Skip to main content
Log in

Current concepts of leg lengthening

  • Current Concept Review
  • Published:
Journal of Children's Orthopaedics

Abstract

Any lower limb discrepancy may be equalised by conservative means (insoles, prosthesis and orthosis). However, their long-term acceptance is low in regard to function, costs, expenditure and appearance. Timely epiphysiodesis is the best option in uniplanar deformities with adequate remaining growth and for patients whose predicted final body height is above the 50th percentile. However, many patients present late or with multi-planar deformities, which warrant more sophisticated operative approaches. The history of surgical bone lengthening comprises 100 exciting years of struggling, development and ongoing learning. The initial strategy of acute or rapid incremental distraction had lasted almost half a century until Ilizarov recognised the benefits of biological periosteum-preserving osteotomies and incremental lengthening at slow rates (1 mm/day) at a 4 × 0.25-mm daily rhythm, well appreciated as callotasis. In parallel, ring and wire constructs made complex three-dimensional axial, translational and rotational bone moulding possible. Taylor Spatial Frames—built on hexapod strut-linked platform technology as known from flight simulators—took limb correction to a more reliable, more precise and aesthetical level, all the more that the whole process became web-based. It represents state-of-the-art methodology and technology for complex, multi-plane deformities. Due to the significant risk of secondary malalignment, indications for lengthening by unilateral fixation have shrunken to moderate amounts of length disparity and uni- to bi-planar deformities in patients with still open physes. Mechanical or motorised, minimally invasively placed nails prevent muscle fixation and, therefore, ease rehabilitation, increase patient comfort and potentially shorten the overall time of sick leave and refrain from sports activities. Hence, they offer a valuable alternative for low-grade complexity situations. It remains to be proved if the significantly higher implant costs are compensated by lower treatment costs. Overall, limb lengthening, particularly in combination with multi-planar deformity correction, can still be an arduous endeavour. In any case, wise judgement of the patient’s deformity, medical and biological situation, psychosocial environment, selection of the appropriate method and hardware, as well as meticulous operating technique by an experienced surgeon are the cornerstones of successful outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Berliner Klinische Wochenschrift 1869: An den unteren Extremitäten bedingen 2–4 cm betragende Verkürzungen schon erhebliche Funktionsstörungen und es wäre gewiss wichtig, sie in operativer Weise auszugleichen. Von grosser Bedeutung wird, so glaube ich, für die chirurgische Praxis die Tatsache sein, dass das Längenwachstum der Knochen durch Dehnung gesteigert werden kann.

  2. http://www.jcharlestaylor.com.

References

  1. Guichet JM, Spivak JM, Trouilloud P et al (1991) Lower limb-length discrepancy. An epidemiologic study. Clin Orthop Relat Res 272:235–241

    Google Scholar 

  2. Gross RH (1978) Leg length discrepancy: how much is too much? Orthopedics 1:307–310

    CAS  Google Scholar 

  3. Hellsing AL (1988) Leg length inequality. A prospective study of young men during their military service. Ups J Med Sci 93:245–253

    CAS  Google Scholar 

  4. Harvey WF, Yang M, Cooke TD et al (2010) Association of leg-length inequality with knee osteoarthritis: a cohort study. Ann Intern Med 152:287–295

    Google Scholar 

  5. Eyre-Brook AL (1951) Bone-shortening for inequality of leg lengths. Br Med J 1:222–225

    CAS  Google Scholar 

  6. Acharya A, Guichet JM (2006) Effect on knee motion of gradual intramedullary femoral lengthening. Acta Orthop Belg 72:569–577

    Google Scholar 

  7. Antoci V, Ono CM, Antoci V Jr et al (2008) Pin-tract infection during limb lengthening using external fixation. Am J Orthop (Belle Mead NJ) 37:E150–E154

    Google Scholar 

  8. Aronson J (1994) Experimental and clinical experience with distraction osteogenesis. Cleft Palate Craniofac J 31:473–481; discussion 481–482

    CAS  Google Scholar 

  9. Barker KL, Simpson AH, Lamb SE (2001) Loss of knee range of motion in leg lengthening. J Orthop Sports Phys Ther 31:238–244; discussion 245–246

    CAS  Google Scholar 

  10. Bonnard C, Favard L, Sollogoub I et al (1993) Limb lengthening in children using the Ilizarov method. Clin Orthop Relat Res 293:83–88

    Google Scholar 

  11. Bost FC, Larsen LJ (1956) Experiences with lengthening of the femur over an intramedullary rod. J Bone Joint Surg Am 38-A:567–584

    CAS  Google Scholar 

  12. Burghardt RD, Herzenberg JE, Specht SC et al (2011) Mechanical failure of the Intramedullary Skeletal Kinetic Distractor in limb lengthening. J Bone Joint Surg Br 93:639–643

    CAS  Google Scholar 

  13. Dahl MT, Gulli B, Berg T (1994) Complications of limb lengthening. A learning curve. Clin Orthop Relat Res 301:10–18

    Google Scholar 

  14. Eldridge JC, Bell DF (1991) Problems with substantial limb lengthening. Orthop Clin North Am 22:625–631

    CAS  Google Scholar 

  15. García-Cimbrelo E, Olsen B, Ruiz-Yagüe M et al (1992) Ilizarov technique. Results and difficulties. Clin Orthop Relat Res 283:116–123

    Google Scholar 

  16. Guichet JM, Deromedis B, Donnan LT et al (2003) Gradual femoral lengthening with the Albizzia intramedullary nail. J Bone Joint Surg Am 85-A:838–848

    Google Scholar 

  17. Guidera KJ, Hess WF, Highhouse KP et al (1991) Extremity lengthening: results and complications with the Orthofix system. J Pediatr Orthop 11:90–94

    CAS  Google Scholar 

  18. Herzenberg JE, Scheufele LL, Paley D et al (1994) Knee range of motion in isolated femoral lengthening. Clin Orthop Relat Res 301:49–54

    Google Scholar 

  19. Kenawey M, Krettek C, Liodakis E et al (2011) Insufficient bone regenerate after intramedullary femoral lengthening: risk factors and classification system. Clin Orthop Relat Res 469:264–273

    Google Scholar 

  20. Krieg AH, Speth BM, Foster BK (2008) Leg lengthening with a motorized nail in adolescents: an alternative to external fixators? Clin Orthop Relat Res 466:189–197

    Google Scholar 

  21. Noonan KJ, Leyes M, Forriol F et al (1998) Distraction osteogenesis of the lower extremity with use of monolateral external fixation. A study of two hundred and sixty-one femora and tibiae. J Bone Joint Surg Am 80:793–806

    CAS  Google Scholar 

  22. Paley D (1990) Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res 250:81–104

    Google Scholar 

  23. Suzuki S, Kasahara Y, Seto Y et al (1994) Dislocation and subluxation during femoral lengthening. J Pediatr Orthop 14:343–346

    CAS  Google Scholar 

  24. Young N, Bell DF, Anthony A (1994) Pediatric pain patterns during Ilizarov treatment of limb length discrepancy and angular deformity. J Pediatr Orthop 14:352–357

    CAS  Google Scholar 

  25. De Bastiani G, Aldegheri R, Renzi-Brivio L et al (1987) Limb lengthening by callus distraction (callotasis). J Pediatr Orthop 7:129–134

    Google Scholar 

  26. Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues: part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res 239:263–285

    Google Scholar 

  27. Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res 238:249–281

    Google Scholar 

  28. Paley D (1988) Current techniques of limb lengthening. J Pediatr Orthop 8:73–92

    CAS  Google Scholar 

  29. Aronson J (1997) Limb-lengthening, skeletal reconstruction, and bone transport with the Ilizarov method. J Bone Joint Surg Am 79:1243–1258

    CAS  Google Scholar 

  30. Codivilla A (1994) On the means of lengthening, in the lower limbs, the muscles and tissues which are shortened through deformity. 1904. Clin Orthop Relat Res 301:4–9

    Google Scholar 

  31. Codivilla A (1905) On the means of lengthening, in the lower limbs, the muscles and tissues which are shortened through deformity. Am J Orthop Surg 2:353–369

    Google Scholar 

  32. Wiedemann M (1996) Callus distraction: a new method? A historical review of limb lengthening. Clin Orthop Relat Res 327:291–304

    Google Scholar 

  33. Ombrédanne L (1913) Allongement d’un fémur sur un membre trop court. Bull Mém Soc Chir Paris 39:1177–1180

    Google Scholar 

  34. Putti V (1921) The operative lengthening of the femur. JAMA 77:934–935

    Google Scholar 

  35. Wittmoser R (1953) Zur Druckosteosynthese. Langenbecks Arch Klin Chir 276:229–231

    CAS  Google Scholar 

  36. Golyakhovsky V (1988) Gavriel A. Ilizarov: “The magician from Kurgan”. Bull Hosp Jt Dis Orthop Inst 48:12–16

    CAS  Google Scholar 

  37. Paterson D (1990) Leg-lengthening procedures. A historical review. Clin Orthop Relat Res 250:27–33

    Google Scholar 

  38. Kenwright J, White SH (1993) A historical review of limb lengthening and bone transport. Injury 24(Suppl 2):S9–S19

    Google Scholar 

  39. Wagner H (1971) Surgical leg prolongation. Chirurg 42:260–266

    CAS  Google Scholar 

  40. Wagner H (1978) Operative lengthening of the femur. Clin Orthop Relat Res 136:125–142

    Google Scholar 

  41. Ring PA (1958) Experimental bone lengthening by epiphysial distraction. Br J Surg 46:169–173

    CAS  Google Scholar 

  42. Fishbane BM, Riley LH Jr (1976) Continuous trans-physeal traction: a simple method of bone lengthening. Johns Hopkins Med J 138:79–81

    CAS  Google Scholar 

  43. Monticelli G, Spinelli R (1981) Distraction epiphysiolysis as a method of limb lengthening. III. Clinical applications. Clin Orthop Relat Res 154:274–285

    Google Scholar 

  44. Monticelli G, Spinelli R (1981) Distraction epiphysiolysis as a method of limb lengthening. I. Experimental study. Clin Orthop Relat Res 154:254–261

    Google Scholar 

  45. Monticelli G, Spinelli R, Bonucci E (1981) Distraction epiphysiolysis as a method of limb lengthening. II. Morphologic investigations. Clin Orthop Relat Res 154:262–273

    Google Scholar 

  46. Baumgart R, Betz A, Schweiberer L (1997) A fully implantable motorized intramedullary nail for limb lengthening and bone transport. Clin Orthop Relat Res 343:135–143

    Google Scholar 

  47. Betz A, Baumgart R, Schweiberer L (1990) First fully implantable intramedullary system for callus distraction—intramedullary nail with programmable drive for leg lengthening and segment displacement. Principles and initial clinical results. Chirurg 61:605–609

    CAS  Google Scholar 

  48. Manner HM, Huebl M, Radler C et al (2007) Accuracy of complex lower-limb deformity correction with external fixation: a comparison of the Taylor Spatial Frame with the Ilizarov ring fixator. J Child Orthop 1:55–61

    Google Scholar 

  49. Dammerer D, Kirschbichler L, Donnan G et al (2011) Clinical value of the Taylor Spatial Frame: a comparison with the Ilizarov and Orthofix fixators. J Child Orthop 5:343–349

    CAS  Google Scholar 

  50. Paley D, Herzenberg JE, Paremain G et al (1997) Femoral lengthening over an intramedullary nail. A matched-case comparison with Ilizarov femoral lengthening. J Bone Joint Surg Am 79:1464–1480

    CAS  Google Scholar 

  51. Kenawey M, Krettek C, Liodakis E et al (2011) Leg lengthening using intramedullay skeletal kinetic distractor: results of 57 consecutive applications. Injury 42:150–155

    Google Scholar 

  52. Leidinger B, Winkelmann W, Roedl R (2006) Limb lengthening with a fully implantable mechanical distraction intramedullary nail. Z Orthop Ihre Grenzgeb 144:419–426

    CAS  Google Scholar 

  53. Mahboubian S, Seah M, Fragomen AT et al (2011) Femoral lengthening with lengthening over a nail has fewer complications than intramedullary skeletal kinetic distraction. Clin Orthop Relat Res (Epub ahead of print)

  54. Singh S, Lahiri A, Iqbal M (2006) The results of limb lengthening by callus distraction using an extending intramedullary nail (Fitbone) in non-traumatic disorders. J Bone Joint Surg Br 88:938–942

    CAS  Google Scholar 

  55. Schiedel FM, Pip S, Wacker S et al (2011) Intramedullary limb lengthening with the Intramedullary Skeletal Kinetic Distractor in the lower limb. J Bone Joint Surg Br 93:788–792

    CAS  Google Scholar 

  56. Lenze U, Hasler CC, Krieg AH (2011) Intramedullary motorized nail for equalization of posttraumatic leg length discrepancies. Unfallchirurg 114:604–610

    CAS  Google Scholar 

  57. Ilizarov GA (1971) Basic principles of transosseous compression and distraction osteosynthesis. Ortop Travmatol Protez 32:7–15

    CAS  Google Scholar 

  58. Ilizarov GA, Deviatov AA, Trokhova VG (1972) Surgical lengthening of the shortened lower extremities. Vestn Khir Im I I Grek 108:100–103

    CAS  Google Scholar 

  59. García-Cimbrelo E, Curto de la Mano A, García-Rey E et al (2002) The intramedullary elongation nail for femoral lengthening. J Bone Joint Surg Br 84:971–977

    Google Scholar 

  60. Simpson AH, Cole AS, Kenwright J (1999) Leg lengthening over an intramedullary nail. J Bone Joint Surg Br 81:1041–1045

    CAS  Google Scholar 

  61. Jasiewicz B, Kacki W, Tesiorowski M et al (2008) Results of femoral lengthening over an intramedullary nail and external fixator. Chir Narzadow Ruchu Ortop Pol 73:177–183

    Google Scholar 

  62. Cole JD, Justin D, Kasparis T et al (2001) The intramedullary skeletal kinetic distractor (ISKD): first clinical results of a new intramedullary nail for lengthening of the femur and tibia. Injury 32(Suppl 4):SD129–SD139

    Google Scholar 

  63. Krieg AH, Lenze U, Speth BM et al (2011) Intramedullary leg lengthening with a motorized nail. Acta Orthop 82:344–350

    Google Scholar 

  64. Baumgart R, Bürklein D, Hinterwimmer S et al (2005) The management of leg-length discrepancy in Ollier’s disease with a fully implantable lengthening nail. J Bone Joint Surg Br 87:1000–1004

    CAS  Google Scholar 

  65. Eidelman M, Bialik V, Katzman A (2006) Correction of deformities in children using the Taylor spatial frame. J Pediatr Orthop B 15:387–395

    Google Scholar 

  66. Guichet JM (1999) Leg lengthening and correction of deformity using the femoral Albizzia nail. Orthopade 28:1066–1077

    CAS  Google Scholar 

  67. Dubousset J, Charpak G, Skalli W et al (2007) EOS stereo-radiography system: whole-body simultaneous anteroposterior and lateral radiographs with very low radiation dose. Rev Chir Orthop Reparatrice Appar Mot 93:141–143

    CAS  Google Scholar 

  68. Dewaele J, Fabry G (1992) The timing of epiphysiodesis. A comparative study between the use of the method of Anderson and Green and the Moseley chart. Acta Orthop Belg 58:43–47

    CAS  Google Scholar 

  69. Paley D, Bhave A, Herzenberg JE et al (2000) Multiplier method for predicting limb-length discrepancy. J Bone Joint Surg Am 82-A:1432–1446

    CAS  Google Scholar 

  70. Takahashi M, Kawasaki Y, Matsui Y et al (2010) Fragmental bone transport in conjunction with acute shortening followed by gradual lengthening for a failed infected nonunion of the tibia. J Orthop Sci 15:420–424

    Google Scholar 

  71. Zhang X, Liu T, Li Z et al (2007) Reconstruction with callus distraction for nonunion with bone loss and leg shortening caused by suppurative osteomyelitis of the femur. J Bone Joint Surg Br 89:1509–1514

    CAS  Google Scholar 

  72. Yokoyama K (2007) Acute shortening and re-lengthening in the management of bone and soft-tissue loss in complicated fractures of the tibia. J Bone Joint Surg Br 89:846; author reply 846–847

    CAS  Google Scholar 

  73. Said GZ, el-Sherif EK (1995) Resection-shortening-distraction for malignant bone tumours. A report of two cases. J Bone Joint Surg Br 77:185–188

    CAS  Google Scholar 

  74. Aldegheri R (1997) Femoral callotasis. J Pediatr Orthop B 6:42–47

    CAS  Google Scholar 

  75. Guichet JM, Braillon P, Bodenreider O et al (1998) Periosteum and bone marrow in bone lengthening: a DEXA quantitative evaluation in rabbits. Acta Orthop Scand 69:527–531

    CAS  Google Scholar 

  76. Kojimoto H, Yasui N, Goto T et al (1988) Bone lengthening in rabbits by callus distraction. The role of periosteum and endosteum. J Bone Joint Surg Br 70:543–549

    CAS  Google Scholar 

  77. Aronson J, Shen X (1994) Experimental healing of distraction osteogenesis comparing metaphyseal with diaphyseal sites. Clin Orthop Relat Res 301:25–30

    Google Scholar 

  78. Aronson J, Harrison BH, Stewart CL et al (1989) The histology of distraction osteogenesis using different external fixators. Clin Orthop Relat Res 241:106–116

    Google Scholar 

  79. Aronson J (1994) Temporal and spatial increases in blood flow during distraction osteogenesis. Clin Orthop Relat Res 301:124–131

    Google Scholar 

  80. Delloye C, Delefortrie G, Coutelier L et al (1990) Bone regenerate formation in cortical bone during distraction lengthening. An experimental study. Clin Orthop Relat Res 250:34–42

    Google Scholar 

  81. Yasui N, Kojimoto H, Sasaki K et al (1993) Factors affecting callus distraction in limb lengthening. Clin Orthop Relat Res 293:55–60

    Google Scholar 

  82. Frierson M, Ibrahim K, Boles M et al (1994) Distraction osteogenesis. A comparison of corticotomy techniques. Clin Orthop Relat Res 301:19–24

    Google Scholar 

  83. Ilizarov GA (1990) Clinical application of the tension–stress effect for limb lengthening. Clin Orthop Relat Res 250:8–26

    Google Scholar 

  84. Brutscher R, Rahn BA, Rüter A et al (1993) The role of corticotomy and osteotomy in the treatment of bone defects using the Ilizarov technique. J Orthop Trauma 7:261–269

    CAS  Google Scholar 

  85. Steen H, Fjeld TO, Miller JA et al (1990) Biomechanical factors in the metaphyseal- and diaphyseal-lengthening osteotomy. An experimental and theoretic analysis in the ovine tibia. Clin Orthop Relat Res 259:282–294

    Google Scholar 

  86. Paley D, Tetsworth K (1991) Percutaneous osteotomies. Osteotome and Gigli saw techniques. Orthop Clin North Am 22:613–624

    CAS  Google Scholar 

  87. Price CT, Cole JD (1990) Limb lengthening by callotasis for children and adolescents. Early experience. Clin Orthop Relat Res 250:105–111

    Google Scholar 

  88. Guichet JM, Grammont PM, Trouilloud P (1992) A nail for progressive lengthening. An animal experiment with a 2-year follow-up. Chirurgie 118:405–410

    CAS  Google Scholar 

  89. Aldegheri R, Renzi-Brivio L, Agostini S (1989) The callotasis method of limb lengthening. Clin Orthop Relat Res 241:137–145

    Google Scholar 

  90. Hankemeier S, Gösling T, Pape HC et al (2005) Limb lengthening with the Intramedullary Skeletal Kinetic Distractor (ISKD). Oper Orthop Traumatol 17:79–101

    Google Scholar 

  91. Cattaneo R, Villa A, Catagni MA et al (1990) Lengthening of the humerus using the Ilizarov technique. Description of the method and report of 43 cases. Clin Orthop Relat Res 250:117–124

    Google Scholar 

  92. Fischgrund J, Paley D, Suter C (1994) Variables affecting time to bone healing during limb lengthening. Clin Orthop Relat Res 301:31–37

    Google Scholar 

  93. Ganey TM, Klotch DW, Sasse J et al (1994) Basement membrane of blood vessels during distraction osteogenesis. Clin Orthop Relat Res 301:132–138

    Google Scholar 

  94. Herzenberg JE, Waanders NA (1991) Calculating rate and duration of distraction for deformity correction with the Ilizarov technique. Orthop Clin North Am 22:601–611

    CAS  Google Scholar 

  95. Price CT, Mann JW (1991) Experience with the Orthofix device for limb lengthening. Orthop Clin North Am 22:651–661

    CAS  Google Scholar 

  96. Little DG, Cornell MS, Hile MS et al (2001) Effect of pamidronate on distraction osteogenesis and fixator-related osteoporosis. Injury 32(Suppl 4):SD14–SD20

    Google Scholar 

  97. Takahashi M, Yukata K, Matsui Y et al (2006) Bisphosphonate modulates morphological and mechanical properties in distraction osteogenesis through inhibition of bone resorption. Bone 39:573–581

    CAS  Google Scholar 

  98. Beck A, Salem K, Krischak G et al (2005) Nonsteroidal anti-inflammatory drugs (NSAIDs) in the perioperative phase in traumatology and orthopedics effects on bone healing. Oper Orthop Traumatol 17:569–578

    Google Scholar 

  99. Aronson J, Harp JH (1994) Mechanical forces as predictors of healing during tibial lengthening by distraction osteogenesis. Clin Orthop Relat Res 301:73–79

    Google Scholar 

  100. Aronson J, Good B, Stewart C et al (1990) Preliminary studies of mineralization during distraction osteogenesis. Clin Orthop Relat Res 250:43–49

    Google Scholar 

  101. Karaharju EO, Aalto K, Kahri A et al (1993) Distraction bone healing. Clin Orthop Relat Res 297:38–43

    Google Scholar 

  102. Orbay JL, Frankel VH, Finkle JE et al (1992) Canine leg lengthening by the Ilizarov technique. A biomechanical, radiologic, and morphologic study. Clin Orthop Relat Res 278:265–273

    Google Scholar 

  103. Shearer JR, Roach HI, Parsons SW (1992) Histology of a lengthened human tibia. J Bone Joint Surg Br 74:39–44

    CAS  Google Scholar 

  104. Ippolito E, Peretti G, Bellocci M et al (1994) Histology and ultrastructure of arteries, veins, and peripheral nerves during limb lengthening. Clin Orthop Relat Res 308:54–62

    Google Scholar 

  105. Eyres KS, Bell MJ, Kanis JA (1993) New bone formation during leg lengthening. Evaluated by dual energy X-ray absorptiometry. J Bone Joint Surg Br 75:96–106

    CAS  Google Scholar 

  106. Harp JH, Aronson J, Hollis M (1994) Noninvasive determination of bone stiffness for distraction osteogenesis by quantitative computed tomography scans. Clin Orthop Relat Res 301:42–48

    Google Scholar 

  107. Brunner UH, Cordey J, Schweiberer L et al (1994) Force required for bone segment transport in the treatment of large bone defects using medullary nail fixation. Clin Orthop Relat Res 301:147–155

    Google Scholar 

  108. Blane CE, Herzenberg JE, DiPietro MA (1991) Radiographic imaging for Ilizarov limb lengthening in children. Pediatr Radiol 21:117–120

    CAS  Google Scholar 

  109. Hughes TH, Maffulli N, Green V et al (1994) Imaging in bone lengthening. A review. Clin Orthop Relat Res 308:50–53

    Google Scholar 

  110. Minty I, Maffulli N, Hughes TH et al (1994) Radiographic features of limb lengthening in children. Acta Radiol 35:555–559

    CAS  Google Scholar 

  111. Walker CW, Aronson J, Kaplan PA et al (1991) Radiologic evaluation of limb-lengthening procedures. AJR Am J Roentgenol 156:353–358

    CAS  Google Scholar 

  112. Li R, Saleh M, Yang L et al (2006) Radiographic classification of osteogenesis during bone distraction. J Orthop Res 24:339–347

    Google Scholar 

  113. Sakurakichi K, Tsuchiya H, Kabata T et al (2005) Correction of juxtaarticular deformities in children using the Ilizarov apparatus. J Orthop Sci 10:360–366

    Google Scholar 

  114. Aldegheri R (1999) Distraction osteogenesis for lengthening of the tibia in patients who have limb-length discrepancy or short stature. J Bone Joint Surg Am 81:624–634

    CAS  Google Scholar 

  115. Paley D, Herzenberg JE, Tetsworth K et al (1994) Deformity planning for frontal and sagittal plane corrective osteotomies. Orthop Clin North Am 25:425–465

    CAS  Google Scholar 

  116. Kawamura B, Hosono S, Takahashi T et al (1968) Limb lengtening by means of subcutaneous osteotomy. Experimental and clinical studies. J Bone Joint Surg Am 50:851–878

    CAS  Google Scholar 

  117. Lee DY, Choi IH, Chung CY et al (1993) Effect of tibial lengthening on the gastrocnemius muscle. A histopathologic and morphometric study in rabbits. Acta Orthop Scand 64:688–692

    CAS  Google Scholar 

  118. Matano T, Tamai K, Kurokawa T (1994) Adaptation of skeletal muscle in limb lengthening: a light diffraction study on the sarcomere length in situ. J Orthop Res 12:193–196

    CAS  Google Scholar 

  119. Velazquez RJ, Bell DF, Armstrong PF et al (1993) Complications of use of the Ilizarov technique in the correction of limb deformities in children. J Bone Joint Surg Am 75:1148–1156

    CAS  Google Scholar 

  120. Barker KL, Lamb SE, Simpson HR (2010) Recovery of muscle strength and power after limb-lengthening surgery. Arch Phys Med Rehabil 91:384–388

    Google Scholar 

  121. Lee DY, Han TR, Choi IH et al (1992) Changes in somatosensory-evoked potentials in limb lengthening. An experimental study on rabbits’ tibiae. Clin Orthop Relat Res 285:273–279

    Google Scholar 

  122. Strong M, Hruska J, Czyrny J et al (1994) Nerve palsy during femoral lengthening: MRI, electrical, and histologic findings in the central and peripheral nervous systems—a canine model. J Pediatr Orthop 14:347–351

    CAS  Google Scholar 

  123. Olney BW, Jayaraman G (1994) Joint reaction forces during femoral lengthening. Clin Orthop Relat Res 301:64–67

    Google Scholar 

  124. Lee DY, Chung CY, Choi IH (1993) Longitudinal growth of the rabbit tibia after callotasis. J Bone Joint Surg Br 75:898–903

    CAS  Google Scholar 

  125. Stanitski DF (1994) Treatment of deformity secondary to metabolic bone disease with the Ilizarov technique. Clin Orthop Relat Res 301:38–41

    Google Scholar 

  126. Hope PG, Crawfurd EJ, Catterall A (1994) Bone growth following lengthening for congenital shortening of the lower limb. J Pediatr Orthop 14:339–342

    CAS  Google Scholar 

  127. Grill F (1989) Correction of complicated extremity deformities by external fixation. Clin Orthop Relat Res 241:166–176

    Google Scholar 

  128. Rödl R, Leidinger B, Böhm A et al (2003) Correction of deformities with conventional and hexapod frames—comparison of methods. Z Orthop Ihre Grenzgeb 141:92–98

    Google Scholar 

  129. Seide K, Wolter D, Kortmann HR (1999) Fracture reduction and deformity correction with the hexapod Ilizarov fixator. Clin Orthop Relat Res 363:186–195

    Google Scholar 

  130. Fadel M, Hosny G (2005) The Taylor spatial frame for deformity correction in the lower limbs. Int Orthop 29:125–129

    Google Scholar 

  131. Sluga M, Pfeiffer M, Kotz R et al (2003) Lower limb deformities in children: two-stage correction using the Taylor spatial frame. J Pediatr Orthop B 12:123–128

    Google Scholar 

  132. Oedekoven G, Jansen D, Raschke M et al (1996) The monorail system—bone segment transport over unreamed interlocking nails. Chirurg 67:1069–1079

    CAS  Google Scholar 

  133. Lee WH, Huang SC (1997) Femoral lengthening: callotasis with Ilizarov external fixator alone and with intramedullary locking nail. J Formos Med Assoc 96:98–102

    CAS  Google Scholar 

  134. Raschke M, Oedekoven G, Ficke J et al (1993) The monorail method for segment bone transport. Injury 24(Suppl 2):S54–S61

    Google Scholar 

  135. Klein MP, Rahn BA, Frigg R et al (1990) Reaming versus non-reaming in medullary nailing: interference with cortical circulation of the canine tibia. Arch Orthop Trauma Surg 109:314–316

    CAS  Google Scholar 

  136. Reichert IL, McCarthy ID, Hughes SP (1995) The acute vascular response to intramedullary reaming. Microsphere estimation of blood flow in the intact ovine tibia. J Bone Joint Surg Br 77:490–493

    CAS  Google Scholar 

  137. Trueta J, Buhr AJ (1963) The vascular contribution to osteogenesis. V. The vasculature supplying the epiphysial cartilage in rachitic rats. J Bone Joint Surg Br 45:572–581

    CAS  Google Scholar 

  138. Lin CC, Huang SC, Liu TK et al (1996) Limb lengthening over an intramedullary nail. An animal study and clinical report. Clin Orthop Relat Res 330:208–216

    Google Scholar 

  139. Kristiansen LP, Steen H (1999) Lengthening of the tibia over an intramedullary nail, using the Ilizarov external fixator. Major complications and slow consolidation in 9 lengthenings. Acta Orthop Scand 70:271–274

    CAS  Google Scholar 

  140. Götz J, Schellmann WD (1975) Continuous lengthening of the femur with intramedullary stabilisation (author’s transl). Arch Orthop Unfallchir 82:305–310

    Google Scholar 

  141. Baumann F, Harms J (1977) The extension nail. A new method for lengthening of the femur and tibia (author’s transl). Arch Orthop Unfallchir 90:139–146

    CAS  Google Scholar 

  142. Bliskunov AI (1983) Intramedullary distraction of the femur (preliminary report). Ortop Travmatol Protez 10:59–62

    Google Scholar 

  143. Witt AN, Jäger M, Bruns H et al (1978) An implantable femur distractor for operative leg lengthening (author’s transl). Arch Orthop Trauma Surg 92:291–296

    CAS  Google Scholar 

  144. Younger AS, Mackenzie WG, Morrison JB (1994) Femoral forces during limb lengthening in children. Clin Orthop Relat Res 301:55–63

    Google Scholar 

  145. Pettine KA, Chao EY, Kelly PJ (1993) Analysis of the external fixator pin–bone interface. Clin Orthop Relat Res 293:18–27

    Google Scholar 

  146. Young NL, Davis RJ, Bell DF et al (1993) Electromyographic and nerve conduction changes after tibial lengthening by the Ilizarov method. J Pediatr Orthop 13:473–477

    CAS  Google Scholar 

  147. Krieg AH, Lenze U, Hasler CC (2010) Ilizarov hip reconstruction without external fixation: a new technique. J Child Orthop 4:259–266

    CAS  Google Scholar 

  148. Krettek C, Stephan C, Schandelmaier P et al (1999) The use of Poller screws as blocking screws in stabilising tibial fractures treated with small diameter intramedullary nails. J Bone Joint Surg Br 81:963–968

    CAS  Google Scholar 

  149. Neel MD, Heck R, Britton L et al (2004) Use of a smooth press-fit stem preserves physeal growth after tumor resection. Clin Orthop Relat Res 426:125–128

    Google Scholar 

  150. Raney EM, Ogden JA, Grogan DP (1993) Premature greater trochanteric epiphysiodesis secondary to intramedullary femoral rodding. J Pediatr Orthop 13:516–520

    CAS  Google Scholar 

  151. Potaczek T, Kacki W, Jasiewicz B et al (2008) Femur lengthening with a telescopic intramedullary nail ISKD—method presentation and early clinical results. Chir Narzadow Ruchu Ortop Pol 73:10–14

    Google Scholar 

  152. Wolfson N, Hearn TC, Thomason JJ et al (1990) Force and stiffness changes during Ilizarov leg lengthening. Clin Orthop Relat Res 250:58–60

    Google Scholar 

  153. Hardy JM, Tadlaoui A, Wirotius JM et al (1991) The Sequoia circular fixator for limb lengthening. Orthop Clin North Am 22:663–675

    CAS  Google Scholar 

  154. Donnan LT, Saleh M, Rigby AS (2003) Acute correction of lower limb deformity and simultaneous lengthening with a monolateral fixator. J Bone Joint Surg Br 85:254–260

    Google Scholar 

  155. Krieg JC, Mirza A (2009) Case report: Patella baja after retrograde femoral nail insertion. Clin Orthop Relat Res 467:566–571

    Google Scholar 

  156. Stanitski DF, Bullard M, Armstrong P et al (1995) Results of femoral lengthening using the Ilizarov technique. J Pediatr Orthop 15:224–231

    CAS  Google Scholar 

  157. Gordon JE, Kelly-Hahn J, Carpenter CJ et al (2000) Pin site care during external fixation in children: results of a nihilistic approach. J Pediatr Orthop 20:163–165

    CAS  Google Scholar 

  158. Green SA (1983) Complications of external skeletal fixation. Clin Orthop Relat Res 180:109–116

    Google Scholar 

  159. Haapala J, Arokoski JP, Hyttinen MM et al (1999) Remobilization does not fully restore immobilization induced articular cartilage atrophy. Clin Orthop Relat Res 362:218–229

    Google Scholar 

  160. Stanitski DF (1994) The effect of limb lengthening on articular cartilage. An experimental study. Clin Orthop Relat Res 301:68–72

    Google Scholar 

  161. Goldspink G (1999) Changes in muscle mass and phenotype and the expression of autocrine and systemic growth factors by muscle in response to stretch and overload. J Anat 194(Pt 3):323–334

    CAS  Google Scholar 

  162. Simpson H, Barker K (2002) Effect on knee flexion of a modification to the surgical technique of pin placement during femoral lengthening. J Pediatr Orthop B 11:307–312

    Google Scholar 

  163. Coglianese DB, Herzenberg JE, Goulet JA (1993) Physical therapy management of patients undergoing limb lengthening by distraction osteogenesis. J Orthop Sports Phys Ther 17:124–132

    CAS  Google Scholar 

  164. Green SA (1991) Postoperative management during limb lengthening. Orthop Clin North Am 22:723–734

    CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol C. Hasler.

About this article

Cite this article

Hasler, C.C., Krieg, A.H. Current concepts of leg lengthening. J Child Orthop 6, 89–104 (2012). https://doi.org/10.1007/s11832-012-0391-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11832-012-0391-5

Keywords

Navigation