Skip to main content

Advertisement

Log in

Cyclic Tensile Strain Upregulates Pro-Inflammatory Cytokine Expression Via FAK-MAPK Signaling in Chondrocytes

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Excessive mechanical stimulation is considered an important factor in the destruction of chondrocytes. Focal adhesion kinase (FAK) is non-receptor tyrosine kinase related to a number of different signaling proteins. Little is known about the function of FAK in chondrocytes under mechanical stimulation. In the present study, we investigated the function of FAK in mechanical signal transduction and the mechanism through which cyclic tensile strain (CTS) induces expression of inflammation-related factors. Mouse ATDC5 chondrogenic cells were subjected to CTS of 0.5 Hz to 10% cell elongation with an FAK inhibitor. The expression of genes encoding COX-2, IL-1β, and TNF-α was examined using real-time RT-PCR after CTS application with FAK inhibitor. Phosphorylation of p-38, ERK, and JNK was analyzed by Western blotting. Differences in COX-2 expression following pretreatment with FAK, p-38, ERK, and JNK inhibitors were compared by Western blotting. We found that CTS increased the expression of genes encoding COX-2, IL-1β, and TNF-α and activated the phosphorylation of FAK, p-38, ERK, and JNK. Pretreatment with an FAK inhibitor for 2 h reduced the expression of genes encoding COX-2, IL-1β, and TNF-α induced by CTS-associated inflammation and decreased phosphorylation of FAK, p-38, ERK, and JNK. Pretreatment with FAK, p-38, ERK, and JNK inhibitors markedly suppressed COX-2 and IL-1β protein expression. In conclusion, FAK appears to regulate inflammation in chondrocytes under CTS via MAPK pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tanaka, S., C. Hamanishi, H. Kikuchi, and K. Fukuda. 1998. Factors related to degradation of articular cartilage in osteoarthritis: A review. Seminars in Arthritis and Rheumatism 27 (6): 392–399.

    Article  PubMed  CAS  Google Scholar 

  2. Su, S.C., K. Tanimoto, Y. Tanne, et al. 2014. Celecoxib exerts protective effects on extracellular matrix metabolism of mandibular condylar chondrocytes under excessive mechanical stress. Osteoarthritis and Cartilage 22 (6): 845–851.

    Article  PubMed  CAS  Google Scholar 

  3. Zheng, W., Z. Tao, C. Chen, C. Zhang, H. Zhang, X. Ying, and H. Chen. 2017. Plumbagin prevents IL-1beta-induced inflammatory response in human osteoarthritis chondrocytes and prevents the progression of osteoarthritis in mice. Inflammation 40 (3): 849–860.

    Article  PubMed  CAS  Google Scholar 

  4. Benito, M.J., D.J. Veale, O. FitzGerald, W. van den Berg, and B. Bresnihan. 2005. Synovial tissue inflammation in early and late osteoarthritis. Annals of the Rheumatic Diseases 64 (9): 1263–1267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Campbell, I.D., and M.J. Humphries. 2011. Integrin structure, activation, and interactions. Cold Spring Harbor Perspectives in Biology 3 (3).

  6. Luo, D.Y., R. Wazir, Y. Tian, X. Yue, T.Q. Wei, and K.J. Wang. 2013. Integrin alphav mediates contractility whereas integrin alpha4 regulates proliferation of human bladder smooth muscle cells via FAK pathway under physiological stretch. The Journal of Urology 190 (4): 1421–1429.

    Article  PubMed  CAS  Google Scholar 

  7. Luu, N.T., K.E. Glen, S. Egginton, et al. 2013. Integrin-substrate interactions underlying shear-induced inhibition of the inflammatory response of endothelial cells. Thrombosis and Haemostasis 109 (2): 298–308.

    Article  PubMed  CAS  Google Scholar 

  8. Parsons, J.T. 2003. Focal adhesion kinase: The first ten years. Journal of Cell Science 116 (8): 1409–1416.

    Article  PubMed  CAS  Google Scholar 

  9. Bursell, L., A. Woods, C.G. James, D. Pala, A. Leask, and F. Beier. 2007. Src kinase inhibition promotes the chondrocyte phenotype. Arthritis Research & Therapy 9 (5): R105.

    Article  CAS  Google Scholar 

  10. Hou, C., Z. Zhang, Z. Zhang, et al. 2015. Presence and function of microRNA-92a in chondrogenic ATDC5 and adipose-derived mesenchymal stem cells. Molecular Medicine Reports 12 (4): 4877–4886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Schlaepfer, D.D., C.R. Hauck, and D.J. Sieg. 1999. Signaling through focal adhesion kinase. Progress in Biophysics and Molecular Biology 71 (3–4): 435–478.

    Article  PubMed  CAS  Google Scholar 

  12. Yang, M., L.W. Xiao, E.Y. Liao, Q.J. Wang, B.B. Wang, and J.X. Lei. 2014. The role of integrin-β/FAK in cyclic mechanical stimulation in MG-63 cells. International Journal of Clinical and Experimental Pathology 7 (11): 7451–7459.

    PubMed  PubMed Central  Google Scholar 

  13. Planas-Rigol, E., N. Terrades-Garcia, M. Corbera-Bellalta, E. Lozano, M.A. Alba, M. Segarra, G. Espígol-Frigolé, S. Prieto-González, J. Hernández-Rodríguez, S. Preciado, R. Lavilla, and M.C. Cid. 2017. Endothelin-1 promotes vascular smooth muscle cell migration across the artery wall: A mechanism contributing to vascular remodelling and intimal hyperplasia in giant-cell arteritis. Annals of the Rheumatic Diseases 76 (9): 1624–1634.

    Article  PubMed  CAS  Google Scholar 

  14. Shi, Z.D., H. Wang, and J.M. Tarbell. 2011. Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating MMP-13 expression and cell motility via FAK-ERK in 3D collagen. PLoS One 6 (1): e15956.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zhou, J., W. Lin, H. Chen, Y. Fan, and C. Yang. 2016. TRESK contributes to pain threshold changes by mediating apoptosis via MAPK pathway in the spinal cord. Neuroscience 339: 622–633.

    Article  PubMed  CAS  Google Scholar 

  16. Johnson, G.L., and R. Lapadat. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298 (5600): 1911–1912.

    Article  PubMed  CAS  Google Scholar 

  17. Nayak, P.S., Y. Wang, T. Najrana, L.M. Priolo, M. Rios, S.K. Shaw, and J. Sanchez-Esteban. 2015. Mechanotransduction via TRPV4 regulates inflammation and differentiation in fetal mouse distal lung epithelial cells. Respiratory Research 16: 60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Kaneko, K., M. Ito, Y. Naoe, A. Lacy-Hulbert, and K. Ikeda. 2014. Integrin alphav in the mechanical response of osteoblast lineage cells. Biochemical and Biophysical Research Communications 447 (2): 352–357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Men, Y.T., Y.L. Jiang, L. Chen, C.Q. Zhang, and J.D. Ye. 2017. On mechanical mechanism of damage evolution in articular cartilage. Materials Science & Engineering. C, Materials for Biological Applications 78: 79–87.

    Article  CAS  Google Scholar 

  20. Tanaka, E., M.S. Detamore, and L.G. Mercuri. 2008. Degenerative disorders of the temporomandibular joint: Etiology, diagnosis, and treatment. Journal of Dental Research 87 (4): 296–307.

    Article  PubMed  CAS  Google Scholar 

  21. Huang, J., L.R. Ballou, and K.A. Hasty. 2007. Cyclic equibiaxial tensile strain induces both anabolic and catabolic responses in articular chondrocytes. Gene 404 (1–2): 101–109.

    Article  PubMed  CAS  Google Scholar 

  22. Harada, T., K. Yoshimura, O. Yamashita, K. Ueda, N. Morikage, Y. Sawada, and K. Hamano. 2017. Focal adhesion kinase promotes the progression of aortic aneurysm by modulating macrophage behavior. Arteriosclerosis, Thrombosis, and Vascular Biology 37 (1): 156–165.

    Article  PubMed  CAS  Google Scholar 

  23. Wong, V.W., K.C. Rustad, S. Akaishi, M. Sorkin, J.P. Glotzbach, M. Januszyk, E.R. Nelson, K. Levi, J. Paterno, I.N. Vial, A.A. Kuang, M.T. Longaker, and G.C. Gurtner. 2011. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nature Medicine 18 (1): 148–152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. O’Conor, C.J., N. Case, and F. Guilak. 2013. Mechanical regulation of chondrogenesis. Stem Cell Research & Therapy 4 (4): 61.

    Article  Google Scholar 

  25. Yang, X., Y. Guan, S. Tian, Y. Wang, K. Sun, and Q. Chen. 2016. Mechanical and IL-1beta responsive miR-365 contributes to osteoarthritis development by targeting histone deacetylase 4. International Journal of Molecular Sciences 17 (4): 436.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wang, C.L., H. Wang, F. Xiao, C.D. Wang, G.L. Hu, J.F. Zhu, C. Shen, B. Zuo, Y.M. Cui, D. Li, Yuan-Gao, X.L. Zhang, and X.D. Chen. 2017. Cyclic compressive stress-induced scinderin regulates progress of developmental dysplasia of the hip. Biochemical and Biophysical Research Communications 485 (2): 400–408.

    Article  PubMed  CAS  Google Scholar 

  27. Honda, K., S. Ohno, K. Tanimoto, C. Ijuin, N. Tanaka, T. Doi, Y. Kato, and K. Tanne. 2000. The effects of high magnitude cyclic tensile load on cartilage matrix metabolism in cultured chondrocytes. European Journal of Cell Biology 79 (9): 601–609.

    Article  PubMed  CAS  Google Scholar 

  28. Liu, Q., X. Hu, X. Zhang, X. Duan, P. Yang, F. Zhao, and Y. Ao. 2016. Effects of mechanical stress on chondrocyte phenotype and chondrocyte extracellular matrix expression. Scientific Reports 6: 37268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhu, H.F., Y.J. Liu, L.X. Chu, and W. Feng. 2011. Effects of mechanical stimulation on expression of integrin subunits in chondrocyte. Zhongguo Gu Shang 24 (3): 266–268.

    PubMed  CAS  Google Scholar 

  30. Kim, S.J., K.H. Park, Y.G. Park, S.W. Lee, and Y.G. Kang. 2013. Compressive stress induced the up-regulation of M-CSF, RANKL, TNF-alpha expression and the down-regulation of OPG expression in PDL cells via the integrin-FAK pathway. Archives of Oral Biology 58 (6): 707–716.

    Article  PubMed  CAS  Google Scholar 

  31. Yamashita, O., K. Yoshimura, A. Nagasawa, K. Ueda, N. Morikage, Y. Ikeda, and K. Hamano. 2013. Periostin links mechanical strain to inflammation in abdominal aortic aneurysm. PLoS One 8 (11): e79753.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Russell-Puleri, S., N.G. Dela Paz, D. Adams, et al. 2017. Fluid shear stress induces upregulation of COX-2 and PGI2 release in endothelial cells via a pathway involving PECAM-1, PI3K, FAK, and p38. American Journal of Physiology. Heart and Circulatory Physiology 312 (3): H485–H500.

    Article  PubMed  Google Scholar 

  33. Lin, S., and K. Mequanint. 2012. The role of Ras-ERK-IL-1beta signaling pathway in upregulation of elastin expression by human coronary artery smooth muscle cells cultured in 3D scaffolds. Biomaterials 33 (29): 7047–7056.

    Article  PubMed  CAS  Google Scholar 

  34. Mon, N.N., H. Hasegawa, A.A. Thant, P. Huang, Y. Tanimura, T. Senga, and M. Hamaguchi. 2006. A role for focal adhesion kinase signaling in tumor necrosis factor-alpha-dependent matrix metalloproteinase-9 production in a cholangiocarcinoma cell line, CCKS1. Cancer Research 66 (13): 6778–6784.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang, P., Y.J. Li, L.Y. Guo, G.F. Wang, K. Lu, and E.L. Yue. 2015. Focal adhesion kinase activation is required for TNF-alpha-induced production of matrix metalloproteinase-2 and proinflammatory cytokines in cultured human periodontal ligament fibroblasts. European Journal of Oral Sciences 123 (4): 249–253.

    Article  PubMed  CAS  Google Scholar 

  36. Liu, X.H., L.L. Pan, Y.L. Jia, D. Wu, Q.H. Xiong, Y. Wang, and Y.Z. Zhu. 2013. A novel compound DSC suppresses lipopolysaccharide-induced inflammatory responses by inhibition of Akt/NF-kappaB signalling in macrophages. European Journal of Pharmacology 708 (1–3): 8–13.

    Article  PubMed  CAS  Google Scholar 

  37. Binion, D.G., M.F. Otterson, and P. Rafiee. 2008. Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition. Gut 57 (11): 1509–1517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Li, S., M. Kim, Y.L. Hu, et al. 1997. Fluid shear stress activation of focal adhesion kinase. Linking to mitogen-activated protein kinases. The Journal of Biological Chemistry 272 (48): 30455–30462.

    Article  PubMed  CAS  Google Scholar 

  39. Norata, G.D., E. Callegari, H. Inoue, et al. 2004. HDL3 induces cyclooxygenase-2 expression and prostacyclin release in human endothelial cells via a p38 MAPK/CRE-dependent pathway: Effects on COX-2/PGI-synthase coupling. Arteriosclerosis, Thrombosis, and Vascular Biology 24 (5): 871–877.

    Article  PubMed  CAS  Google Scholar 

  40. Zaric, J., and C. Ruegg. 2005. Integrin-mediated adhesion and soluble ligand binding stabilize COX-2 protein levels in endothelial cells by inducing expression and preventing degradation. The Journal of Biological Chemistry 280 (2): 1077–1085.

    Article  PubMed  CAS  Google Scholar 

  41. Garonna, E., K.M. Botham, G.M. Birdsey, A.M. Randi, R.R. Gonzalez-Perez, and C.P.D. Wheeler-Jones. 2011. Vascular endothelial growth factor receptor-2 couples cyclo-oxygenase-2 with pro-angiogenic actions of leptin on human endothelial cells. PLoS One 6 (4): e18823.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Su, Y.P., C.N. Chen, H.I. Chang, et al. 2017. Low shear stress attenuates COX-2 expression induced by Resistin in human osteoarthritic chondrocytes. Journal of Cellular Physiology 232 (6): 1448–1457.

    Article  PubMed  CAS  Google Scholar 

  43. Cheng, K., P. Xia, Q. Lin, S. Shen, M. Gao, S. Ren, and X. Li. 2014. Effects of low-intensity pulsed ultrasound on integrin-FAK-PI3K/Akt mechanochemical transduction in rabbit osteoarthritis chondrocytes. Ultrasound in Medicine & Biology 40 (7): 1609–1618.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Grant-in-Aid (No. 26861788) for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Hirose.

Electronic Supplementary Material

Supplementary Figure

Expression of differentiation markers in culture model of chondrogenesis. Induction of mouse embryonal carcinoma-derived cell line ATDC5 differentiation into chondrocyte by insulin and ascorbate treatment. Expression of chondrogenic differentiation marker genes, Type II collagen and Type X collagen were evaluated by real-time RT-PCR. Relative mRNA levels were calculated as the ratio to that of S29. The data presented are the means ± S.D. of the three independent experiments. *p < 0.05, **p < 0.01 compared with day 0. (PPTX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanoshita, M., Hirose, N., Okamoto, Y. et al. Cyclic Tensile Strain Upregulates Pro-Inflammatory Cytokine Expression Via FAK-MAPK Signaling in Chondrocytes. Inflammation 41, 1621–1630 (2018). https://doi.org/10.1007/s10753-018-0805-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0805-8

KEY WORDS

Navigation