Skip to main content
Log in

Non-alcoholic fatty liver disease and cardiovascular risk: metabolic aspects and novel treatments

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver disease (NAFLD) is usually a silent disease that occurs in a very high proportion of people with features of the metabolic syndrome, including overweight, insulin resistance and type 2 diabetes. Because obesity and type 2 diabetes are now extremely common in Westernised societies, it is likely that the prevalence of NAFLD increases markedly in the future. Although previously it was thought that NAFLD was harmless, it is now recognised that NAFLD can be a progressive liver condition that increases risk of cirrhosis, end-stage liver disease and hepatocellular carcinoma. Additionally, liver fat accumulation causes insulin resistance and increases risk of type 2 diabetes. Increasing evidence now shows NAFLD is a risk factor for cardiovascular disease (CVD). The purpose of this review is to briefly discuss the pathogenesis of NAFLD, to describe the relationship between NAFLD and CVD and the mechanisms linking both conditions and to discuss some of the treatment options (including lifestyle, nutrition and drugs) that may influence both NAFLD and risk of CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

BMI:

Body mass index

CVD:

Cardiovascular disease

HDL:

High-density lipoprotein

IL:

Interleukin

IR:

Insulin resistance

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

NEFA:

Non-esterified fatty acid (‘free fatty acid’)

NF-κB:

Nuclear factor κB

RAS:

Renin angiotensin system

TNF-α:

Tumour necrosis factor α

TG:

Triglyceride

VLDL:

Very low density lipoprotein

References

  1. L.S. Szczepaniak, P. Nurenberg, D. Leonard, J.D. Browning, J.S. Reingold, S. Grundy et al., Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am. J. Physiol. Endocrinol. Metab. 288, E462–E468 (2005)

    Article  PubMed  CAS  Google Scholar 

  2. B.Q. Starley, C.J. Calcagno, S.A. Harrison, Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology 51, 1820–1832 (2010)

    Article  PubMed  Google Scholar 

  3. J.D. Browning, L.S. Szczepaniak, R. Dobbins, P. Nuremberg, J.D. Horton, J.C. Cohen et al., Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40, 1387–1395 (2004)

    Article  PubMed  Google Scholar 

  4. S. Chitturi, G.C. Farrell, E. Hashimoto, T. Saibara, G.K. Lau, J.D. Sollano, Non-alcoholic fatty liver disease in the Asia-Pacific region: definitions and overview of proposed guidelines. J. Gastroenterol. Hepatol. 22, 778–787 (2007)

    Article  PubMed  Google Scholar 

  5. G. Bedogni, L. Miglioli, F. Masutti, C. Tiribelli, G. Marchesini, S. Bellentani, Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology 42, 44–52 (2005)

    Article  PubMed  Google Scholar 

  6. D.E. Kleiner, E.M. Brunt, N.M. Van, C. Behling, M.J. Contos, O.W. Cummings et al., Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005)

    Article  PubMed  Google Scholar 

  7. P. Angulo, J.M. Hui, G. Marchesini, E. Bugianesi, J. George, G.C. Farrell et al., The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 45, 846–854 (2007)

    Article  PubMed  CAS  Google Scholar 

  8. W.M. Rosenberg, M. Voelker, R. Thiel, M. Becka, A. Burt, D. Schuppan et al., Serum markers detect the presence of liver fibrosis: a cohort study. Gastroenterology 127, 1704–1713 (2004)

    Article  PubMed  Google Scholar 

  9. J.K. Dowman, J.W. Tomlinson, P.N. Newsome, Systematic review: the diagnosis and staging of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Aliment. Pharmacol. Ther. 33, 525–540 (2011)

    Article  PubMed  CAS  Google Scholar 

  10. A. Kotronen, H. Yki-Jarvinen, Fatty liver: a novel component of the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 28(1), 27–38 (2008)

    Article  PubMed  CAS  Google Scholar 

  11. G. Targher, L. Bertolini, S. Rodella, R. Tessari, L. Zenari, G. Lippi et al., Nonalcoholic fatty liver disease is independently associated with an increased incidence of cardiovascular events in type 2 diabetic patients. Diabetes Care 30, 2119–2121 (2007)

    Article  PubMed  CAS  Google Scholar 

  12. T.G. Redgrave, Formation of cholesteryl ester-rich particulate lipid during metabolism of chylomicrons. J. Clin. Invest. 49, 465–471 (1970)

    Article  PubMed  CAS  Google Scholar 

  13. F. Diraison, M. Beylot, Role of human liver lipogenesis and reesterification in triglycerides secretion and in FFA reesterification. Am. J. Physiol. 274, E321–E327 (1998)

    PubMed  CAS  Google Scholar 

  14. C. Postic, J. Girard, Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J. Clin. Invest. 118, 829–838 (2008)

    Article  PubMed  CAS  Google Scholar 

  15. K.L. Donnelly, C.I. Smith, S.J. Schwarzenberg, J. Jessurun, M.D. Boldt, E.J. Parks, Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005)

    PubMed  CAS  Google Scholar 

  16. J. Hao, W. Shen, L. Sun, J. Long, E. Sharman, X. Shi et al., Mitochondrial dysfunction in the liver of type 2 diabetic Goto-Kakizaki rats: improvement by a combination of nutrients. Br. J. Nutr. 106(5), 648–655 (2011)

    Article  PubMed  CAS  Google Scholar 

  17. C.D. Byrne, R. Olufadi, K.D. Bruce, F.R. Cagampang, M.H. Ahmed, Metabolic disturbances in non-alcoholic fatty liver disease. Clin. Sci. (Lond) 116, 539–564 (2009)

    Article  CAS  Google Scholar 

  18. J.M. Gaziano, Fifth phase of the epidemiologic transition: the age of obesity and inactivity. JAMA 303, 275–276 (2010)

    Article  PubMed  CAS  Google Scholar 

  19. A.R. Omran, The epidemiologic transition. A theory of the Epidemiology of population change. 1971. Bull. World Health Organ. 79, 161–170 (2001)

    PubMed  CAS  Google Scholar 

  20. K.M. Meyer-Abich, Human health in nature—towards a holistic philosophy of nutrition. Public Health Nutr. 8, 738–742 (2005)

    Article  PubMed  Google Scholar 

  21. L. Cordain, S.B. Eaton, A. Sebastian, N. Mann, S. Lindeberg, B.A. Watkins et al., Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 81, 341–354 (2005)

    PubMed  CAS  Google Scholar 

  22. Huang, D., Dhawan, T., Young, S., Yong, W.H., Boros, L.G., Heaney, A.P.: Fructose impairs glucose-induced hepatic triglyceride synthesis. Lipids Health Dis. 10, 20 (2011)

    Google Scholar 

  23. S. Kechagias, A. Ernersson, O. Dahlqvist, P. Lundberg, T. Lindstrom, F.H. Nystrom, Fast-food-based hyper-alimentation can induce rapid and profound elevation of serum alanine aminotransferase in healthy subjects. Gut 57, 649–654 (2008)

    Article  PubMed  CAS  Google Scholar 

  24. B. Mittendorfer, B.W. Patterson, S. Klein, Effect of weight loss on VLDL-triglyceride and apoB-100 kinetics in women with abdominal obesity. Am. J. Physiol. Endocrinol. Metab. 284, E549–E556 (2003)

    PubMed  CAS  Google Scholar 

  25. M.C. Ryan, F. Abbasi, C. Lamendola, S. Carter, T.L. McLaughlin, Serum alanine aminotransferase levels decrease further with carbohydrate than fat restriction in insulin-resistant adults. Diabetes Care 30, 1075–1080 (2007)

    Article  PubMed  CAS  Google Scholar 

  26. P.A. Mayes, Intermediary metabolism of fructose. Am. J. Clin. Nutr. 58, 754S–765S (1993)

    PubMed  CAS  Google Scholar 

  27. L. Tappy, K.A. Le, Metabolic effects of fructose and the worldwide increase in obesity. Physiol. Rev. 90, 23–46 (2010)

    Article  PubMed  CAS  Google Scholar 

  28. A. Spruss, I. Bergheim, Dietary fructose and intestinal barrier: potential risk factor in the pathogenesis of nonalcoholic fatty liver disease. J. Nutr. Biochem. 20, 657–662 (2009)

    Article  PubMed  CAS  Google Scholar 

  29. R. Dhingra, L. Sullivan, P.F. Jacques, T.J. Wang, C.S. Fox, J.B. Meigs et al., Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community. Circulation 116, 480–488 (2007)

    Article  PubMed  Google Scholar 

  30. T.T. Fung, V. Malik, K.M. Rexrode, J.E. Manson, W.C. Willett, F.B. Hu, Sweetened beverage consumption and risk of coronary heart disease in women. Am. J. Clin. Nutr. 89, 1037–1042 (2009)

    Article  PubMed  CAS  Google Scholar 

  31. M.F. Abdelmalek, A. Suzuki, C. Guy, A. Unalp-Arida, R. Colvin, R.J. Johnson et al., Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 51, 1961–1971 (2010)

    Article  PubMed  CAS  Google Scholar 

  32. B.S. McEwen, J.C. Wingfield, The concept of allostasis in biology and biomedicine. Horm. Behav. 43, 2–15 (2003)

    Article  PubMed  Google Scholar 

  33. E.A. Sims, Are there persons who are obese, but metabolically healthy? Metabolism 50, 1499–1504 (2001)

    Article  PubMed  CAS  Google Scholar 

  34. S. Virtue, A. Vidal-Puig, Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome–an allostatic perspective. Biochim. Biophys. Acta 1801, 338–349 (2010)

    PubMed  CAS  Google Scholar 

  35. C.D. Byrne, Fatty liver: role of inflammation and fatty acid nutrition. Prostaglandins Leukot. Essent. Fatty Acids 82, 265–271 (2010)

    Article  PubMed  CAS  Google Scholar 

  36. D. Mozaffarian, M.B. Katan, A. Ascherio, M.J. Stampfer, W.C. Willett, Trans fatty acids and cardiovascular disease. N. Engl. J. Med. 354, 1601–1613 (2006)

    Article  PubMed  CAS  Google Scholar 

  37. A.K. Thompson, A.M. Minihane, C.M. Williams, Trans fatty acids and weight gain. Int. J. Obes. (Lond) 35, 315–324 (2011)

    Article  CAS  Google Scholar 

  38. A. Bidulescu, L.E. Chambless, A.M. Siega-Riz, S.H. Zeisel, G. Heiss, Repeatability and measurement error in the assessment of choline and betaine dietary intake: the Atherosclerosis Risk in Communities (ARIC) study. Nutr. J. 8, 14 (2009)

    Article  PubMed  Google Scholar 

  39. S.H. Zeisel, K.A. da Costa, Choline: an essential nutrient for public health. Nutr. Rev. 67, 615–623 (2009)

    Article  PubMed  Google Scholar 

  40. Z. Li, D.E. Vance, Phosphatidylcholine and choline homeostasis. J. Lipid Res. 49, 1187–1194 (2008)

    Article  PubMed  CAS  Google Scholar 

  41. C.J. Walkey, L. Yu, L.B. Agellon, D.E. Vance, Biochemical and evolutionary significance of phospholipid methylation. J. Biol. Chem. 273, 27043–27046 (1998)

    Article  PubMed  CAS  Google Scholar 

  42. R.L. Jacobs, Y. Zhao, D.P. Koonen, T. Sletten, B. Su, S. Lingrell et al., Impaired de novo choline synthesis explains why phosphatidylethanolamine N-methyltransferase-deficient mice are protected from diet-induced obesity. J. Biol. Chem. 285, 22403–22413 (2010)

    Article  PubMed  CAS  Google Scholar 

  43. A.A. Noga, L.M. Stead, Y. Zhao, M.E. Brosnan, J.T. Brosnan, D.E. Vance, Plasma homocysteine is regulated by phospholipid methylation. J. Biol. Chem. 278, 5952–5955 (2003)

    Article  PubMed  CAS  Google Scholar 

  44. L.K. Cole, V.W. Dolinsky, J.R. Dyck, D.E. Vance, Impaired phosphatidylcholine biosynthesis reduces atherosclerosis and prevents lipotoxic cardiac dysfunction in ApoE-/- mice. Circ. Res. 108, 686–694 (2011)

    Article  PubMed  CAS  Google Scholar 

  45. Y. Zhao, B. Su, R.L. Jacobs, B. Kennedy, G.A. Francis, E. Waddington et al., Lack of phosphatidylethanolamine N-methyltransferase alters plasma VLDL phospholipids and attenuates atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 29, 1349–1355 (2009)

    Article  PubMed  CAS  Google Scholar 

  46. M.D. Spencer, T.J. Hamp, R.W. Reid, L.M. Fischer, S.H. Zeisel, A.A. Fodor, Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology 140, 976–986 (2011)

    Article  PubMed  CAS  Google Scholar 

  47. M.E. Dumas, R.H. Barton, A. Toye, O. Cloarec, C. Blancher, A. Rothwell et al., Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl. Acad. Sci. USA 103, 12511–12516 (2006)

    Article  PubMed  CAS  Google Scholar 

  48. Z. Wang, E. Klipfell, B.J. Bennett, R. Koeth, B.S. Levison, B. Dugar et al., Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011)

    Article  PubMed  CAS  Google Scholar 

  49. P. Angulo, Nonalcoholic fatty liver disease. N. Engl. J. Med. 346, 1221–1231 (2002)

    Article  PubMed  CAS  Google Scholar 

  50. S. Sookoian, C.J. Pirola, Non-alcoholic fatty liver disease is strongly associated with carotid atherosclerosis: a systematic review. J. Hepatol. 49, 600–607 (2008)

    Article  PubMed  Google Scholar 

  51. C. Soderberg, P. Stal, J. Askling, H. Glaumann, G. Lindberg, J. Marmur et al., Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatology 51, 595–602 (2010)

    Article  PubMed  Google Scholar 

  52. A. Fraser, R. Harris, N. Sattar, S. Ebrahim, G.D. Smith, D.A. Lawlor, Gamma-glutamyltransferase is associated with incident vascular events independently of alcohol intake: analysis of the British Women’s Heart and Health Study and Meta-Analysis. Arterioscler. Thromb. Vasc. Biol. 27, 2729–2735 (2007)

    Article  PubMed  CAS  Google Scholar 

  53. P.M. Ridker, N. Rifai, M. Pfeffer, F. Sacks, S. Lepage, E. Braunwald, Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation 101, 2149–2153 (2000)

    PubMed  CAS  Google Scholar 

  54. P.M. Ridker, N. Rifai, M.J. Stampfer, C.H. Hennekens, Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101, 1767–1772 (2000)

    PubMed  CAS  Google Scholar 

  55. N. Stefan, K. Kantartzis, H.U. Haring, Causes and metabolic consequences of fatty liver. Endocr. Rev. 29, 939–960 (2008)

    Article  PubMed  CAS  Google Scholar 

  56. G. Targher, M. Chonchol, L. Miele, G. Zoppini, I. Pichiri, M. Muggeo, Nonalcoholic fatty liver disease as a contributor to hypercoagulation and thrombophilia in the metabolic syndrome. Semin. Thromb. Hemost. 35, 277–287 (2009)

    Article  PubMed  CAS  Google Scholar 

  57. G. Targher, C.P. Day, E. Bonora, Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N. Engl. J. Med. 363, 1341–1350 (2010)

    Article  PubMed  CAS  Google Scholar 

  58. G. Targher, L. Bertolini, R. Padovani, S. Rodella, G. Zoppini, L. Zenari et al., Relations between carotid artery wall thickness and liver histology in subjects with nonalcoholic fatty liver disease. Diabetes Care 29, 1325–1330 (2006)

    Article  PubMed  Google Scholar 

  59. T. Ueno, H. Sugawara, K. Sujaku, O. Hashimoto, R. Tsuji, S. Tamaki et al., Therapeutic effects of restricted diet and exercise in obese patients with fatty liver. J. Hepatol. 27, 103–107 (1997)

    Article  PubMed  CAS  Google Scholar 

  60. B.C. Sreenivasa, G. Alexander, B. Kalyani, R. Pandey, S. Rastogi, A. Pandey et al., Effect of exercise and dietary modification on serum aminotransferase levels in patients with nonalcoholic steatohepatitis. J. Gastroenterol. Hepatol. 21, 191–198 (2006)

    Article  Google Scholar 

  61. N. Chainani-Wu, G. Weidner, D.M. Purnell, S. Frenda, T. Merritt-Worden, C. Pischke et al., Changes in emerging cardiac biomarkers after an intensive lifestyle intervention. Am. J. Cardiol. 108(4), 498–507 (2011)

    Article  PubMed  Google Scholar 

  62. D.A. Lawlor, N. Sattar, G.D. Smith, S. Ebrahim, The associations of physical activity and adiposity with alanine aminotransferase and gamma-glutamyltransferase. Am. J. Epidemiol. 161, 1081–1088 (2005)

    Article  PubMed  Google Scholar 

  63. G.A. St, A. Bauman, A. Johnston, G. Farrell, T. Chey, J. George, Effect of a lifestyle intervention in patients with abnormal liver enzymes and metabolic risk factors. J. Gastroenterol. Hepatol. 24, 399–407 (2009)

    Article  Google Scholar 

  64. S. Bellentani, G.R. Dalle, A. Suppini, G. Marchesini, Behavior therapy for nonalcoholic fatty liver disease: the need for a multidisciplinary approach. Hepatology 47, 746–754 (2008)

    Article  PubMed  Google Scholar 

  65. A. Iacono, G.M. Raso, R.B. Canani, A. Calignano, R. Meli, Probiotics as an emerging therapeutic strategy to treat NAFLD: focus on molecular and biochemical mechanisms. J. Nutr. Biochem. 22(8), 699–711 (2011)

    Article  PubMed  CAS  Google Scholar 

  66. H.A. Marsman, M. Heger, J.J. Kloek, S.L. Nienhuis, J.R. van Werven, A.J. Nederveen et al., Reversal of hepatic steatosis by omega-3 fatty acids measured non-invasively by (1) H-magnetic resonance spectroscopy in a rat model. J. Gastroenterol. Hepatol. 26, 356–363 (2011)

    Article  PubMed  CAS  Google Scholar 

  67. G.S. Masterton, J.N. Plevris, P.C. Hayes, Review article: omega-3 fatty acids: a promising novel therapy for non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 31, 679–692 (2010)

    Article  PubMed  CAS  Google Scholar 

  68. P. Saravanan, N.C. Davidson, E.B. Schmidt, P.C. Calder, Cardiovascular effects of marine omega-3 fatty acids. Lancet 376, 540–550 (2010)

    Article  PubMed  CAS  Google Scholar 

  69. A. Pandor, R.M. Ara, I. Tumur, A.J. Wilkinson, S. Paisley, A. Duenas et al., Ezetimibe monotherapy for cholesterol lowering in 2, 722 people: systematic review and meta-analysis of randomized controlled trials. J. Intern. Med. 265, 568–580 (2009)

    Article  PubMed  CAS  Google Scholar 

  70. I.F. Gazi, D.P. Mikhailidis, Non-low-density lipoprotein cholesterol-associated actions of ezetimibe: an overview. Expert. Opin. Ther. Targets. 10, 851–866 (2006)

    Article  PubMed  CAS  Google Scholar 

  71. S. Hiramitsu, Y. Ishiguro, H. Matsuyama, K. Yamada, K. Kato, M. Noba et al., The effects of ezetimibe on surrogate markers of cholesterol absorption and synthesis in Japanese patients with dyslipidemia. J. Atheroscler. Thromb. 17, 106–114 (2010)

    Article  PubMed  CAS  Google Scholar 

  72. S. Zheng, L. Hoos, J. Cook, G. Tetzloff, H. Davis Jr., H.M. van et al., Ezetimibe improves high fat and cholesterol diet-induced non-alcoholic fatty liver disease in mice. Eur. J. Pharmacol. 584, 118–124 (2008)

    Article  PubMed  CAS  Google Scholar 

  73. M.H. Ahmed, C.D. Byrne, Ezetimibe as a potential treatment for non-alcoholic fatty liver disease: is the intestine a modulator of hepatic insulin sensitivity and hepatic fat accumulation? Drug Discov. Today 15, 590–595 (2010)

    Article  PubMed  CAS  Google Scholar 

  74. M. Yoshida, Novel role of NPC1L1 in the regulation of hepatic metabolism: potential contribution of ezetimibe in NAFLD/NASH treatment. Curr. Vasc. Pharmacol. 9, 121–123 (2011)

    Article  PubMed  CAS  Google Scholar 

  75. H. Park, G. Hasegawa, T. Shima, M. Fukui, N. Nakamura, K. Yamaguchi et al., The fatty acid composition of plasma cholesteryl esters and estimated desaturase activities in patients with nonalcoholic fatty liver disease and the effect of long-term ezetimibe therapy on these levels. Clin. Chim. Acta 411, 1735–1740 (2010)

    Article  PubMed  CAS  Google Scholar 

  76. H. Park, T. Shima, K. Yamaguchi, H. Mitsuyoshi, M. Minami, K. Yasui et al., Efficacy of long-term ezetimibe therapy in patients with nonalcoholic fatty liver disease. J. Gastroenterol. 46, 101–107 (2011)

    Article  PubMed  CAS  Google Scholar 

  77. Nomura, M., Ishii, H., Kawakami, A., Yoshida, M.: Inhibition of hepatic Neiman-Pick C1-like 1 improves hepatic insulin resistance. Am. J. Physiol. Endocrinol. Metab. (2009)

  78. M.J. Chapman, Fibrates in 2003: therapeutic action in atherogenic dyslipidaemia and future perspectives. Atherosclerosis 171, 1–13 (2003)

    Article  PubMed  CAS  Google Scholar 

  79. R. Scott, R. O’Brien, G. Fulcher, C. Pardy, M. D’Emden, D. Tse et al., Effects of fenofibrate treatment on cardiovascular disease risk in 9,795 individuals with type 2 diabetes and various components of the metabolic syndrome: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetes Care 32, 493–498 (2009)

    Article  PubMed  CAS  Google Scholar 

  80. V.G. Athyros, K. Tziomalos, T.D. Gossios, T. Griva, P. Anagnostis, K. Kargiotis et al., Safety and efficacy of long-term statin treatment for cardiovascular events in patients with coronary heart disease and abnormal liver tests in the Greek Atorvastatin and Coronary Heart Disease Evaluation (GREACE) Study: a post-hoc analysis. Lancet 376, 1916–1922 (2010)

    Article  PubMed  CAS  Google Scholar 

  81. Y. Kimura, H. Hyogo, S. Yamagishi, M. Takeuchi, T. Ishitobi, Y. Nabeshima et al., Atorvastatin decreases serum levels of advanced glycation endproducts (AGEs) in nonalcoholic steatohepatitis (NASH) patients with dyslipidemia: clinical usefulness of AGEs as a biomarker for the attenuation of NASH. J. Gastroenterol. 45, 750–757 (2010)

    Article  PubMed  CAS  Google Scholar 

  82. D.D. Waters, J.E. Ho, D.A. Demicco, A. Breazna, B.J. Arsenault, C.C. Wun et al., Predictors of new-onset diabetes in patients treated with atorvastatin results from 3 large randomized clinical trials. J. Am. Coll. Cardiol. 57, 1535–1545 (2011)

    Article  PubMed  CAS  Google Scholar 

  83. M. Stumvoll, N. Nurjhan, G. Perriello, G. Dailey, J.E. Gerich, Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N. Engl. J. Med. 333, 550–554 (1995)

    Article  PubMed  CAS  Google Scholar 

  84. Y. Nozaki, K. Fujita, M. Yoneda, K. Wada, Y. Shinohara, H. Takahashi et al., Long-term combination therapy of ezetimibe and acarbose for non-alcoholic fatty liver disease. J. Hepatol. 51, 548–556 (2009)

    Article  PubMed  CAS  Google Scholar 

  85. H. Yki-Jarvinen, Thiazolidinediones and the liver in humans. Curr. Opin. Lipidol. 20, 477–483 (2009)

    Article  PubMed  Google Scholar 

  86. R. Belfort, S.A. Harrison, K. Brown, C. Darland, J. Finch, J. Hardies et al., A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med. 355, 2297–2307 (2006)

    Article  PubMed  CAS  Google Scholar 

  87. L.M. Younk, L. Uhl, S.N. Davis, Pharmacokinetics, efficacy and safety of aleglitazar for the treatment of type 2 diabetes with high cardiovascular risk. Expert Opin. Drug Metab. Toxicol. 7(6), 753–763 (2011)

    Article  PubMed  CAS  Google Scholar 

  88. E.F. Georgescu, Angiotensin receptor blockers in the treatment of NASH/NAFLD: could they be a first-class option? Adv. Ther. 25, 1141–1174 (2008)

    Article  PubMed  CAS  Google Scholar 

  89. A. St George, A. Bauman, A. Johnston, G. Farrell, T. Chey, J. George, Effect of a lifestyle intervention in patients with abnormal liver enzymes and metabolic risk factors. J. Gastroenterol. Hepatol. 24, 399–407 (2009)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

E. Scorlett, P.C. Calder and C.D. Byrne are supported in part by the Southampton National Institute for Health Research Biomedical Research Unit in Nutrition, Lifestyle and Obesity.

Disclosures

The authors are undertaking the WELCOME study (Wessex Evaluation of fatty Liver and Cardiovascular markers in NAFLD [non-alcoholic fatty liver disease] with OMacor thErapy) in people with NAFLD. The WELCOME study is a phase IV trial that is testing the effects of high dose purified n-3 long chain fatty acids (Omacor–Solvay/Abbott/Pronova 4 grames o.d.) on a range of liver and cardio-metabolic outcomes. The trial will be completed in 2012 (www.clinicaltrials.gov registration number NCT00760513).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Byrne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scorletti, E., Calder, P.C. & Byrne, C.D. Non-alcoholic fatty liver disease and cardiovascular risk: metabolic aspects and novel treatments. Endocrine 40, 332–343 (2011). https://doi.org/10.1007/s12020-011-9530-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-011-9530-x

Keywords

Navigation