Skip to main content
Log in

Identification of TGFβ-induced proteins in non-endocrine mouse pituitary cell line TtT/GF by SILAC-assisted quantitative mass spectrometry

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

TtT/GF is a mouse cell line derived from a thyrotropic pituitary tumor and has been used as a model of folliculostellate cells. Our previous microarray data indicate that TtT/GF possesses some properties of endothelial cells, pericytes and stem/progenitor cells, along with folliculostellate cells, suggesting its plasticity. We also found that transforming growth factor beta (TGFβ) alters cell motility, increases pericyte marker transcripts and attenuates endothelial cell and stem/progenitor cell markers in TtT/GF cells. The present study explores the wide-range effect of TGFβ on TtT/GF cells at the protein level and characterizes TGFβ-induced proteins and their partnerships using stable isotope labeling of amino acids in cell culture (SILAC)-assisted quantitative mass spectrometry. Comparison between quantified proteins from TGFβ-treated cells and those from SB431542 (a selective TGFβ receptor I inhibitor)-treated cells revealed 51 upregulated and 112 downregulated proteins (|log2| > 0.6). Gene ontology and STRING analyses revealed that these are related to the actin cytoskeleton, cell adhesion, extracellular matrix and DNA replication. Consistently, TGFβ-treated cells showed a distinct actin filament pattern and reduced proliferation compared to vehicle-treated cells; SB431542 blocked the effect of TGFβ. Upregulation of many pericyte markers (CSPG4, NES, ACTA, TAGLN, COL1A1, THBS1, TIMP3 and FLNA) supports our previous hypothesis that TGFβ reinforces pericyte properties. We also found downregulation of CTSB, EZR and LGALS3, which are induced in several pituitary adenomas. These data provide valuable information about pericyte differentiation as well as the pathological processes in pituitary adenomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andoniadou CL, Matsushima D, Mousavy Gharavy SN, Signore M, Mackintosh AI, Schaeffer M, Gaston-Massuet C, Mollard P, Jacques TS, Le Tissier P, Dattani MT, Pevny LH, Martinez-Barbera JP (2013) Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 13:433–445

    Article  CAS  PubMed  Google Scholar 

  • Azuma M, Tofrizal A, Maliza R, Batchuluun K, Ramadhani D, Syaidah R, Tsukada T, Fujiwara K, Kikuchi M, Horiguchi K, Yashiro T (2015) Maintenance of the extracellular matrix in rat anterior pituitary gland: identification of cells expressing tissue inhibitors of metalloproteinases. Acta Histochem Cytochem 48:185–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger SJ, Lee S-W, Anderson GA, Pasa-Tolić L, Tolić N, Shen Y, Zhao R, Smith RD (2002) High-throughput global peptide proteomic analysis by combining stable isotope amino acid labeling and data-dependent multiplexed-MS/MS. Anal Chem 74:4994–5000

    Article  CAS  PubMed  Google Scholar 

  • Beyer TA, Narimatsu M, Weiss A, David L, Wrana JL (2013) The TGFβ superfamily in stem cell biology and early mammalian embryonic development. Biochim Biophys Acta 1830:2268–2279

    Article  CAS  PubMed  Google Scholar 

  • Chapman L, Nishimura A, Buckingham JC, Morris JF, Christian HC (2002) Externalization of annexin I from a folliculo-stellate-like cell line. Endocrinology 143:4330–4338

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Gremeaux L, Fu Q, Liekens D, Van Laere S, Vankelecom H (2009) Pituitary progenitor cells tracked down by side population dissection. Stem Cells (Dayton, Ohio) 27:1182–1195

    Article  CAS  Google Scholar 

  • Chen Y, Chuan HL, Yu SY, Li CZ, Wu ZB, Li GL, Zhang YZ (2017) A novel invasive-related biomarker in three subtypes of nonfunctioning pituitary adenomas. World Neurosurgery 100:514–521

    Article  PubMed  Google Scholar 

  • Denef C (2008) Paracrinicity: the story of 30 years of cellular pituitary crosstalk. J Neuroendocrinol 20:1–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deutsch EW, Csordas A, Sun Z, Jarnuczak A, Perez-Riverol Y, Ternent T, Campbell DS, Bernal-Llinares M, Okuda S, Kawano S, Moritz RL, Carver JJ, Wang M, Ishihama Y, Bandeira N, Hermjakob H, Vizcaíno JA (2017) The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res 45:D1100–D1106

    Article  CAS  PubMed  Google Scholar 

  • Devnath S, Inoue K (2008) An insight to pituitary folliculo-stellate cells. J Neuroendocrinol 20:687–691

    Article  CAS  PubMed  Google Scholar 

  • Domogatskaya A, Rodin S, Boutaud A, Tryggvason K (2008) Laminin-511 but not -332, -111, or -411 enables mouse embryonic stem cell self-renewal in vitro. Stem Cells 26:2800–2809

    Article  CAS  PubMed  Google Scholar 

  • Fauquier T, Rizzoti K, Dattani M, Lovell-Badge R, Robinson IC (2008) SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci U S A 105:2907–2912

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujiwara K, Jindatip D, Kikuchi M, Yashiro T (2010) In situ hybridization reveals that type I and III collagens are produced by pericytes in the anterior pituitary gland of rats. Cell Tissue Res 342:491–495

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez DM, Medici D (2014) Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 7:re8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gressner OA, Weiskirchen R, Gressner AM (2007) Evolving concepts of liver fibrogenesis provide new diagnostic and therapeutic options. Comp Hepatol 6:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hezel AF, Deshpande V, Zimmerman SM, Contino G, Alagesan B, O’Dell MR, Rivera LB, Harper J, Lonning S, Brekken RA, Bardeesy N (2012) TGF-β and αvβ6 integrin act in a common pathway to suppress pancreatic cancer progression. Cancer Res 72:4840–4845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horiguchi K, Kouki T, Fujiwara K, Kikuchi M, Yashiro Y (2011) The extracellular matrix component laminin promotes gap junction formation in the rat anterior pituitary gland. J Endocrinol 208:225–232

    CAS  PubMed  Google Scholar 

  • Horiguchi K, Nakakura T, Yoshida S, Tsukada T, Kanno N, Hasegawa R, Takigami S, Ohsako S, Kato T, Kato Y (2016) Identification of THY1 as a novel thyrotrope marker and THY1 antibody-mediated thyrotrope isolation in the rat anterior pituitary gland. Biochem Biophys Res Commun 480:273–279

    Article  CAS  PubMed  Google Scholar 

  • Huang CX, Zhao JN, Zou WH, Li JJ, Wang PC, Liu CH, Wang YB (2014) Reduction of galectin-3 expression reduces pituitary tumor cell progression. Genet Mol Res 13:6892–6898

    Article  CAS  PubMed  Google Scholar 

  • Hughes S, Chan-Ling T (2004) Characterization of smooth muscle cell and pericyte differentiation in the rat retina in vivo. Invest Opthalmol Vis Sci 45:2795–2806

    Article  Google Scholar 

  • Inman GJ, Nicolás FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62:65–74

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Matsumoto H, Koyama C, Shibata K, Nakazato Y, Ito A (1992) Establishment of a folliculo-stellate-like cell line from a murine thyrotropic pituitary tumor. Endocrinology 131:3110–3116

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Mogi C, Ogawa S, Tomida M, Miyai S (2002) Are folliculo-stellate cells in the anterior pituitary gland supportive cells or organ-specific stem cells? Arch Physiol Biochem 110:50–53

    Article  CAS  PubMed  Google Scholar 

  • Järvinen PM, Laiho M (2012) LIM-domain proteins in transforming growth factor β-induced epithelial-to-mesenchymal transition and myofibroblast differentiation. Cell Signal 24:819–825

    Article  CAS  PubMed  Google Scholar 

  • Kito K, Ito H, Nohara T, Ohnishi M, Ishibashi Y, Takeda D (2016) Yeast interspecies comparative proteomics reveals divergence in expression profiles and provides insights into proteome resource allocation and evolutionary roles of gene duplication. Mol Cell Proteomics 15:218–235

    Article  CAS  PubMed  Google Scholar 

  • Krylyshkina O, Chen J, Mebis L, Denef C, Vankelecom H (2005) Nestin-immunoreactive cells in rat pituitary are neither hormonal nor typical folliculo-stellate cells. Endocrinology 146:2376–2387

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Zhang Y, Wang H, Xu D, Meng X, Shao Y, Lin C, Ye Y, Qian H, Wang S (2012) Tissue inhibitor of metalloproteinases-3 transfer suppresses malignant behaviors of colorectal cancer cells. Cancer Gene Ther 19:845–851

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Shenoy AK (2017) Epithelial-to-pericyte transition in cancer. Cancers 9:1–13

    Article  CAS  Google Scholar 

  • Meng X-M, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338

    Article  CAS  PubMed  Google Scholar 

  • Mitsuishi H, Kato T, Chen M, Cai L-Y, Yako H, Higuchi M, Yoshida S, Kanno N, Ueharu H, Kato Y (2013) Characterization of a pituitary-tumor-derived cell line, TtT/GF, that expresses Hoechst efflux ABC transporter subfamily G2 and stem cell antigen 1. Cell Tissue Res 354:563–572

    Article  CAS  PubMed  Google Scholar 

  • Mollard P, Hodson DJ, Lafont C, Rizzoti K, Drouin J (2012) A tridimensional view of pituitary development and function. Trends Endocrinol Metab 23:261–269

    Article  CAS  PubMed  Google Scholar 

  • Okada M, Kusunoki S, Ishibashi Y, Kito K (2017) Proteomics analysis for asymmetric inheritance of preexisting proteins between mother and daughter cells in budding yeast. Genes Cells 22:591–601

    Article  CAS  PubMed  Google Scholar 

  • Ong S-E, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386

    Article  CAS  PubMed  Google Scholar 

  • Ozawa H, Miyachi M, Ochiai I, Tsuchiya S, Morris JF, Kawata M (2002) Annexin-1 (lipocortin-1)-immunoreactivity in the folliculo-stellate cells of rat anterior pituitary: the effect of adrenalectomy and corticosterone treatment on its subcellular distribution. J Neuroendocrinol 14:621–628

    Article  CAS  PubMed  Google Scholar 

  • Renner U, Gloddek J, Arzt E, Inoue K, Stalla GK (1997) Interleukin-6 is an autocrine growth factor for folliculostellate-like TtT/GF mouse pituitary tumor cells. Exp Clin Endocrinol Diabetes 105:345–352

    Article  CAS  PubMed  Google Scholar 

  • Righi A, Morandi L, Leonardi E, Farnedi A, Marucci G, Sisto A, Frank G, Faustini-Fustini M, Zoli M, Mazzatenta D, Agati R, Foschini MP (2013) Galectin-3 expression in pituitary adenomas as a marker of aggressive behavior. Hum Pathol 44:2400–2409

    Article  CAS  PubMed  Google Scholar 

  • Rizzoti K, Akiyama H, Lovell-Badge R (2013) Mobilized adult pituitary stem cells contribute to endocrine regeneration in response to physiological demand. Cell Stem Cell 13:419–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders WB, Bohnsack BL, Faske JB, Anthis NJ, Bayless KJ, Hirschi KK, Davis GE (2006) Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J Cell Biol 175:179–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schor AM, Canfield AE, Sutton AB, Arciniegas E, Allen TD (1995) Pericyte differentiation. Clin Orthop Relat Res 313:81–91

    Google Scholar 

  • Shojaee N, Patton WF, Chung-Welch N, Su Q, Hechtman HB, Shepro D (1998) Expression and subcellular distribution of filamin isotypes in endothelial cells and pericytes. Electrophoresis 19:323–332

    Article  CAS  PubMed  Google Scholar 

  • Stilling GA, Bayliss JM, Jin L, Zhang H, Lloyd RV (2005) Chromogranin A transcription and gene expression in Folliculostellate (TtT/GF) cells inhibit cell growth. Endocr Pathol 16:173–186

    Article  CAS  PubMed  Google Scholar 

  • Ström A, Olin A, Aspberg A, Hultgårdh-Nilsson A (2006) Fibulin-2 is present in murine vascular lesions and is important for smooth muscle cell migration. Cardiovasc Res 69:755–763

    Article  CAS  PubMed  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452

    Article  CAS  PubMed  Google Scholar 

  • Tanase C, Albulescu R, Codrici E, Calenic B, Popescu ID, Mihai S, Necula L, Cruceru ML, Hinescu ME (2014) Decreased expression of APAF-1 and increased expression of cathepsin B in invasive pituitary adenoma. Onco Targets Ther 8:81–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ten Dijke P, Arthur HM (2007) Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol 8:857–869

    Article  CAS  PubMed  Google Scholar 

  • Tierney T, Christian HC, Morris JF, Solito E, Buckingham JC (2003) Evidence from studies on co-cultures of TtT/GF and AtT20 cells that Annexin 1 acts as a paracrine or juxtacrine mediator of the early inhibitory effects of glucocorticoids on ACTH release. J Neuroendocrinol 15:1134–1143

    Article  CAS  PubMed  Google Scholar 

  • Tofrizal A, Fujiwara K, Yashiro T, Yamada S (2016) Alterations of collagen-producing cells in human pituitary adenomas. Med Mol Morphol 49:224–232

    Article  CAS  PubMed  Google Scholar 

  • Tsukada T, Yoshida S, Kito K, Fujiwara K, Yako H, Horiguchi K, Isowa Y, Yashiro T, Kato T, Kato Y (2018) TGFβ signaling reinforces pericyte properties of the non-endocrine mouse pituitary cell line TtT/GF. Cell Tissue Res 371:339–350

    Article  CAS  PubMed  Google Scholar 

  • Ueharu H, Yoshida S, Kikkawa T, Kanno N, Higuchi M, Kato T, Osumi N, Kato Y (2017) Gene tracing analysis reveals the contribution of neural crest-derived cells in pituitary development. J Anat 230:373–380

    Article  CAS  PubMed  Google Scholar 

  • Vankelecom H (2007) Non-hormonal cell types in the pituitary candidating for stem cell. Semin Cell Dev Biol 18:559–570

    Article  CAS  PubMed  Google Scholar 

  • Vitale ML, Barry A (2015) Biphasic effect of basic fibroblast growth factor on anterior pituitary Folliculostellate TtT/GF cell coupling, and Connexin 43 expression and phosphorylation. J Neuroendocrinol 27:787–801

    Article  CAS  PubMed  Google Scholar 

  • Vizcaíno JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Ríos D, Dianes JA, Sun Z, Farrah T, Bandeira N, Binz PA, Xenarios I, Eisenacher M, Mayer G, Gatto L, Campos A, Chalkley RJ, Kraus HJ, Albar JP, Martinez-Bartolomé S, Apweiler R, Omenn GS, Martens L, Jones AR, Hermjakob H (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32:223–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss A, Attisano L (2013) The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol 2:47–63

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Higuchi M, Ueharu H, Nishimura N, Tsuda M, Yako H, Chen M, Mitsuishi H, Sano Y, Kato T, Kato Y (2014) Characterization of murine pituitary-derived cell lines Tpit/F1, Tpit/E and TtT/GF. J Reprod Dev 60:295–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida S, Kato T, Kato Y (2016) Regulatory system for stem/progenitor cell niches in the adult rodent pituitary. Int J Mol Sci 17:E75

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S, Kato T, Kanno N, Nishimura N, Nishihara H, Horiguchi K, Kato Y (2017) Cell type-specific localization of Ephs pairing with ephrin-B2 in the rat postnatal pituitary gland. Cell Tissue Res 370:99–112

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Pan S, Gu S, Bradbury EM, Chen X (2002) Amino acid residue specific stable isotope labeling for quantitative proteomics. Rapid Commun Mass Spectrom 16:2115–2123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Tom Kouki (Jichi Medical University) for his support in transmission electron microscopy and Editage (www.editage.jp) for English language editing.

Funding

This work was partially supported by the Japan Society for the Promotion of Science KAKENHI Grants (Numbers 16K18818 to SY, 26460281 to KF, 16K08475 to KH, 26292166 to YK and 15K07771 to TK), the MEXT-supported Program for the Strategic Research Foundation at Private Universities (2014–2018), the Meiji University International Institute for BioResource Research (MUIIR) and start-up funds to TT from the Faculty of Science Department at Toho University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takehiro Tsukada or Yukio Kato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Electronic Supplementary Material Fig. 1

Heavy medium containing 13C6-labeled lysine and arginine have no effect on TGFβ-induced Smad2 nuclear translocation. After a 3-day culture in light (top) or heavy medium (bottom), TtT/GF cells were treated with vehicle, TGFβ (10 ng/mL), or TGFβ (10 ng/mL) and selective TGFβ receptor inhibitor (SB431542, 10 μM) for 30 min. Treated cells were stained for Smad2 (green) and DAPI (blue) (for staining protocol see Tsukada et al. 2018). Diffuse cytoplasmic staining for Smad2 was observed with vehicle treatment (a, a′); however, intense nuclear staining was observed with 10 ng/mL TGFβ (b, b′). The TGFβ-induced Smad2 nuclear translocation was completely blocked by 10 μM SB431542 (c, c′). No significant difference was observed between light and heavy medium in terms of the efficiency of TGFβ and TGFβ receptor inhibitor. Bar = 100 μm (DOCX 209 kb)

Electronic Supplementary Material Fig. 2

TGFβ attenuates transcript levels of stem cell marker genes and promotes pericyte markers. Total RNA was extracted after a 3-day treatment with TGFβ/SB431542 in light medium using the RNeasy Mini Kit and RNase-free DNase Set according to the manufacturer’s instructions (Qiagen, Hilden, Germany). cDNA was synthesized using the PrimeScript RT Reagent Kit (Takara Bio, Otsu, Japan) with oligo-(dT)20 primer (Life Technologies). Quantitative PCR (AriaMx, Agilent Technologies) was performed using SYBR Green Real-time PCR Master Mix Plus (Toyobo, Osaka, Japan) and specific primer sets at 0.6 μM for each target gene (Electronic Supplementary Material, Table S6). Each sample was measured in duplicate and results are based on five independent experiments; data were analyzed by the comparative CT method (ddCt method) to estimate gene copy number relative to that of the TATA box-binding protein (Tbp), used as an internal standard. Genes included stem cell markers (Sca-1, Cd34), pericyte markers (Nes, Cspg4, Col1a1) and a folliculostellate cell marker (S100b). TGFβ increased pericyte marker gene expression and decreased stem cell marker gene expression. *p < 0.05 (Tukey’s test) (DOCX 188 kb)

Electronic Supplementary Material Table S1

(DOCX 75 kb)

Electronic Supplementary Material Table S2

(DOCX 78 kb)

Electronic Supplementary Material Table S3

(DOCX 104 kb)

Electronic Supplementary Material Table S4

(DOCX 140 kb)

Electronic Supplementary Material Table S5

(DOCX 142 kb)

Electronic Supplementary Material Table S6

(DOC 106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukada, T., Isowa, Y., Kito, K. et al. Identification of TGFβ-induced proteins in non-endocrine mouse pituitary cell line TtT/GF by SILAC-assisted quantitative mass spectrometry. Cell Tissue Res 376, 281–293 (2019). https://doi.org/10.1007/s00441-018-02989-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-02989-2

Keywords

Navigation