Skip to main content

Advertisement

Log in

Analysis of differential gene expression by fiber-optic BeadArray and pathway in prolactinomas

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Prolactinomas are the most common secretory pituitary tumors; however, their pathogenesis is unclear. In order to explore the pathogenesis of prolactinomas, we used fiber-optic BeadArray to examine gene expression profiles in five prolactinomas compared with three normal pituitaries. Three down-regulated genes and one up-regulated gene were chosen for validation by quantitative real-time reverse-transcription polymerase chain reaction. We then performed pathway analysis on the identified differentially expressed genes using the Kyoto Encyclopedia of Genes and Genomes. Array analysis showed significant increases in the expression of 27 genes and 3 expressed sequence tags (ESTs), and decreases in 182 genes and 9 ESTs, including HIG1 domain family, member 1B, S100 calcium binding protein A9, angiopoietin 2, interleukin 8, hydroxyprostaglandin dehydrogenase 15-(NAD), suppression of tumorigenicity18, and WNT inhibitory factor 1. Pathway analysis showed that the P53 and GnRH signaling pathways may play an important role in tumorigenesis of prolactinomas. Our data suggest fiber-optic BeadArray combined with pathway analysis of differential gene expression profile appears to be a valid approach for investigating the pathogenesis of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. R. Krysiak, B. Okopien, B. Marek, W. Szkrobka, Prolactinoma. Przegl. Lek. 66(4), 198–205 (2009)

    PubMed  Google Scholar 

  2. S.L. Asa, S. Ezzat, The pathogenesis of pituitary tumours. Nat. Rev. Cancer 2(11), 836–849 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. S.L. Asa, S. Ezzat, The cytogenesis and pathogenesis of pituitary adenomas. Endocr. Rev. 19(6), 798–827 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. V. Herman, J. Fagin, R. Gonsky, K. Kovacs, S. Melmed, Clonal origin of pituitary adenomas. J. Clin. Endocrinol. Metab. 71(6), 1427–1433 (1990)

    Article  CAS  PubMed  Google Scholar 

  5. J.M. Alexander, B.M. Biller, H. Bikkal, N.T. Zervas, A. Arnold, A. Klibanski, Clinically nonfunctioning pituitary tumors are monoclonal in origin. J. Clin. Invest. 86(1), 336–340 (1990)

    Article  CAS  PubMed  Google Scholar 

  6. A. Spada, G. Mantovani, A. Lania, Pathogenesis of prolactinomas. Pituitary 8(1), 7–15 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. S. Mao, G. Dong, Discovery of highly differentiative gene groups from microarray gene expression data using the gene club approach. J. Bioinform. Comput. Biol. 3(6), 1263–1280 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. C.O. Evans, A.N. Young, M.R. Brown, D.J. Brat, J.S. Parks, A.S. Neish, N.M. Oyesiku, Novel patterns of gene expression in pituitary adenomas identified by complementary deoxyribonucleic acid microarrays and quantitative reverse transcription-polymerase chain reaction. J. Clin. Endocrinol. Metab. 86(7), 3097–3107 (2001)

    Article  CAS  PubMed  Google Scholar 

  9. D.G. Morris, M. Musat, S. Czirjak, Z. Hanzely, D.M. Lillington, M. Korbonits, A.B. Grossman, Differential gene expression in pituitary adenomas by oligonucleotide array analysis. Eur. J. Endocrinol. 153(1), 143–151 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. C.O. Evans, C.S. Moreno, X. Zhan, M.T. McCabe, P.M. Vertino, D.M. Desiderio, N.M. Oyesiku, Molecular pathogenesis of human prolactinomas identified by gene expression profiling, RT-qPCR, and proteomic analyses. Pituitary 11(3), 231–245 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4), 402–408 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. N. Denko, C. Schindler, A. Koong, K. Laderoute, C. Green, A. Giaccia, Epigenetic regulation of gene expression in cervical cancer cells by the tumor microenvironment. Clin. Cancer Res. 6(2), 480–487 (2000)

    CAS  PubMed  Google Scholar 

  13. F. Shibata, K. Miyama, F. Shinoda, J. Mizumoto, K. Takano, H. Nakagawa, Fibroblast growth-stimulating activity of S100A9 (MRP-14). Eur. J. Biochem. 271(11), 2137–2143 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. I. Marenholz, C.W. Heizmann, G. Fritz, S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem. Biophys. Res. Commun. 322(4), 1111–1122 (2004)

    Article  CAS  PubMed  Google Scholar 

  15. K. Arai, T. Yamada, R. Nozawa, Immunohistochemical investigation of migration inhibitory factor-related protein (MRP)-14 expression in hepatocellular carcinoma. Med. Oncol. 17(3), 183–188 (2000)

    Article  CAS  PubMed  Google Scholar 

  16. K. Arai, T. Teratani, R. Nozawa, T. Yamada, Immunohistochemical investigation of S100A9 expression in pulmonary adenocarcinoma: S100A9 expression is associated with tumor differentiation. Oncol. Rep. 8(3), 591–596 (2001)

    CAS  PubMed  Google Scholar 

  17. K. Arai, T. Teratani, R. Kuruto-Niwa, T. Yamada, R. Nozawa, S100A9 expression in invasive ductal carcinoma of the breast: S100A9 expression in adenocarcinoma is closely associated with poor tumour differentiation. Eur. J. Cancer 40(8), 1179–1187 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. A. Hermani, J. Hess, B. de Servi, S. Medunjanin, R. Grobholz, L. Trojan, P. Angel, D. Mayer, Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Clin. Cancer Res. 11(14), 5146–5152 (2005)

    Article  CAS  PubMed  Google Scholar 

  19. K. Arai, S. Takano, T. Teratani, Y. Ito, T. Yamada, R. Nozawa, S100A8 and S100A9 overexpression is associated with poor pathological parameters in invasive ductal carcinoma of the breast. Curr. Cancer Drug Targets 8(4), 243–252 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. G. Zadeh, A. Guha, Neoangiogenesis in human astrocytomas: expression and functional role of angiopoietins and their cognate receptors. Front. Biosci. 8, e128–e137 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. H.L. Wang, C.S. Deng, J. Lin, D.Y. Pan, Z.Y. Zou, X.Y. Zhou, Expression of angiopoietin-2 is correlated with vascularization and tumor size in human colorectal adenocarcinoma. Tohoku J. Exp. Med. 213(1), 33–40 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. S. Nag, N. Nourhaghighi, R. Venugopalan, S.L. Asa, D.J. Stewart, Angiopoietins are expressed in the normal rat pituitary gland. Endocr. Pathol. 16(1), 67–73 (2005)

    Article  CAS  PubMed  Google Scholar 

  23. B. Hu, P. Guo, Q. Fang, H.Q. Tao, D. Wang, M. Nagane, H.J. Huang, Y. Gunji, R. Nishikawa, K. Alitalo et al., Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloprotease-2. Proc. Natl. Acad. Sci. USA 100(15), 8904–8909 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. A.S. Haqqani, J.K. Sandhu, H.C. Birnboim, Expression of interleukin-8 promotes neutrophil infiltration and genetic instability in mutatect tumors. Neoplasia 2(6), 561–568 (2000)

    Article  CAS  PubMed  Google Scholar 

  25. D.S. Bischoff, J.H. Zhu, N.S. Makhijani, A. Kumar, D.T. Yamaguchi, Angiogenic CXC chemokine expression during differentiation of human mesenchymal stem cells towards the osteoblastic lineage. J. Cell. Biochem. 103(3), 812–824 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. K. Xie, Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev. 12(4), 375–391 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. V.L. Green, S.L. Atkin, V. Speirs, R.V. Jeffreys, A.M. Landolt, B. Mathew, L. Hipkin, M.C. White, Cytokine expression in human anterior pituitary adenomas. Clin. Endocrinol. (Oxf.) 45(2), 179–185 (1996)

    Article  CAS  Google Scholar 

  28. M.E. Suliman, J.A. Royds, L. Baxter, W.R. Timperley, D.R. Cullen, T.H. Jones, IL-8 mRNA expression by in situ hybridisation in human pituitary adenomas. Eur. J. Endocrinol. 140(2), 155–158 (1999)

    Article  CAS  PubMed  Google Scholar 

  29. T.J. Jang, Y.S. Ji, K.H. Jung, Decreased expression of 15-hydroxyprostaglandin dehydrogenase in gastric carcinomas. Yonsei Med. J. 49(6), 917–922 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. K.G. Coggins, A. Latour, M.S. Nguyen, L. Audoly, T.M. Coffman, B.H. Koller, Metabolism of PGE2 by prostaglandin dehydrogenase is essential for remodeling the ductus arteriosus. Nat. Med. 8(2), 91–92 (2002)

    Article  CAS  PubMed  Google Scholar 

  31. I. Wolf, J. O’Kelly, T. Rubinek, M. Tong, A. Nguyen, B.T. Lin, H.H. Tai, B.Y. Karlan, H.P. Koeffler, 15-Hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Res. 66(15), 7818–7823 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. K.S. Yee, V.C. Yu, Isolation and characterization of a novel member of the neural zinc finger factor/myelin transcription factor family with transcriptional repression activity. J. Biol. Chem. 273(9), 5366–5374 (1998)

    Article  CAS  PubMed  Google Scholar 

  33. Y. Jiang, V.C. Yu, F. Buchholz, S. O’Connell, S.J. Rhodes, C. Candeloro, Y.R. Xia, A.J. Lusis, M.G. Rosenfeld, A novel family of Cys-Cys, His-Cys zinc finger transcription factors expressed in developing nervous system and pituitary gland. J. Biol. Chem. 271(18), 10723–10730 (1996)

    Article  CAS  PubMed  Google Scholar 

  34. J. Yang, M.F. Siqueira, Y. Behl, M. Alikhani, D.T. Graves, The transcription factor ST18 regulates proapoptotic and proinflammatory gene expression in fibroblasts. FASEB J. 22(11), 3956–3967 (2008)

    Article  CAS  PubMed  Google Scholar 

  35. B. Jandrig, S. Seitz, B. Hinzmann, W. Arnold, B. Micheel, K. Koelble, R. Siebert, A. Schwartz, K. Ruecker, P.M. Schlag et al., ST18 is a breast cancer tumor suppressor gene at human chromosome 8q11.2. Oncogene 23(57), 9295–9302 (2004)

    CAS  PubMed  Google Scholar 

  36. M.S. Elston, A.J. Gill, J.V. Conaglen, A. Clarkson, J.M. Shaw, A.J. Law, R.J. Cook, N.S. Little, R.J. Clifton-Bligh, B.G. Robinson et al., Wnt pathway inhibitors are strongly down-regulated in pituitary tumors. Endocrinology 149(3), 1235–1242 (2008)

    Article  CAS  PubMed  Google Scholar 

  37. A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette, A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102(43), 15545–15550 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. B. Vogelstein, D. Lane, A.J. Levine, Surfing the p53 network. Nature 408(6810), 307–310 (2000)

    Article  CAS  PubMed  Google Scholar 

  39. S. Jin, A.J. Levine, The p53 functional circuit. J. Cell Sci. 114(Pt 23), 4139–4140 (2001)

    CAS  PubMed  Google Scholar 

  40. M. Gasco, S. Shami, T. Crook, The p53 pathway in breast cancer. Breast Cancer Res. 4(2), 70–76 (2002)

    Article  CAS  PubMed  Google Scholar 

  41. J. Ying, G. Srivastava, W.S. Hsieh, Z. Gao, P. Murray, S.K. Liao, R. Ambinder, Q. Tao, The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin. Cancer Res. 11(18), 6442–6449 (2005)

    Article  CAS  PubMed  Google Scholar 

  42. R. Ohki, J. Nemoto, H. Murasawa, E. Oda, J. Inazawa, N. Tanaka, T. Taniguchi, Reprimo, a new candidate mediator of the p53-mediated cell cycle arrest at the G2 phase. J. Biol. Chem. 275(30), 22627–22630 (2000)

    Article  CAS  PubMed  Google Scholar 

  43. S. Kapoor, Altered expression of the PMAIP1 gene: a major player in the evolution of gastrointestinal and systemic malignancies. Dig. Dis. Sci. 53(10), 2834–2835 (2008)

    Article  PubMed  Google Scholar 

  44. F. Ruf, M.Y. Fink, S.C. Sealfon, Structure of the GnRH receptor-stimulated signaling network: insights from genomics. Front. Neuroendocrinol. 24(3), 181–199 (2003)

    Article  CAS  PubMed  Google Scholar 

  45. G.Y. Bedecarrats, U.B. Kaiser, Mutations in the human gonadotropin-releasing hormone receptor: insights into receptor biology and function. Semin. Reprod. Med. 25(5), 368–378 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. P.C. Million, C.R. White, M.W. King, P.L. Quirk, J.L. Iovanna, C.C. Quirk, Loss of the protein NUPR1 (p8) leads to delayed LHB expression, delayed ovarian maturation, and testicular development of a sertoli-cell-only syndrome-like phenotype in mice. Biol. Reprod. 79(4), 598–607 (2008)

    Article  Google Scholar 

  47. K.H. Burns, M.M. Matzuk, Minireview: genetic models for the study of gonadotropin actions. Endocrinology 143(8), 2823–2835 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazhuo Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Z., Gui, S. & Zhang, Y. Analysis of differential gene expression by fiber-optic BeadArray and pathway in prolactinomas. Endocr 38, 360–368 (2010). https://doi.org/10.1007/s12020-010-9389-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-010-9389-2

Keywords

Navigation