Skip to main content

Advertisement

Log in

Molecular pathogenesis of human prolactinomas identified by gene expression profiling, RT-qPCR, and proteomic analyses

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

The molecular pathogenesis of prolactinomas has resisted elucidation; with the exception of a RAS mutation in a single aggressive prolactinoma, no mutational changes have been identified. In prolactinomas, a further obstacle has been the paucity of surgical specimens suitable for molecular analysis since prolactionomas are infrequently removed due to the availability and effectiveness of medical therapy. In the absence of mutational events, gene expression changes have been sought and detected. Using high-throughput analysis from a large bank of human pituitary adenomas, we examined these tumors according to their molecular profiles rather than traditional immunohistochemistry. We examined six prolactinomas and eight normal pituitary glands using oligonucleotide GeneChip microarrays, reverse transcription-real time quantitative polymerase chain reaction using 10 prolactinomas, and proteomic analysis to examine protein expression in four prolactinomas. Microarray analyses identified 726 unique genes that were statistically significantly different between prolactinomas and normal glands, whereas proteomic analysis identified four differently up-regulated and 19 down-regulated proteins. Several components of the Notch pathway were altered in prolactinomas, and there was an increased expression of the Pit-1 transcription factor, and the survival factor BAG1 but decreased E-cadherin and N-cadherin expression. Taken together, expression profiling and proteomic analyses have identified molecular features unique to prolactinomas that may contribute to their pathogenesis. In the current era of molecular medicine, these findings greatly enhance our understanding and supercede immunohistochemical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 

Similar content being viewed by others

References

  1. Davis JR (2004) Prolactin and reproductive medicine. Curr Opin Obstet Gynecol 16(4):331–337

    Article  PubMed  Google Scholar 

  2. Forsyth IA, Wallis M (2002) Growth hormone and prolactin-molecular and function evolution. J Mammary Gland Biol Neoplasia 7:291–312

    Article  PubMed  Google Scholar 

  3. Ben-Jonathan N et al (1996) Extrapituitary prolactin: distribution, regulation and clinical aspects. Endocr Rev 17(6):639–669

    Article  PubMed  CAS  Google Scholar 

  4. Berwaer M, Martial JA, Davis JR (1994) Characterization of an up-stream promoter directing extrapituitary expression of the human prolactin gene. Mol Endocrinol 8(5):635–642

    Article  PubMed  CAS  Google Scholar 

  5. Gellersen B et al (1994) Nonpituitary human prolactin gene transcription is independent of Pit-1 and differentially controlled in lymphocytes and in endometrial stroma. Mol Endocrinol 8(3):356–373

    Article  PubMed  CAS  Google Scholar 

  6. Anderson B, Rosenfeld MG (2001) POU domain factors in the neuroendocrine system: lesson from developmental biology provide insights into human disease. Endocr Rev 22:2–35

    Article  Google Scholar 

  7. Verhelst J, Abs R (2003) Hyperprolactinemia: pathophysiology and management. Treat Endocrinol 2(1):23–32

    Article  PubMed  Google Scholar 

  8. Herman V et al (1990) Clonal origin of pituitary adenomas. J Clin Endocrinol Metab 71(6):1427–1433

    Article  PubMed  CAS  Google Scholar 

  9. Boikos SA, Stratakis CA (2007) Molecular genetics of the cAMP-dependent protein kinase pathway and of sporadic pituitary tumorigenesis. Hum Mol Genet 16 Spec No 1:R80–R87

    Google Scholar 

  10. Herman V et al (1993) Molecular screening of pituitary adenomas for gene mutations and rearrangements. J Clin Endocrinol Metab 77(1):50–55

    Article  PubMed  CAS  Google Scholar 

  11. Evans CO et al (2000) Screening for MEN1 tumor suppressor gene mutations in sporadic pituitary tumors. J Endocrinol Invest 23(5):304–309

    PubMed  CAS  Google Scholar 

  12. Asa SL, Somers K, Ezzat S (1998) The MEN-1 gene is rarely down-regulated in pituitary adenomas. J Clin Endocrinol Metab 83(9):3210–3212

    Article  PubMed  CAS  Google Scholar 

  13. Satta MA et al (1999) Expression of menin gene mRNA in pituitary tumours. Eur J Endocrinol 140(4):358–361

    Article  PubMed  CAS  Google Scholar 

  14. Farrell WE et al (1999) Sequence analysis and transcript expression of the MEN1 gene in sporadic pituitary tumours. Br J Cancer 80(1–2):44–50

    Article  PubMed  CAS  Google Scholar 

  15. Orr RB, Kreisler AR, Kamen BA (1995) Similarity of folate receptor expression in UMSCC 38 cells to squamous cell carcinoma differentiation markers. J Natl Cancer Inst 87(4):299–303

    Article  PubMed  CAS  Google Scholar 

  16. Evans CO et al (2001) Novel patterns of gene expression in pituitary adenomas identified by complementary deoxyribonucleic acid microarrays and quantitative reverse transcription-polymerase chain reaction. J Clin Endocrinol Metab 86(7):3097–3107

    Article  PubMed  CAS  Google Scholar 

  17. Evans CO et al (2003) Differential expression of folate receptor in pituitary adenomas. Cancer Res 63(41):4218–4224

    PubMed  CAS  Google Scholar 

  18. Moreno CS et al (2005) Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer Res 65(22):10214–10222

    Article  PubMed  CAS  Google Scholar 

  19. Yu R, Melmed S (2001) Oncogene activation in pituitary tumors. Brain Pathol 11:328–341

    Article  PubMed  CAS  Google Scholar 

  20. Genkai N et al (2006) Increased expression of pituitary tumor-transforming gene (PTTG)-1 is correlated with poor prognosis in glioma patients. Oncol Rep 15(6):1569–1574

    PubMed  CAS  Google Scholar 

  21. Stoika R, Melmed S (2002) Expression and function of pituitary tumour transforming gene for T-lymphocyte activation. Br J Haematol 119(4):1070–1074

    Article  PubMed  CAS  Google Scholar 

  22. Rehfeld N et al (2006) The influence of the pituitary tumor transforming gene-1 (PTTG-1) on survival of patients with small cell lung cancer and non-small cell lung cancer. J Carcinog 5:4

    Article  PubMed  CAS  Google Scholar 

  23. Tsai SJ et al (2005) Expression and functional analysis of pituitary tumor transforming gene-1 [corrected] in uterine leiomyomas. J Clin Endocrinol Metab 90(6):3715–3723

    Article  PubMed  CAS  Google Scholar 

  24. Asa SL, Ezzat S (1998) The cytogenesis and pathogenesis of pituitary adenomas. Endocr Rev 19(6):798–827

    Article  PubMed  CAS  Google Scholar 

  25. Shimon I, Melmed S (1997) Genetic basis of endocrine disease: pituitary tumor pathogenesis. J Clin Endocrinol Metab 82(6):1675–1681

    Article  PubMed  CAS  Google Scholar 

  26. Spada A, Faglia G (1996) G-protein dysfunction in pituitary tumors. In: Oncogenesis and molecular biology of pituitary tumors. M. S, Editor. Karger, Basel, pp 108–121

  27. Irizarry RA et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264

    Article  PubMed  Google Scholar 

  28. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98(9):5116–5121

    Article  PubMed  CAS  Google Scholar 

  29. Zhan X, Desiderio DM (2003) A reference map of a human pituitary adenoma proteome. Proteomics 3:699–713

    Article  PubMed  CAS  Google Scholar 

  30. Zhan X, Desiderio DM (2003) Spot volume vs. amount of protein loaded onto a gel: a detailed, statistical comparison of two gel electrophoresis systems. Electrophoresis 24:1818–1833

    Article  PubMed  CAS  Google Scholar 

  31. Zhan X, Desiderio DM (2003) Differences in the spatial and quantitative reproducibility between two second-dimensional gel electrophoresis systems. Electrophoresis 24:1834–1846

    Article  PubMed  CAS  Google Scholar 

  32. Zhan X, Desiderio DM (2003) Heterogeneity analysis of the human pituitary proteome. Clin Chem 49(10):1740–1751

    Article  PubMed  CAS  Google Scholar 

  33. Herman JG et al (1996) Methylation-specific PCR: a noval PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93(18):9821–9826

    Article  PubMed  CAS  Google Scholar 

  34. Conway KE et al (2000) TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in hunan breast cancers. Cancer Res 60(22):6236–6242

    PubMed  CAS  Google Scholar 

  35. Esteller M et al (1998) Inactivation of glutathione S-transferase P1 gene by promotor hypermethylation in human neoplasia. Cancer Res 58(20):4515–4518

    PubMed  CAS  Google Scholar 

  36. Karavitaki N et al (2006) Do the limits of serum prolactin in disconnection hyperprolactinaemia need re-definition? A study of 226 patients with histologically verified non-functioning pituitary macroadenoma. Clin Endocrinol (Oxf) 65(4):524–529

    Article  CAS  Google Scholar 

  37. Garcia de la Torre N, Turner HE, Wass JAH (2005) Angiogenesis in prolactinomas: regulation and relationship with tumor behaviour. Pituitary 8:17–23

    Article  PubMed  CAS  Google Scholar 

  38. Picard C et al (2007) Gs alpha overexpression and loss of Gs alpha imprinting in human somatotroph adenomas: association with tumor size and response to pharmacologic treatment. Int J Cancer 121(6):1245–1252

    Article  PubMed  CAS  Google Scholar 

  39. Ruebel KH et al (2006) Patterns of gene expression in pituitary carcinomas and adenomas analyzed by high-density oligonucleotide arrays, reverse-transcriptase-quantitative PCR, and protein expression. Endocrine 29:435–444

    Article  PubMed  CAS  Google Scholar 

  40. Chen G, Courey A (2000) Groucho/TLE family proteins and transcriptional repression. Gene 249:1–16, [Review]

    Article  PubMed  CAS  Google Scholar 

  41. Plank MJ, Sleeman BD, Jones PF (2004) The role of the angiopoietins in tumour angiogenesis. Growth Factors 22:1–11

    Article  PubMed  CAS  Google Scholar 

  42. Ishitani A et al (2003) Protein expression and peptide binding suggest unique and interacting functional roles for HLA-E, F, and G in maternal-placental immune recognition. J Immunol 171(3):1376–1384

    PubMed  CAS  Google Scholar 

  43. Barczyski M et al (2007) Posterior retroperitoneoscopic adrenalectomy: a comparison between the initial experience in the invention phase and introductory phase of the new surgical technique. World J Surg 31(1):65–71

    Article  Google Scholar 

  44. Gotz R et al (2005) Bag1 is essential for differentiation and survival of hematopoietic and neuronal cells. Nat Neurosci 8(9):1169–1178

    Article  PubMed  CAS  Google Scholar 

  45. Morris DG et al (2005) Differential gene expression in pituitary adenomas by oligonucleotide array analysis. Eur J Endocrinol 153:143–151

    Article  PubMed  CAS  Google Scholar 

  46. Schade R et al (2007) Dopamine agonists and the risk of cardiac-valve regurgitation. N Engl J Med 356:29–38

    Article  PubMed  CAS  Google Scholar 

  47. Sarkar DK, Kim KH, Minami S (1992) Transforming growth factor-β1 mRNA and protein expression in the pituitary gland and its action on PRL secretion and lactropic growth. Mol Endocirinol 6:1825–1833

    Article  CAS  Google Scholar 

  48. Minami S, Sarkar DK (1997) Transforming growth factor-B1 inhibits prolactin secretion and lactotropic cell proliferation in the pituitarty in the pituitary of estrogen-treated Fischer 344 rats. Neurochem Int 30:499–506

    Article  PubMed  CAS  Google Scholar 

  49. Mochizuki S, Okada Y (2007) ADAMs in cancer cell proliferation and progression. Cancer Sci 98:621–628

    Article  PubMed  CAS  Google Scholar 

  50. Ohtsuka T et al (2006) ADAM28 is overexpressed in human non-small cell lung carcinomas and correlates with cell proliferation and lymph node metastasis. Int J Cancer 118:263–273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial assistance to Nelson M. Oyesiku, M.D., Ph.D., FACS, from the Department of Neurosurgery, to Carlos S. Moreno, PhD., from the National Institutes of Health (K22-CA96560 and R01-CA106826), to Paula M. Vertino, PhD from the National Institutes of Health (2RO1-CA077337), Michael, T. McCabe, PhD from the Frederick Gardner Cottrell Fellowship Program and to Dominic M. Desiderio, PhD., from the National Institutes of Heath (NS 42843), (RR-10522), (RR-14593) and NSF (DBI 9604633). The authors thank the Department of Neuropathology, Emory University Hospital, for the histology and immunohistochemistry analyses. The laboratory of D.M. Desiderio contributed the proteomic data, and the laboratory of N.M. Oyesiku contributed the tumor samples, microarray and reverse transcriptase- real time quantitative PCR data to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson M. Oyesiku.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(JPG 316 kb)

(JPG 319 kb)

(JPG 333 kb)

(JPG 333 kb)

(JPG 333 kb)

(JPG 315 kb)

(JPG 314 kb)

(JPG 322 kb)

(JPG 329 kb)

(JPG 316 kb)

(JPG 332 kb)

(JPG 328 kb)

(JPG 331 kb)

(JPG 312 kb)

(JPG 331 kb)

(JPG 302 kb)

Fig. S2

Methylation Specific PCR Analysis of Normal Pituitary and Prolactinoma Samples. DNA isolated from eight normal pituitaries and nine prolactinomas was analyzed by methylation specific PCR for HLAG and GSTP1 CpG islands. Controls included a sample from a primary normal lung fibroblast (Unmeth) and genomic DNA that was in vitro methylated with the M.SssI DNA methyltransferase (Meth). U, unmethylated primer set. M, methylated primer set (ppt 109 kb)

(JPG 309 kb)

(JPG 327 kb)

(JPG 335 kb)

(JPG 333 kb)

(JPG 315 kb)

(JPG 324 kb)

(JPG 338 kb)

(JPG 324 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, CO., Moreno, C.S., Zhan, X. et al. Molecular pathogenesis of human prolactinomas identified by gene expression profiling, RT-qPCR, and proteomic analyses. Pituitary 11, 231–245 (2008). https://doi.org/10.1007/s11102-007-0082-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-007-0082-2

Keywords

Navigation