Skip to main content
Log in

The Distraction Osteogenesis Callus: a Review of the Literature

  • Review Article
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The distraction osteogenesis has been an integrated treatment approach in significant bone deficiencies resulting from debridement or high-energy trauma. Nevertheless, it usually demands a prolonged treatment period attributed to the more profound distraction osteogenesis callus physiology. This distraction callus is a tissue not naturally present in mammals and results after surgical intervention. Despite sharing quite similar molecular and biomechanical mechanisms to the fracture-healing callus, it recruits unique physiological pathways. This review presents the deep physiology of the distraction osteogenesis callus, the familiar pathways with the fracture healing callus, and current maturation’s acceleration tactic concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Qin CH, Zhang HA, Chee YH, Pitarini A, Adem AA. Comparison of the use of antibiotic-loaded calcium sulphate and wound irrigation-suction in the treatment of lower limb chronic osteomyelitis. Injury. 2019;50(2):508–14. https://doi.org/10.1016/j.injury.2018.10.036.

    Article  PubMed  Google Scholar 

  2. Ferrando A, Part J, Baeza J. Treatment of cavitary bone defects in chronic osteomyelitis: biogactive glass S53P4 vs Calcium Sulphate Antibiotic Beads. J Bone Jt Infect. 2017;2(4):194–201. https://doi.org/10.7150/jbji.20404.

    Article  PubMed  PubMed Central  Google Scholar 

  3. David N, Nallaiyan R. Biologically anchored chitosan/gelatin-SrHAP scaffold fabricated on titanium against chronic osteomyelitis infection. Int J Biol Macromol. 2018;110:206–14. https://doi.org/10.1016/j.ijbiomac.2017.11.174.

    Article  CAS  PubMed  Google Scholar 

  4. Giannoudis PV. Treatment of bone defects: Bone transport or the induced membrane technique? Injury. 2016;47(2):291–2. https://doi.org/10.1016/j.injury.2016.01.023.

    Article  PubMed  Google Scholar 

  5. Ilizarov GA. Basic principles of transosseous compression and distraction osteosynthesis. Ortop Travmatol Protez. 1971;32(11):7–15.

    CAS  PubMed  Google Scholar 

  6. Sailhan F. Bone lengthening (distraction osteogenesis): a literature review. Osteoporos Int. 2011;22(6):2011–5. https://doi.org/10.1007/s00198-011-1613-2.

    Article  CAS  PubMed  Google Scholar 

  7. Aronson J, Good B, Stewart C, Harrison B, Harp J. Preliminary studies of mineralization during distraction osteogenesis. Clin Orthop Relat Res. 1990;250:43–9.

    Article  Google Scholar 

  8. Li G, Virdi AS, Ashhurst DE, Simpson AH, Triffitt JT. Tissues formed during distraction osteogenesis in the rabbit are determined by the distraction rate: localization of the cells that express the mRNAs and the distribution of types I and II collagens. Cell Biol Int. 2000;24(1):25–33. https://doi.org/10.1006/cbir.1999.0449.

    Article  PubMed  Google Scholar 

  9. Garcia FL, Picado CH, Garcia SB. Histology of the regenerate and docking site in bone transport. Arch Orthop Trauma Surg. 2009;129(4):549–58. https://doi.org/10.1007/s00402-008-0587-9.

    Article  PubMed  Google Scholar 

  10. Lopez-Pliego EM, Giraldez-Sanchez MA, Mora-Macias J, Reina-Romo E, Dominguez J. Histological evolution of the regenerate during bone transport: an experimental study in sheep. Injury. 2016;47(Suppl 3):S7–14. https://doi.org/10.1016/S0020-1383(16)30600-3.

    Article  PubMed  Google Scholar 

  11. Fink B, Pollnau C, Vogel M, Skripitz R, Enderle A. Histomorphometry of distraction osteogenesis during experimental tibial lengthening. J Orthop Trauma. 2003;17(2):113–8. https://doi.org/10.1097/00005131-200302000-00006.

    Article  PubMed  Google Scholar 

  12. Kusec V, Jelic M, Borovecki F, Kos J, Vukicevic S, Korzinek K. Distraction osteogenesis by Ilizarov and unilateral external fixators in a canine model. Int Orthop. 2003;27(1):47–52. https://doi.org/10.1007/s00264-002-0391-z.

    Article  CAS  PubMed  Google Scholar 

  13. Li G, Simpson AH, Triffitt JT. The role of chondrocytes in intramembranous and endochondral ossification during distraction osteogenesis in the rabbit. Calcif Tissue Int. 1999;64(4):310–7. https://doi.org/10.1007/s002239900625.

    Article  CAS  PubMed  Google Scholar 

  14. Yang L, Tsang KY, Tang HC, Chan D, Cheah KS. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci USA. 2014;111(33):12097–102. https://doi.org/10.1073/pnas.1302703111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lopez-Pliego EM, Mora-Macias J, Giraldez-Sanchez MA, Dominguez J, Reina-Romo E. Histological study of the docking site after bone transport. Temporal evolution in a sheep model. Injury. 2018;49(11):1987–92. https://doi.org/10.1016/j.injury.2018.09.028.

    Article  PubMed  Google Scholar 

  16. Aronson J. Temporal and spatial increases in blood flow during distraction osteogenesis. Clin Orthop Relat Res. 1994;301:124–31.

    Google Scholar 

  17. Jia Y, Zhu Y, Qiu S, Xu J, Chai Y. Exosomes secreted by endothelial progenitor cells accelerate bone regeneration during distraction osteogenesis by stimulating angiogenesis. Stem Cell Res Ther. 2019;10(1):12. https://doi.org/10.1186/s13287-018-1115-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fu F, Zhang K. Research progress of the role of periosteum in distraction osteogenesis. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2017;31(7):876–9. https://doi.org/10.7507/1002-1892.201701073.

    Article  PubMed  Google Scholar 

  19. Song L, Tuan RS. Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. FASEB J. 2004;18(9):980–2. https://doi.org/10.1096/fj.03-1100fje.

    Article  CAS  PubMed  Google Scholar 

  20. Schuelke J, Meyers N, Reitmaier S, Klose S, Ignatius A, Claes L. Intramembranous bone formation after callus distraction is augmented by increasing axial compressive strain. PLoS ONE. 2018;13(4):e0195466. https://doi.org/10.1371/journal.pone.0195466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, et al. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med. 2000;191(2):275–86. https://doi.org/10.1084/jem.191.2.275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8(5):739–50. https://doi.org/10.1016/j.devcel.2005.03.016.

    Article  CAS  PubMed  Google Scholar 

  23. Cho TJ, Kim JA, Chung CY, Yoo WJ, Gerstenfeld LC, Einhorn TA, et al. Expression and role of interleukin-6 in distraction osteogenesis. Calcif Tissue Int. 2007;80(3):192–200. https://doi.org/10.1007/s00223-006-0240-y.

    Article  CAS  PubMed  Google Scholar 

  24. Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res. 2008;87(2):107–18. https://doi.org/10.1177/154405910808700215.

    Article  CAS  PubMed  Google Scholar 

  25. Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Rey JM, Garcia-Garcia A. RANK/RANKL/OPG role in distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(5):679–86. https://doi.org/10.1016/j.tripleo.2009.10.042.

    Article  PubMed  Google Scholar 

  26. Bouletreau P, Longaker MT. The molecular biology of distraction osteogenesis. Rev Stomatol Chir Maxillofac. 2004;105(1):23–5. https://doi.org/10.1016/s0035-1768(04)72909-5.

    Article  CAS  PubMed  Google Scholar 

  27. Wang X, Luo E, Bi R, Ye B, Hu J, Zou S. Wnt/beta-catenin signaling is required for distraction osteogenesis in rats. Connect Tissue Res. 2018;59(1):45–54. https://doi.org/10.1080/03008207.2017.1300154.

    Article  CAS  PubMed  Google Scholar 

  28. Kasaai B, Moffatt P, Al-Salmi L, Lauzier D, Lessard L, Hamdy RC. Spatial and temporal localization of WNT signaling proteins in a mouse model of distraction osteogenesis. J Histochem Cytochem. 2012;60(3):219–28. https://doi.org/10.1369/0022155411432010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alzahrani MM, Makhdom AM, Rauch F, Lauzier D, Kotsiopriftis M, Ghadakzadeh S, et al. Assessment of the effect of systemic delivery of sclerostin antibodies on Wnt signaling in distraction osteogenesis. J Bone Miner Metab. 2018;36(4):373–82. https://doi.org/10.1007/s00774-017-0847-2.

    Article  CAS  PubMed  Google Scholar 

  30. Wang JG, Miyazu M, Xiang P, Li SN, Sokabe M, Naruse K. Stretch-induced cell proliferation is mediated by FAK-MAPK pathway. Life Sci. 2005;76(24):2817–25. https://doi.org/10.1016/j.lfs.2004.10.050.

    Article  CAS  PubMed  Google Scholar 

  31. Yanoshita M, Hirose N, Okamoto Y, Sumi C, Takano M, Nishiyama S, et al. Cyclic tensile strain upregulates pro-inflammatory cytokine expression via FAK-MAPK Signaling in Chondrocytes. Inflammation. 2018;41(5):1621–30. https://doi.org/10.1007/s10753-018-0805-8.

    Article  CAS  PubMed  Google Scholar 

  32. Song J, Ye B, Liu H, Bi R, Zhang N, Hu J, et al. Fak-Mapk, Hippo and Wnt signalling pathway expression and regulation in distraction osteogenesis. Cell Prolif. 2018;51(4):e12453. https://doi.org/10.1111/cpr.12453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bak B, Jorgensen PH, Andreassen TT. The stimulating effect of growth hormone on fracture healing is dependent on onset and duration of administration. Clin Orthop Relat Res. 1991;264:295–301.

    Article  Google Scholar 

  34. Bail HJ, Raschke MJ, Kolbeck S, Krummrey G, Windhagen HJ, Weiler A, et al. Recombinant species-specific growth hormone increases hard callus formation in distraction osteogenesis. Bone. 2002;30(1):117–24. https://doi.org/10.1016/s8756-3282(01)00628-7.

    Article  CAS  PubMed  Google Scholar 

  35. Theyse LF, Oosterlaken-Dijksterhuis MA, van Doorn J, Terlou M, Mol JA, Voorhout G, et al. Expression of osteotropic growth factors and growth hormone receptor in a canine distraction osteogenesis model. J Bone Miner Metab. 2006;24(4):266–73. https://doi.org/10.1007/s00774-006-0683-2.

    Article  CAS  PubMed  Google Scholar 

  36. Eingartner C, Coerper S, Fritz J, Gaissmaier C, Koveker G, Weise K. Growth factors in distraction osteogenesis. Immuno-histological pattern of TGF-beta1 and IGF-I in human callus induced by distraction osteogenesis. Int Orthop. 1999;23(5):253–9. https://doi.org/10.1007/s002640050365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Siwicka KA, Kitoh H, Kawasumi M, Ishiguro N. Spatial and temporal distribution of growth factors receptors in the callus: implications for improvement of distraction osteogenesis. Nagoya J Med Sci. 2011;73(3–4):117–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Haque T, Amako M, Nakada S, Lauzier D, Hamdy RC. An immunohistochemical analysis of the temporal and spatial expression of growth factors FGF 1, 2 and 18, IGF 1 and 2, and TGFbeta1 during distraction osteogenesis. Histol Histopathol. 2007;22(2):119–28. https://doi.org/10.14670/HH-22.119.

    Article  CAS  PubMed  Google Scholar 

  39. Sato M, Ochi T, Nakase T, Hirota S, Kitamura Y, Nomura S, et al. Mechanical tension-stress induces expression of bone morphogenetic protein (BMP)-2 and BMP-4, but not BMP-6, BMP-7, and GDF-5 mRNA, during distraction osteogenesis. J Bone Miner Res. 1999;14(7):1084–95. https://doi.org/10.1359/jbmr.1999.14.7.1084.

    Article  CAS  PubMed  Google Scholar 

  40. Marukawa K, Ueki K, Alam S, Shimada M, Nakagawa K, Yamamoto E. Expression of bone morphogenetic protein-2 and proliferating cell nuclear antigen during distraction osteogenesis in the mandible in rabbits. Br J Oral Maxillofac Surg. 2006;44(2):141–5. https://doi.org/10.1016/j.bjoms.2005.04.009.

    Article  CAS  PubMed  Google Scholar 

  41. Haque T, Hamade F, Alam N, Kotsiopriftis M, Lauzier D, St-Arnaud R, et al. Characterizing the BMP pathway in a wild type mouse model of distraction osteogenesis. Bone. 2008;42(6):1144–53. https://doi.org/10.1016/j.bone.2008.01.028.

    Article  CAS  PubMed  Google Scholar 

  42. Haque T, Mandu-Hrit M, Rauch F, Lauzier D, Tabrizian M, Hamdy RC. Immunohistochemical localization of bone morphogenetic protein-signaling Smads during long-bone distraction osteogenesis. J Histochem Cytochem. 2006;54(4):407–15. https://doi.org/10.1369/jhc.5A6738.2005.

    Article  CAS  PubMed  Google Scholar 

  43. Wynn RF, Hart CA, Corradi-Perini C, O’Neill L, Evans CA, Wraith JE, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood. 2004;104(9):2643–5. https://doi.org/10.1182/blood-2004-02-0526.

    Article  CAS  PubMed  Google Scholar 

  44. Cao J, Wang L, Du ZJ, Liu P, Zhang YB, Sui JF, et al. Recruitment of exogenous mesenchymal stem cells in mandibular distraction osteogenesis by the stromal cell-derived factor-1/chemokine receptor-4 pathway in rats. Br J Oral Maxillofac Surg. 2013;51(8):937–41. https://doi.org/10.1016/j.bjoms.2013.05.003.

    Article  PubMed  Google Scholar 

  45. Fujio M, Yamamoto A, Ando Y, Shohara R, Kinoshita K, Kaneko T, et al. Stromal cell-derived factor-1 enhances distraction osteogenesis-mediated skeletal tissue regeneration through the recruitment of endothelial precursors. Bone. 2011;49(4):693–700. https://doi.org/10.1016/j.bone.2011.06.024.

    Article  CAS  PubMed  Google Scholar 

  46. Xu J, Chen Y, Liu Y, Zhang J, Kang Q, Ho K, et al. Effect of SDF-1/Cxcr4 signaling antagonist AMD3100 on bone mineralization in distraction osteogenesis. Calcif Tissue Int. 2017;100(6):641–52. https://doi.org/10.1007/s00223-017-0249-4.

    Article  CAS  PubMed  Google Scholar 

  47. Meyers N, Schulke J, Ignatius A, Claes L. Evolution of callus tissue behavior during stable distraction osteogenesis. J Mech Behav Biomed Mater. 2018;85:12–9. https://doi.org/10.1016/j.jmbbm.2018.05.017.

    Article  PubMed  Google Scholar 

  48. Aronson J, Harp JH. Mechanical forces as predictors of healing during tibial lengthening by distraction osteogenesis. Clin Orthop Relat Res. 1994;301:73–9.

    Google Scholar 

  49. Mora-Macias J, Reina-Romo E, Dominguez J. Distraction osteogenesis device to estimate the axial stiffness of the callus in Vivo. Med Eng Phys. 2015;37(10):969–78. https://doi.org/10.1016/j.medengphy.2015.07.008.

    Article  CAS  PubMed  Google Scholar 

  50. Blazquez-Carmona P, Mora-Macias J, Sanz-Herrera JA, Morgaz J, Navarrete-Calvo R, Dominguez J, et al. Mechanical influence of surrounding soft tissue on bone regeneration processes: a bone lengthening study. Ann Biomed Eng. 2020. https://doi.org/10.1007/s10439-020-02592-z.

    Article  PubMed  Google Scholar 

  51. Hasler CC, Krieg AH. Current concepts of leg lengthening. J Child Orthop. 2012;6(2):89–104. https://doi.org/10.1007/s11832-012-0391-5.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Blazquez-Carmona P, Mora-Macias J, Morgaz J, Fernandez-Sarmiento JA, Dominguez J, Reina-Romo E. Mechanobiology of bone consolidation during distraction osteogenesis: bone lengthening vs Bone transport. Ann Biomed Eng. 2020. https://doi.org/10.1007/s10439-020-02665-z.

    Article  PubMed  Google Scholar 

  53. Horas K, Schnettler R, Maier G, Schneider G, Horas U. The role of soft-tissue traction forces in bone segment transport for callus distraction: a force measurement cadaver study on eight human femora using a novel intramedullary callus distraction system. Strategies Trauma Limb Reconstr. 2015;10(1):21–6. https://doi.org/10.1007/s11751-015-0220-8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Claes L, Meyers N, Schulke J, Reitmaier S, Klose S, Ignatius A. The mode of interfragmentary movement affects bone formation and revascularization after callus distraction. PLoS ONE. 2018;13(8):e0202702. https://doi.org/10.1371/journal.pone.0202702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Frost HM, Ferretti JL, Jee WS. Perspectives: some roles of mechanical usage, muscle strength, and the mechanostat in skeletal physiology, disease, and research. Calcif Tissue Int. 1998;62(1):1–7. https://doi.org/10.1007/s002239900384.

    Article  CAS  PubMed  Google Scholar 

  56. Lipphaus A, Witzel U. Finite-element syntheses of callus and bone remodeling: biomechanical study of fracture healing in long bones. Anat Rec (Hoboken). 2018;301(12):2112–21. https://doi.org/10.1002/ar.23893.

    Article  Google Scholar 

  57. Mora-Macias J, Pajares A, Miranda P, Dominguez J, Reina-Romo E. Mechanical characterization via nanoindentation of the woven bone developed during bone transport. J Mech Behav Biomed Mater. 2017;74:236–44. https://doi.org/10.1016/j.jmbbm.2017.05.031.

    Article  CAS  PubMed  Google Scholar 

  58. Mora-Macias J, Reina-Romo E, Lopez-Pliego M, Giraldez-Sanchez MA, Dominguez J. In vivo mechanical characterization of the distraction callus during bone consolidation. Ann Biomed Eng. 2015;43(11):2663–74. https://doi.org/10.1007/s10439-015-1330-7.

    Article  CAS  PubMed  Google Scholar 

  59. Kontogiorgos E, Elsalanty ME, Zapata U, Zakhary I, Nagy WW, Dechow PC, et al. Three-dimensional evaluation of mandibular bone regenerated by bone transport distraction osteogenesis. Calcif Tissue Int. 2011;89(1):43–52. https://doi.org/10.1007/s00223-011-9492-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Floerkemeier T, Thorey F, Hurschler C, Wellmann M, Witte F, Windhagen H. Stiffness of callus tissue during distraction osteogenesis. Orthop Traumatol Surg Res. 2010;96(2):155–60. https://doi.org/10.1016/j.rcot.2010.02.010.

    Article  CAS  PubMed  Google Scholar 

  61. Mofid MM, Inoue N, Atabey A, Marti G, Chao EY, Manson PN, et al. Callus stimulation in distraction osteogenesis. Plast Reconstr Surg. 2002;109(5):1621–9. https://doi.org/10.1097/00006534-200204150-00020.

    Article  PubMed  Google Scholar 

  62. Luchkov VI, Mukhin PE. Comparative evaluation of the effect of ultrasound and microwaves on fracture healing in rabbits. Ortop Travmatol Protez. 1971;32(9):65–8.

    CAS  PubMed  Google Scholar 

  63. Mayr E, Laule A, Suger G, Ruter A, Claes L. Radiographic results of callus distraction aided by pulsed low-intensity ultrasound. J Orthop Trauma. 2001;15(6):407–14. https://doi.org/10.1097/00005131-200108000-00005.

    Article  CAS  PubMed  Google Scholar 

  64. Claes L, Ruter A, Mayr E. Low-intensity ultrasound enhances maturation of callus after segmental transport. Clin Orthop Relat Res. 2005;430:189–94. https://doi.org/10.1097/01.blo.0000150456.39608.bc.

    Article  Google Scholar 

  65. El-Mowafi H, Mohsen M. The effect of low-intensity pulsed ultrasound on callus maturation in tibial distraction osteogenesis. Int Orthop. 2005;29(2):121–4. https://doi.org/10.1007/s00264-004-0625-3.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Song MH, Kim TJ, Kang SH, Song HR. Low-intensity pulsed ultrasound enhances callus consolidation in distraction osteogenesis of the tibia by the technique of lengthening over the nail procedure. BMC Musculoskelet Disord. 2019;20(1):108. https://doi.org/10.1186/s12891-019-2490-7.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chan CW, Qin L, Lee KM, Cheung WH, Cheng JC, Leung KS. Dose-dependent effect of low-intensity pulsed ultrasound on callus formation during rapid distraction osteogenesis. J Orthop Res. 2006;24(11):2072–9. https://doi.org/10.1002/jor.20258.

    Article  PubMed  Google Scholar 

  68. Lou S, Lv H, Li Z, Tang P, Wang Y. Effect of low-intensity pulsed ultrasound on distraction osteogenesis: a systematic review and meta-analysis of randomized controlled trials. J Orthop Surg Res. 2018;13(1):205. https://doi.org/10.1186/s13018-018-0907-x.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cho BC, Moon JH, Chung HY, Park JW, Kweon IC, Kim IS. The bone regenerative effect of growth hormone on consolidation in mandibular distraction osteogenesis of a dog model. J Craniofac Surg. 2003;14(3):417–25. https://doi.org/10.1097/00001665-200305000-00025.

    Article  PubMed  Google Scholar 

  70. Bail H, Raschke MJ, Kolbeck SF, Weiler A, Haahr PM, Haas NP. Recombinant growth hormone increasus callus maturation time in distraction osteogenesis–a histomorphometric study. Langenbecks Arch Chir Suppl Kongressbd. 1998;115(Suppl I):675–80.

    CAS  PubMed  Google Scholar 

  71. Ozkan K, Eralp L, Kocaoglu M, Ahishali B, Bilgic B, Mutlu Z, et al. The effect of transforming growth factor beta1 (TGF-beta1) on the regenerate bone in distraction osteogenesis. Growth Factors. 2007;25(2):101–7. https://doi.org/10.1080/08977190701352594.

    Article  CAS  PubMed  Google Scholar 

  72. Kawasumi M, Kitoh H, Siwicka KA, Ishiguro N. The effect of the platelet concentration in platelet-rich plasma gel on the regeneration of bone. J Bone Joint Surg Br. 2008;90(7):966–72. https://doi.org/10.1302/0301-620X.90B7.20235.

    Article  CAS  PubMed  Google Scholar 

  73. Latalski M, Elbatrawy YA, Thabet AM, Gregosiewicz A, Raganowicz T, Fatyga M. Enhancing bone healing during distraction osteogenesis with platelet-rich plasma. Injury. 2011;42(8):821–4. https://doi.org/10.1016/j.injury.2011.03.010.

    Article  PubMed  Google Scholar 

  74. Lee DH, Ryu KJ, Kim JW, Kang KC, Choi YR. Bone marrow aspirate concentrate and platelet-rich plasma enhanced bone healing in distraction osteogenesis of the tibia. Clin Orthop Relat Res. 2014;472(12):3789–97. https://doi.org/10.1007/s11999-014-3548-3.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hu J, Qi MC, Zou SJ, Li JH, Luo E. Callus formation enhanced by BMP-7 ex vivo gene therapy during distraction osteogenesis in rats. J Orthop Res. 2007;25(2):241–51. https://doi.org/10.1002/jor.20288.

    Article  CAS  PubMed  Google Scholar 

  76. Burkhart KJ, Rommens PM. Intramedullary application of bone morphogenetic protein in the management of a major bone defect after an Ilizarov procedure. J Bone Joint Surg Br. 2008;90(6):806–9. https://doi.org/10.1302/0301-620X.90B6.20147.

    Article  CAS  PubMed  Google Scholar 

  77. Sailhan F, Gleyzolle B, Parot R, Guerini H, Viguier E. Rh-BMP-2 in distraction osteogenesis: dose effect and premature consolidation. Injury. 2010;41(7):680–6. https://doi.org/10.1016/j.injury.2009.10.010.

    Article  PubMed  Google Scholar 

  78. Bax BE, Wozney JM, Ashhurst DE. Bone morphogenetic protein-2 increases the rate of callus formation after fracture of the rabbit tibia. Calcif Tissue Int. 1999;65(1):83–9. https://doi.org/10.1007/s002239900662.

    Article  CAS  PubMed  Google Scholar 

  79. Zheng LW, Cheung LK. Effect of recombinant human bone morphogenetic protein-2 on mandibular distraction at different rates in a rabbit model. Tissue Eng. 2006;12(11):3181–8. https://doi.org/10.1089/ten.2006.12.3181.

    Article  CAS  PubMed  Google Scholar 

  80. Li G, Bouxsein ML, Luppen C, Li XJ, Wood M, Seeherman HJ, et al. Bone consolidation is enhanced by rhBMP-2 in a rabbit model of distraction osteogenesis. J Orthop Res. 2002;20(4):779–88. https://doi.org/10.1016/S0736-0266(01)00166-8.

    Article  CAS  PubMed  Google Scholar 

  81. Eguchi Y, Wakitani S, Naka Y, Nakamura H, Takaoka K. An injectable composite material containing bone morphogenetic protein-2 shortens the period of distraction osteogenesis in vivo. J Orthop Res. 2011;29(3):452–6. https://doi.org/10.1002/jor.21225.

    Article  PubMed  Google Scholar 

  82. Ni M, Li G, Tang PF, Chan KM, Wang Y. rhBMP-2 not alendronate combined with HA-TCP biomaterial and distraction osteogenesis enhance bone formation. Arch Orthop Trauma Surg. 2011;131(11):1469–76. https://doi.org/10.1007/s00402-011-1357-7.

    Article  PubMed  Google Scholar 

  83. Pastor MF, Floerkemeier T, Witte F, Nellesen J, Thorey F, Windhagen H, et al. Repetitive recombinant human bone morphogenetic protein 2 injections improve the callus microarchitecture and mechanical stiffness in a sheep model of distraction osteogenesis. Orthop Rev (Pavia). 2012;4(1):e13. https://doi.org/10.4081/or.2012.e13.

    Article  Google Scholar 

  84. Zhu S, Song D, Jiang X, Zhou H, Hu J. Combined effects of recombinant human BMP-2 and Nell-1 on bone regeneration in rapid distraction osteogenesis of rabbit tibia. Injury. 2011;42(12):1467–73. https://doi.org/10.1016/j.injury.2011.05.040.

    Article  PubMed  Google Scholar 

  85. Little DG, Smith NC, Williams PR, Briody JN, Bilston LE, Smith EJ, et al. Zoledronic acid prevents osteopenia and increases bone strength in a rabbit model of distraction osteogenesis. J Bone Miner Res. 2003;18(7):1300–7. https://doi.org/10.1359/jbmr.2003.18.7.1300.

    Article  CAS  PubMed  Google Scholar 

  86. Omi H, Kusumi T, Kijima H, Toh S. Locally administered low-dose alendronate increases bone mineral density during distraction osteogenesis in a rabbit model. J Bone Joint Surg Br. 2007;89(7):984–8. https://doi.org/10.1302/0301-620X.89B7.18980.

    Article  CAS  PubMed  Google Scholar 

  87. Abbaspour A, Takahashi M, Sairyo K, Takata S, Yukata K, Inui A, et al. Optimal increase in bone mass by continuous local infusion of alendronate during distraction osteogenesis in rabbits. Bone. 2009;44(5):917–23. https://doi.org/10.1016/j.bone.2009.01.007.

    Article  CAS  PubMed  Google Scholar 

  88. Alp YE, Taskaldiran A, Onder ME, Karahan S, Kocyigit ID, Atil F, et al. Effects of local low-dose alendronate injections into the distraction gap on new bone formation and distraction rate on distraction osteogenesis. J Craniofac Surg. 2017;28(8):2174–8. https://doi.org/10.1097/SCS.0000000000002615.

    Article  PubMed  Google Scholar 

  89. Kucuk D, Ay S, Kara MI, Avunduk MC, Gumus C. Comparison of local and systemic alendronate on distraction osteogenesis. Int J Oral Maxillofac Surg. 2011;40(12):1395–400. https://doi.org/10.1016/j.ijom.2011.08.004.

    Article  PubMed  Google Scholar 

  90. Body JJ, Gaich GA, Scheele WH, Kulkarni PM, Miller PD, Peretz A, et al. A randomized double-blind trial to compare the efficacy of teriparatide [recombinant human parathyroid hormone (1–34)] with alendronate in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2002;87(10):4528–35. https://doi.org/10.1210/jc.2002-020334.

    Article  CAS  PubMed  Google Scholar 

  91. Aleksyniene R, Thomsen JS, Eckardt H, Bundgaard KG, Lind M, Hvid I. Parathyroid hormone PTH(1–34) increases the volume, mineral content, and mechanical properties of regenerated mineralizing tissue after distraction osteogenesis in rabbits. Acta Orthop. 2009;80(6):716–23. https://doi.org/10.3109/17453670903350032.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ohata T, Maruno H, Ichimura S. Changes over time in callus formation caused by intermittently administering PTH in rabbit distraction osteogenesis models. J Orthop Surg Res. 2015;10:88. https://doi.org/10.1186/s13018-015-0228-2.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wagner F, Vach W, Augat P, Varady PA, Panzer S, Keiser S, et al. Daily subcutaneous Teriparatide injection increased bone mineral density of newly formed bone after tibia distraction osteogenesis, a randomized study. Injury. 2019;50(8):1478–82. https://doi.org/10.1016/j.injury.2019.06.001.

    Article  PubMed  Google Scholar 

  94. Kitoh H, Kitakoji T, Tsuchiya H, Katoh M, Ishiguro N. Distraction osteogenesis of the lower extremity in patients with achondroplasia/hypochondroplasia treated with transplantation of culture-expanded bone marrow cells and platelet-rich plasma. J Pediatr Orthop. 2007;27(6):629–34. https://doi.org/10.1097/BPO.0b013e318093f523.

    Article  PubMed  Google Scholar 

  95. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010;46(4):1156–61. https://doi.org/10.1016/j.bone.2009.12.017.

    Article  CAS  PubMed  Google Scholar 

  96. Lai QG, Yuan KF, Xu X, Li DR, Li GJ, Wei FL, et al. Transcription factor osterix modified bone marrow mesenchymal stem cells enhance callus formation during distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111(4):412–9. https://doi.org/10.1016/j.tripleo.2010.05.012.

    Article  PubMed  Google Scholar 

  97. Morillo CMR, Sloniak MC, Goncalves F, Villar CC. Efficacy of stem cells on bone consolidation of distraction osteogenesis in animal models: a systematic review. Braz Oral Res. 2018;32:e83. https://doi.org/10.1590/1807-3107bor-2018.vol32.0083.

    Article  PubMed  Google Scholar 

  98. Weng Z, Wang C, Zhang C, Xu J, Chai Y, Jia Y, et al. All-trans retinoic acid promotes osteogenic differentiation and bone consolidation in a rat distraction osteogenesis model. Calcif Tissue Int. 2019;104(3):320–30. https://doi.org/10.1007/s00223-018-0501-6.

    Article  CAS  PubMed  Google Scholar 

  99. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7. https://doi.org/10.1126/science.284.5411.143.

    Article  CAS  PubMed  Google Scholar 

  100. Sunay O, Can G, Cakir Z, Denek Z, Kozanoglu I, Erbil G, et al. Autologous rabbit adipose tissue-derived mesenchymal stromal cells for the treatment of bone injuries with distraction osteogenesis. Cytotherapy. 2013;15(6):690–702. https://doi.org/10.1016/j.jcyt.2013.02.004.

    Article  CAS  PubMed  Google Scholar 

  101. Morcos MW, Al-Jallad H, Hamdy R. Comprehensive review of adipose stem cells and their implication in distraction osteogenesis and bone regeneration. Biomed Res Int. 2015;2015:842975. https://doi.org/10.1155/2015/842975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meletis Rozis.

Ethics declarations

This study does not contain any studies including human or animal subjects.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozis, M., Polyzois, V. & Pneumaticos, S. The Distraction Osteogenesis Callus: a Review of the Literature. Clinic Rev Bone Miner Metab 19, 24–35 (2021). https://doi.org/10.1007/s12018-021-09282-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-021-09282-x

Keywords

Navigation