolerance status and insulin secretion in young obese patients. A total of 734 young obese patients (BMI ≥ 25 kg m−2) and 231 lean healthy volunteers matched in age (BMI < 23 kg m−2) were enrolled in this cross-sectional observational study. The 734 obese patients were subdivided to three groups (OB-NGR, OB-IGR, and OB-DM) according to their glucose tolerance status. FSIVGTT was performed to assess the degree of insulin sensitivity (SI) and islet secretion function (AIRg). The disposition index (DI; product of SI and AIRg) was calculated as an integrated measurement of insulin secretion and insulin action after compensating for insulin resistance. The extent and distribution of hepatic fat infiltration was assessed using the liver/spleen ratio (L/S ratio) with CT scan. ALT and GGT levels in OB-NGR, OB-IGR, and OB-DM groups were significantly increased compared to the normal controls, and were incrementally increased in turn in the three groups, whereas DI decreased at the same time. One standard deviation increment in ALT and GGT increased the risk of β-cell dysfunction after controlling for potential confounders such as sex, age, BMI, waist–hip ratio, and blood pressure. Even after the adjustment of the serum lipid profile and L/S ratio, the odds ratio of ALT remained statistically significant (OR, 1.603; 95 % CI, 1.225–2.096). Serum levels of liver enzymes showed an independent close relationship with insulin secretion capacity. Excluding the impact of a fatty liver, increased ALT and GGT levels indicated a significant association with the attenuation of pancreatic β-cell function. This study provides the possibility that elevated liver enzymes might be treated as simple biomarkers of early insulin secretion deficit in type 2 diabetes, especially in young obese patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. W. Yang, J. Lu, J. Weng, W. Jia, L. Ji, J. Xiao et al., Prevalence of diabetes among men and women in China. N. Engl. J. Med. 362, 1090–1101 (2010)

    Article  PubMed  CAS  Google Scholar 

  2. O. Nissen, O.H. Forde, T. Brenn, The Tromso study: distribution and population determinants of gamma-glutamyltransferase. Am. J. Epidemiol. 132, 318–326 (1990)

    Google Scholar 

  3. D.H. Lee, M.H. Ha, J.H. Kim, D.C. Christiani, M.D. Gross, M. Steffes et al., Gamma-glutamyltransferase and diabetes-a 4 year follow-up study. Diabetologia 46, 359–364 (2003)

    Article  PubMed  CAS  Google Scholar 

  4. D.H. Lee, K. Silventoinen, D.R. Jacobs Jr, P. Jousilahti, J. Tuomileto, γ-glutamyl transferase, obesity, and the risk of type 2 diabetes: observational cohort study among 20,158 middle-aged men and women. J. Clin. Endocrinol. Metab. 89, 5410–5414 (2004)

    Article  PubMed  CAS  Google Scholar 

  5. C. Meisinger, H. Lowel, M. Heier, A. Schneider, B. Thorand, KORA Study Group.: serum γ-glutamyltransferase and risk of type 2 diabetes mellitus in men and women from the general population. J. Intern. Med. 258, 527–535 (2005)

    Article  PubMed  CAS  Google Scholar 

  6. S.G. Wannamethee, A.G. Shaper, L. Lennon, P.H. Whincup, Hepatic enzymes, the metabolic syndrome, and the risk of type 2 diabetes in older men. Diabetes Care 28, 2913–2918 (2005)

    Article  PubMed  CAS  Google Scholar 

  7. P. Andr′e, B. Balkau, C. Born, M.A. Charles, E. Eschw`ege, D.E.S.I.R. study group: three-year increase of gamma-glutamyltransferase level and development of type 2 diabetes in middle-aged men and women: the D.E.S.I.R. cohort. Diabetologia 49, 2599–2603 (2006)

    Article  Google Scholar 

  8. Y.H. Kang, H.K. Min, S.M. Son, I.J. Kim, Y.K. Kim, The association of serum gamma glutamyltransferase with components of the metabolic syndrome in the Korean adults. Diabetes Res. Clin. Pract. 77, 306–313 (2007)

    Article  PubMed  CAS  Google Scholar 

  9. J.Y. Shin, S.J. Chang, Y.G. Shin, K.S. Seo, C.H. Chung, Elevated serum gamma-glutamyltransferase levels are independently associated with insulin resistance in non-diabetic subjects. Diabetes Res. Clin. Pract. 84, 152–157 (2009)

    Article  PubMed  Google Scholar 

  10. Y. Zhang, X. Lu, J. Hong, M. Chao, W. Gu, W. Wang et al., Positive correlations of liver enzymes with metabolic syndrome including insulin resistance in newly diagnosed type 2 diabetes mellitus. Endocrine 38, 181–187 (2010)

    Article  PubMed  Google Scholar 

  11. Y. Xu, M. Xu, Y. Huang, T. Wang, M. Li, Y. Wu et al., Elevated serum γ-glutamyltransferase predicts the development of impaired glucose metabolism in middle-aged and elderly Chinese. Endocrine 40(2), 265–272 (2011)

    Article  PubMed  CAS  Google Scholar 

  12. E. Scorletti, P.C. Calder, C.D. Byrne, Non-alcoholic fatty liver disease and cardiovascular risk: metabolic aspects and novel treatments. Endocrine 40(3), 332–343 (2011)

    Article  PubMed  CAS  Google Scholar 

  13. R. Wang, Q. Lu, J. Feng, F. Yin, C. Qin, B. Liu et al., Coexistence of non-alcoholic fatty liver disease with elevated alanine aminotransferase is associated with insulin resistance in young Han males. Endocrine 41(1), 70–75 (2012)

    Article  PubMed  Google Scholar 

  14. J. Hong, W.Q. Gu, Y.F. Zhang, Y.S. Yang, C.F. Shen, M. Xu et al., The interplay of insulin resistance and beta-cell dysfunction involves the development of type 2 diabetes in Chinese obeses. Endocrine 31, 93–99 (2007)

    Article  PubMed  CAS  Google Scholar 

  15. Steering Committee of the Western Pacific Region of the World Health Organization, The International Association for the Study of Obesity, and the International Obesity Task Force, The Asia-Pacific perspective: redefining obesity and its treatment (Health Communications Australia Pty Ltd, Melbourne, 2000)

    Google Scholar 

  16. WHO Expert Consultation, Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363, 157–163 (2004)

    Article  Google Scholar 

  17. G.M. Steil, A. Volund, S.E. Kahn, R.N. Bergman, Reduced sample number for calculation of insulin sensitivity and glucose effectiveness from the minimal model: suitability for use in population studies. Diabetes 42, 250–256 (1993)

    Article  PubMed  CAS  Google Scholar 

  18. G. Pacini, G. Tonolo, M. Sambataro, M. Maioli, M. Ciccarese, E. Brocco et al., Insulin sensitivity and glucose effectiveness: minimal model analysis of regular and insulin-modified FSIGT. Am. J. Physiol. 274, E592–E599 (1998)

    PubMed  CAS  Google Scholar 

  19. R.N. Bergman, L.S. Phillips, C. Cobelli, Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J. Clin. Invest. 68, 1456–1467 (1981)

    Article  PubMed  CAS  Google Scholar 

  20. l Zeb, D. Li, K. Nasir, R. Katz, V.N. Larijani, M.J. Budoff, Computed tomography scans in the evaluation of fatty liver disease in a population based study: the muti-ethnic study of atherosclerosis. Acad Radiol. 19(7), 811–818 (2012)

    Article  PubMed  Google Scholar 

  21. S. Saadeh, Z.M. Younossi, E.M. Remer, T. Gramlich, J.P. Ong, M. Hurley et al., The utility of radiological imaging in fatty liver disease. Gastroenterology 123, 745–750 (2002)

    Article  PubMed  Google Scholar 

  22. K.S. Polonsky, J. Sturis, G.I. Bell, Seminars in medicine of the Beth Israel Hospital, Boston: non-insulin-dependent diabetes mellitus: a genetically programmed failure of the beta cell to compensate for insulin resistance. N. Engl. J. Med. 334, 777–783 (1996)

    Article  PubMed  CAS  Google Scholar 

  23. M. Bergman, Pathophysiology of prediabetes and treatment implications for the prevention of type 2 diabetes mellitus. Endocrine (2012). doi:10.1007/s12020-012-9830-9

    PubMed  Google Scholar 

  24. Fabrice Bonnet, Pierre-Henri Ducluzeau, Amalia Gastaldelli, Martine Laville, Christian H. Anderwald, Thomas Konrad et al., Liver enzymes are associated with hepatic insulin resistance, insulin secretion, and glucagon concentration in healthy men and woman. Diabetes 60, 1600–1607 (2011)

    Article  Google Scholar 

  25. A. Kugelman, H.A. Choy, R. Liu, M.M. Shi, E. Gozal, H.J. Forman, gamma-Glutamyl transpeptidase is increased by oxidative stress in rat alveolar L2 epithelial cells. Am. J. Respir. Cell Mol. Biol. 11, 586–592 (1994)

    Article  PubMed  CAS  Google Scholar 

  26. Y. Takahashi, S.M. Oakes, M.C. Williams, S. Takahashi, T. Miura, M. Joyce-Brady, Nitrogen dioxide exposure activates gamma-glutamyl transferase gene expression in rat lung. Toxicol. Appl. Pharmacol. 143, 388–396 (1997)

    Article  PubMed  CAS  Google Scholar 

  27. D.R. Karp, K. Shimooku, P.E. Lipsky, Expression of gamma-glutamyl transpeptidase protects ramos B cells from oxidation-induced cell death. J. Biol. Chem. 276, 3798–3804 (2001)

    Article  PubMed  CAS  Google Scholar 

  28. A.A. Stark, Oxidative metabolism of glutathione by gamma-glutamyl transpeptidase and peroxisome proliferation: the relevance to hepatocarcinogenesis. A hypothesis. Mutagenesis. 6, 241–245 (1991)

    Article  CAS  Google Scholar 

  29. A.A. Stark, J.J. Russell, R. Langenbach, D.A. Pagano, E. Zeiger, E. Huberman, Localization of oxidative damage by a glutathione-gamma-glutamyl transpeptidase system in preneoplastic lesions in sections of livers from carcinogen-treated rats. Carcinogenesis 15, 343–348 (1994)

    Article  PubMed  CAS  Google Scholar 

  30. A. Paolicchi, R. Tongiani, P. Tonarelli, M. Comporti, A. Pompella, gamma-Glutamyl transpeptidase-dependent lipid peroxidation in isolated hepatocytes and HepG2 hepatoma cells. Free Radic. Biol. Med. 22, 853–860 (1997)

    Article  PubMed  CAS  Google Scholar 

  31. R. Drozdz, C. Parmentier, H. Hachad, P. Leroy, G. Siest, M. Wellman, gamma- Glutamyl transferase dependent generation of reactive oxygen species from a glutathione/transferring system. Free Radic. Biol. Med. 25, 786–792 (1998)

    Article  PubMed  CAS  Google Scholar 

  32. M.E. Tushuizen, M.C. Bunck, P.J. Pouwels, S. Bontemps, J.H. van Waesberghe, R.K. Schindhelm et al., Pancreatic fat content and beta-cell function in men with and without type 2 diabetes. Diabetes Care 30, 2916–2921 (2007)

    Article  PubMed  CAS  Google Scholar 

  33. B. Vozarova, N. Stefan, R.S. Lindsay, A. Saremi, R.E. Pratley, C. Bogardus et al., High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 51, 1889–1895 (2002)

    Article  PubMed  CAS  Google Scholar 

  34. M.E. Tushuizen, M.C. Bunck, P.J. Pouwels, S. Bontemps, A. Mari, M. Diamant, Lack of association of liver fat with model parameters of beta-cell function in men with impaired glucose tolerance and type 2 diabetes. Eur. J. Endocrinol. 159, 251–257 (2008)

    Article  PubMed  CAS  Google Scholar 

  35. J. Imai, H. Katagiri, T. Yamada, Y. Ishiqaki, T. Suzuki, H. Kudo et al., Regulation of pancreatic beta cell mass by neuronal signals from the liver. Science 322, 1250–1254 (2008)

    Article  PubMed  CAS  Google Scholar 

  36. M.D. Michael, R.N. Kulkarni, C. Postic, S.F. Previs, G.I. Shulman, M.A. Magnuson et al., Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell 6, 87–97 (2000)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the grants from Chinese National Natural Science Foundation (81100588), “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA01040102), Shanghai Natural Science and Technology Foundation (11ZR143200), and Special Fund for Public Benefit Research from Ministry of Health (201202008). Li Wang currently is at Shanghai Zhongshan Hospital Affiliated to Fudan University, 180 Feng’lin Road, Shanghai, 200032, China.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqiong Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Zhang, J., Wang, B. et al. New evidence for an association between liver enzymes and pancreatic islet β-cell dysfunction in young obese patients. Endocrine 44, 688–695 (2013). https://doi.org/10.1007/s12020-013-9937-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-9937-7

Keywords

Navigation