Skip to main content

Advertisement

Log in

Effects of Drugs on Bone Quality

  • Bone quality
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The term bone quality refers to factors that define bone mechanical strength and hence its fracture risk, either inclusive or exclusive of the quantity of mineralized tissue present. These factors include: bone size, density, shape (microarchitecture, geometry, remodeling cavity number size and distribution), porosity, mineral and collagen distribution and alignment, amount and distribution of microdamage, mineral composition, collagen cross-linking and other material properties. In this review, we will consider how pharmaceuticals used to treat osteoporosis (anabolic and catabolic agents) and those used for other conditions that affect bone quality and induce “secondary osteoporosis” alter these parameters. Observed effects vary with different methods of drug delivery, length and periodicity of use, other drugs used concomitantly or consecutively, user gender, methods of analysis and, most importantly, the genetic background of the species tested. We suggest that while increases in quantity of mineralized tissue present account for much of the reported reduction in fracture risk, drugs that correct the composition and microarchitecture of the bone, returning it to its preosteoporotic status, may provide additional benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AEDS:

Enzyme-inducing antiepileptic drugs

AFF:

Atypical femoral fractures

AGE:

Advanced glycation end products

ASBMR:

American Society for Bone and Mineral Research

BMD:

Bone mineral density

BMDD:

Bone mineral density distribution

BV/TV:

Bone volume fraction

Ca/P:

Calcium-to-phosphate molar ratio

Cat K :

Cathepsin K

CO3/PO4:

Carbonate-to-phosphate ratio

COPD:

Chronic obstructive pulmonary disease

Ct. Th:

Cortical thickness

Ct. Por:

Cortical porosity

CTX:

Carboxy terminal cross-links

CYP2R:

Vitamin D hydroxylase also known as cytochrome P450 2R1

DBP:

Vitamin D-binding protein

DKK:

Dickkopf transcription factor

FDA:

Federal Drug Administration

FEM:

Finite element methods or finite element analysis

FLEX/FIT:

Fracture Intervention Trial Long-Term Extension/Fracture Intervention Trial

FREEDOM:

Fracture Reduction Evaluation of Denosumab in Osteoporosis

FTIRI:

Fourier transform infrared imaging

HIV:

Human immunodeficiency virus (AIDS)

HORIZON-PFT:

Health Outcomes and Reduced Incidence with Zoledronic Acid Once Yearly–Pivotal Fracture Trial

HPO4:

Acid phosphate substitution

HRpQCT:

High-resolution peripheral quantitative computed tomography

HRT:

Hormone replacement therapy

IGF-I:

Insulin-like growth factor-1

LOFT:

Long-term Odanacatib Fracture Trial

LRP5/6:

Low-density lipoprotein receptor-related protein 5/6

MAP:

Kinase mitogen-activated protein kinase

NSAID:

Non-steroidal anti-inflammatory drugs

NMR:

Nuclear magnetic resonance

NTX:

N-terminal cross-links

ODS:

Osteogenic disorder Shionogi

OPG:

Osteoprotegerin

PERK:

ER stress-activated eIF2α kinase

PROOF:

PRevent Occurrence of Osteoporotic Fractures

PTH:

Parathyroid hormone

PTHrP:

Parathyroid hormone-related peptide

RA:

Rheumatoid arthritis

RANK:

Receptor activator of nuclear factor-kappa B

RANKL:

Receptor activator of nuclear factor-kappa B ligand

Ris/Zn-HA:

Risedronate/zinc hydroxyapatite composite

SARMS:

Selective androgen receptor modulators

SERMS:

Selective estrogen receptor modulators

Scl-Ab:

Sclerostin antibody

s-FRP1:

Secreted frizzled-related protein 1

siRNA:

Silencing RNA

SOST:

Sclerostin gene

SR:

Strontium ranelate

SSRIs:

Specific serotonin uptake inhibitors

Tb.Th:

Trabecular thickness

Tb.N:

Trabecular number

Tb.Pf:

Trabecular pattern factor

Tb.Sp:

Trabecular separation

TGF:

Transforming growth factor

TSH:

Thyroid-stimulating hormone

vBMD:

Volumetric bone mineral density

VDR:

Vitamin D receptor

Wnt:

Wingless transcription factor

XLR:

Collagen cross-link ratio

XST:

Crystallinity

References

  1. Hernandez CJ, Keaveny TM. A biomechanical perspective on bone quality. Bone. 2006;39:1173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fyhrie DP. Summary-Measuring “bone quality”. J Musculoskelet Neuronal Interact. 2005;5:318–20.

    CAS  PubMed  Google Scholar 

  3. Burr DB. Bone biomechanics and bone quality: effects of pharmaceutical agents used to treat osteoporosis. Clinic Rev Bone Miner Metab. 2016. doi:10.1007/s12018-016-9217-1.

  4. Hunt HB, Donnelly E. Bone quality assessment techniques: geometric, compositional, and mechanical characterization from macroscale to nanoscale. Clinic Rev Bone Miner Metab. 2016. doi:10.1007/s12018-016-9222-4.

  5. Aref MW, McNerny EMB, Brown D, Jepsen KJ, Allen MR. Zoledronate treatment has different effects in mouse strains with contrasting baseline bone mechanical phenotypes. Osteoporos Int. 2016. doi:10.1007/s00198-016-3701-9.

  6. Wen XX, Wang FQ, Xu C, et al. Time related changes of mineral and collagen and their roles in cortical bone mechanics of ovariectomized rabbits. PLoS One. 2015;10:e0127973.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Boskey AL, Marino J, Spevak L, et al. Are changes in composition in response to treatment of a mouse model of osteogenesis imperfecta sex-dependent? Clin Orthop Relat Res. 2015;473:2587–98.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Paschalis EP, Fratzl P, Gamsjaeger S, et al. Aging versus postmenopausal osteoporosis: bone composition and maturation kinetics at actively-forming trabecular surfaces of female subjects aged 1 to 84 Years. J Bone Miner Res. 2016;31:347–57.

    Article  CAS  PubMed  Google Scholar 

  9. Tong X, Burton IS, Isaksson H, et al. Cortical bone histomorphometry in male femoral neck: the investigation of age-association and regional differences. Calcif Tissue Int. 2015;96:295–306.

    Article  CAS  PubMed  Google Scholar 

  10. Makowski AJ, Uppuganti S, Wadeer SA, et al. The loss of activating transcription factor 4 (ATF4) reduces bone toughness and fracture toughness. Bone. 2014;62:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Monir AU, Gundberg CM, Yagerman SE, et al. The effect of lead on bone mineral properties from female adult C57/BL6 mice. Bone. 2010;47:888–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang R, Gong H, Zhu D, et al. Seven day insertion rest in whole body vibration improves multi-level bone quality in tail suspension rats. PLoS One. 2014;9:e92312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Mosekilde L, Mosekilde L. Iliac crest trabecular bone volume as predictor for vertebral compressive strength, ash density and trabecular bone volume in normal individuals. Bone. 1988;9:195–9.

    Article  CAS  PubMed  Google Scholar 

  14. Tao M, Teng Y, Shao H, et al. Knowledge, perceptions and information about hormone therapy (HT) among menopausal women: a systematic review and meta-synthesis. PLoS One. 2011;6:e24661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288:321–33.

    Article  CAS  PubMed  Google Scholar 

  16. Lindberg MK, Erlandsson M, Alatalo SL, et al. Estrogen receptor alpha, but not estrogen receptor beta, is involved in the regulation of the OPG/RANKL (osteoprotegerin/receptor activator of NF-kappa B ligand) ratio and serum interleukin-6 in male mice. J Endocrinol. 2001;171:425–33.

    Article  CAS  PubMed  Google Scholar 

  17. Cummings SR, Ettinger B, Delmas PD, et al. The effects of tibolone in older postmenopausal women. N Engl J Med. 2008;359:697–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gambacciani M, Levancini M. Hormone replacement therapy and the prevention of postmenopausal osteoporosis. Menopause Rev. 2014;13:213–20.

    Article  Google Scholar 

  19. Paschalis EP, Boskey AL, Kassem M, Eriksen EF. Effect of hormone replacement therapy on bone quality in early postmenopausal women. J Bone Miner Res. 2003;18:955–9.

    Article  CAS  PubMed  Google Scholar 

  20. Gennari L, Merlotti D, De Paola V, Nuti R. Lasofoxifene: evidence of its therapeutic value in osteoporosis. Core Evid. 2010;4:113–29.

    PubMed  PubMed Central  Google Scholar 

  21. Börjesson AE, Farman HH, Movérare-Skrtic S, et al. SERMs have substance specific effects on bone and these effects are mediated via ERαAF-1 in female mice. Am J Physiol Endocrinol Metab 2016; (Epub ahead of print).

  22. Burket JC, Brooks DJ, MacLeay JM, et al. Variations in nanomechanical properties and tissue composition within trabeculae from an ovine model of osteoporosis and treatment. Bone. 2013;52:326–36.

    Article  CAS  PubMed  Google Scholar 

  23. Saito M, Marumo K, Soshi S, et al. Raloxifene ameliorates detrimental enzymatic and nonenzymatic collagen cross-links and bone strength in rabbits with hyperhomocysteinemia. Osteoporos Int. 2010;21:655–66.

    Article  CAS  PubMed  Google Scholar 

  24. Li J, Sato M, Jerome C, Turner CH, et al. Microdamage accumulation in the monkey vertebra does not occur when bone turnover is suppressed by 50 % or less with estrogen or raloxifene. J Bone Miner Metab. 2005;23(Suppl):48–54.

    Article  PubMed  Google Scholar 

  25. Allen MR, Iwata K, Sato M, Burr DB. Raloxifene enhances vertebral mechanical properties independent of bone density. Bone. 2006;39:1130–5.

    Article  CAS  PubMed  Google Scholar 

  26. Allen MR, Hogan HA, Hobbs WA, et al. Raloxifene enhances material-level mechanical properties of femoral cortical and trabecular bone. Endocrinology. 2007;148:3908–13.

    Article  CAS  PubMed  Google Scholar 

  27. Gallant MA, Brown DM, Hammond M, et al. Bone cell-independent benefits of raloxifene on the skeleton: a novel mechanism for improving bone material properties. Bone. 2014;61:191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Allen MR, Territo PR, Lin C, et al. In vivo ute-mri reveals positive effects of raloxifene on skeletal-bound water in skeletally mature beagle dogs. J Bone Miner Res. 2015;30:1441–4.

    Article  CAS  PubMed  Google Scholar 

  29. Bivi N, Hu H, Chavali B, et al. Structural features underlying raloxifene’s biophysical interaction with bone matrix. Bioorg Med Chem. 2016;24:759–67.

    Article  CAS  PubMed  Google Scholar 

  30. Saito M, Kida Y, Nishizawa T, et al. Effects of 18-month treatment with bazedoxifene on enzymatic immature and mature cross-links and non-enzymatic advanced glycation end products, mineralization, and trabecular microarchitecture of vertebra in ovariectomized monkeys. Bone. 2015;81:573–80.

    Article  CAS  PubMed  Google Scholar 

  31. Body JJ. Calcitonin for the long-term prevention and treatment of postmenopausal osteoporosis. Bone. 2002;30:75S–9S.

    Article  CAS  PubMed  Google Scholar 

  32. Diab DL, Watts NB. Diagnosis and treatment of osteoporosis in older adults. Endocrinol Metab Clin N Am. 2013;42:305–17.

    Article  Google Scholar 

  33. Diez-Perez A, Adachi JD, Adami S, et al. Risk factors for treatment failure with antiosteoporosis medication: the global longitudinal study of osteoporosis in women (GLOW). J Bone Miner Res. 2014;29:260–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ji Z, Shi C, Huang S, Dang X, et al. Elcatonin attenuates disuse osteoporosis after fracture fixation of tubular bone in rats. J Orthop Surg Res. 2015;10:103.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pienkowski D, Doers TM, Monier-Faugere MC, et al. Calcitonin alters bone quality in beagle dogs. J Bone Miner Res. 1997;12:1936–43.

    Article  CAS  PubMed  Google Scholar 

  36. Hoff AO, Catala-Lehnen P, Thomas PM, et al. Increased bone mass is an unexpected phenotype associated with deletion of the calcitonin gene. J Clin Invest. 2002;110:1849–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Keller J, Catala-Lehnen P, Huebner AK, et al. Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts. Nat Commun. 2014;5:5215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brown JP, Morin S, Leslie W, et al. Bisphosphonates for treatment of osteoporosis: expected benefits, potential harms, and drug holidays. Can Fam Physician. 2014;60:324–33.

    PubMed  PubMed Central  Google Scholar 

  39. Maraka S, Kennel KA. Bisphosphonates for the prevention and treatment of osteoporosis. BMJ. 2015;351:h3783.

    Article  PubMed  CAS  Google Scholar 

  40. Reid IR. Short-term and long-term effects of osteoporosis therapies. Nat Rev Endocrinol. 2015;11:418–28.

    Article  CAS  PubMed  Google Scholar 

  41. Roelofs AJ, Thompson K, Ebetino FH, et al. Bisphosphonates: molecular mechanisms of action and effects on bone cells, monocytes and macrophages. Curr Pharm Des. 2010;16:2950–60.

    Article  CAS  PubMed  Google Scholar 

  42. Boskey AL, Spevak L, Weinstein RS. Spectroscopic markers of bone quality in alendronate-treated postmenopausal women. Osteoporos Int. 2009;20:793–800.

    Article  CAS  PubMed  Google Scholar 

  43. Bala Y, Farlay D, Chapurlat RD, Boivin G. Modifications of bone material properties in postmenopausal osteoporotic women long-term treated with alendronate. Eur J Endocrinol. 2011;165:647–55.

    Article  CAS  PubMed  Google Scholar 

  44. Gourion-Arsiquaud S, Allen MR, Burr DB, et al. Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone. 2010;46:666–72.

    Article  CAS  PubMed  Google Scholar 

  45. Meganck JA, Begun DL, McElderry JD, et al. Fracture healing with alendronate treatment in the Brtl/+ mouse model of osteogenesis imperfecta. Bone. 2013;56:204–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hofstetter B, Gamsjaeger S, Phipps RJ, et al. Effects of alendronate and risedronate on bone material properties in actively forming trabecular bone surfaces. J Bone Miner Res. 2012;27:995–1003.

    Article  CAS  PubMed  Google Scholar 

  47. Durchschlag E, Paschalis EP, Zoehrer R, et al. Bone material properties in trabecular bone from human iliac crest biopsies after 3- and 5-year treatment with risedronate. J Bone Miner Res. 2006;21:1581–90.

    Article  CAS  PubMed  Google Scholar 

  48. Yao W, Cheng Z, Koester KJ, et al. The degree of bone mineralization is maintained with single intravenous bisphosphonates in aged estrogen-deficient rats and is a strong predictor of bone strength. Bone. 2007;41:804–12.

    Article  CAS  PubMed  Google Scholar 

  49. Gamsjaeger S, Buchinger B, Zwettler E, et al. Bone material properties in actively bone-forming trabeculae in postmenopausal women with osteoporosis after three years of treatment with once-yearly Zoledronic acid. J Bone Miner Res. 2011;26:12–8.

    Article  CAS  PubMed  Google Scholar 

  50. Juillard A, Falgayrac G, Cortet B, et al. Molecular interactions between zoledronic acid and bone: an in vitro Raman microspectroscopic study. Bone. 2010;47:895–904.

    Article  CAS  PubMed  Google Scholar 

  51. Borah B, Dufresne T, Nurre J, et al. Risedronate reduces intracortical porosity in women with osteoporosis. J Bone Miner Res. 2010;25:41–7.

    Article  CAS  PubMed  Google Scholar 

  52. Pysklywec MW, Moran EL, Bogoch ER. Zoledronate (CGP 42′446), a bisphosphonate, protects against metaphyseal intracortical defects in experimental inflammatory arthritis. J Orthop Res. 1997;15:858–61.

    Article  CAS  PubMed  Google Scholar 

  53. Naruse K, Uchida K, Suto M, et al. Alendronate does not prevent long bone fragility in an inactive rat model. J Bone Miner Metab. 2016; (Epub ahead of print).

  54. Boskey AL, van der Meuelen MC. Factors contributing to atypical femoral fractures. In: Abrahamsen B, Silverman S, editors. The duration and safety of osteoporosis treatment. Switzerland: Springer; 2016. p. 125–36.

    Chapter  Google Scholar 

  55. Schilcher J, Koeppen V, Aspenberg P, Michaëlsson K. Risk of atypical femoral fracture during and after bisphosphonate use. Acta Orthop. 2015;86:100–7.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Brömme D, Panwar P, Turan S. Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: commonalities and differences. Expert Opin Drug Discov. 2016;11:457–72.

    Article  PubMed  CAS  Google Scholar 

  57. Zhuo Y, Gauthier JY, Black WC, et al. Inhibition of bone resorption by the cathepsin K inhibitor odanacatib is fully reversible. Bone. 2014;67:269–80.

    Article  CAS  PubMed  Google Scholar 

  58. Langdahl B, Binkley N, Bone H, et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: five years of continued therapy in a phase 2 study. J Bone Miner Res. 2012;27:2251–8.

    Article  CAS  PubMed  Google Scholar 

  59. Feng S, Luo Z, Liu D. Efficacy and safety of odanacatib treatment for patients with osteoporosis: a meta-analysis. J Bone Miner Metab. 2015;33:448–54.

    Article  CAS  PubMed  Google Scholar 

  60. Pennypacker BL, Chen CM, Zheng H, et al. Inhibition of cathepsin K increases modeling-based bone formation, and improves cortical dimension and strength in adult ovariectomized monkeys. J Bone Miner Res. 2014;29:1847–58.

    Article  CAS  PubMed  Google Scholar 

  61. Fratzl-Zelman N, Roschger P, Fisher JE, et al. Effects of Odanacatib on bone mineralization density distribution in thoracic spine and femora of ovariectomized adult rhesus monkeys: a quantitative backscattered electron imaging study. Calcif Tissue Int. 2013;92:261–9.

    Article  CAS  PubMed  Google Scholar 

  62. Misof BM, Roschger P, Chen C, et al. Effects of odanacatib on bone matrix mineralization in rhesus monkeys are similar to those of alendronate. Bone Reports. 2016;5:62–9.

    Article  Google Scholar 

  63. Williams DS, McCracken PJ, Purcell M, et al. Effect of odanacatib on bone turnover markers, bone density and geometry of the spine and hip of ovariectomized monkeys: a head-to-head comparison with alendronate. Bone. 2013;56:489–96.

    Article  CAS  PubMed  Google Scholar 

  64. Bone HG, Dempster DW, Eisman JA, et al. Odanacatib for the treatment of postmenopausal osteoporosis: development history and design and participant characteristics of LOFT, the long-term odanacatib fracture trial. Osteoporos Int. 2015;26:699–712.

    Article  CAS  PubMed  Google Scholar 

  65. Cheung AM, Majumdar S, Brixen K, et al. Effects of odanacatib on the radius and tibia of postmenopausal women: improvements in bone geometry, microarchitecture, and estimated bone strength. J Bone Miner Res. 2014;29:1786–94.

    Article  CAS  PubMed  Google Scholar 

  66. Trouvin AP, Goëb V. Receptor activator of nuclear factor-κB ligand and osteoprotegerin: maintaining the balance to prevent bone loss. Clin Interv Aging. 2010;5:345–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Arthur KK, Gabrielson JP, Hawkins N, et al. In vitro stoichiometry of complexes between the soluble RANK ligand and the monoclonal antibody denosumab. Biochemistry. 2012;51:795–806.

    Article  CAS  PubMed  Google Scholar 

  68. Papapoulos S, Lippuner K, Roux C, et al. The effect of 8 or 5 years of denosumab treatment in postmenopausal women with osteoporosis: results from the FREEDOM Extension study. Osteoporos Int. 2015;26:2773–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ominsky MS, Stouch B, Schroeder J, et al. Denosumab, a fully human RANKL antibody, reduced bone turnover markers and increased trabecular and cortical bone mass, density, and strength in ovariectomized cynomolgus monkeys. Bone. 2011;49:162–7.

    Article  CAS  PubMed  Google Scholar 

  70. Tsai JN, Uihlein AV, Burnett-Bowie SM, et al. Effects of two years of teriparatide, denosumab, or both on bone microarchitecture and strength (DATA-HRpQCT study). J Clin Endocrinol Metab. 2016;101:2023–30.

    Article  CAS  PubMed  Google Scholar 

  71. Zheng LZ, Wang XL, Cao HJ, et al. Src siRNA prevents corticosteroid-associated osteoporosis in a rabbit model. Bone. 2016;83:190–6.

    Article  CAS  PubMed  Google Scholar 

  72. Kim HJ, Oh YK, Lee JS, et al. Effect of transdermal estrogen therapy on bone mineral density in postmenopausal Korean women. J Menopausal Med. 2014;20:111–7.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Delmas PD, Marianowski L, Perez Ade C, et al. Prevention of postmenopausal bone loss by pulsed estrogen therapy: comparison with transdermal route. Maturitas. 2004;48:85–96.

    Article  CAS  PubMed  Google Scholar 

  74. Aerssens J, van Audekercke R, Talalaj M, et al. Effect of 1alpha-vitamin D3 and estrogen therapy on cortical bone mechanical properties in the ovariectomized rat model. Endocrinology. 1996;137:1358–64.

    CAS  PubMed  Google Scholar 

  75. Cheng Z, Yao W, Zimmermann EA, et al. Prolonged treatments with antiresorptive agents and PTH have different effects on bone strength and the degree of mineralization in old estrogen-deficient osteoporotic rats. J Bone and Min Res. 2009;24:209–20.

    Article  CAS  Google Scholar 

  76. Komm BS, Kharode YP, Bodine PV, et al. Bazedoxifene acetate: a selective estrogen receptor modulator with improved selectivity. Endocrinology. 2005;146:3999–4008.

    Article  CAS  PubMed  Google Scholar 

  77. Silverman SL, Christiansen C, Genant HK, et al. Efficacy of bazedoxifene in reducing new vertebral fracture risk in postmenopausal women with osteoporosis: results from a 3-year, randomized, placebo-, and active-controlled clinical trial. J Bone Miner Res. 2008;23:1923–34.

    Article  CAS  PubMed  Google Scholar 

  78. Lees C, Shen V, Brommage R. Effects of lasofoxifene on bone in surgically postmenopausal cynomolgus monkeys. Menopause. 2007;14:97–105.

    Article  PubMed  Google Scholar 

  79. Peterson GM, Naunton M, Tichelaar LK, Gennari L. Lasofoxifene: selective estrogen receptor modulator for the prevention and treatment of postmenopausal osteoporosis. Ann Pharmacother. 2011;45:499–509.

    Article  CAS  PubMed  Google Scholar 

  80. Ke HZ, Qi H, Crawford DT, et al. Lasofoxifene (CP-336,156), a selective estrogen receptor modulator, prevents bone loss induced by aging and orchidectomy in the adult rat. Endocrinology. 2000;141:1338–44.

    Article  CAS  PubMed  Google Scholar 

  81. Bock O, Börst H, Beller G, et al. Impact of oral ibandronate 150 mg once monthly on bone structure and density in post-menopausal osteoporosis or osteopenia derived from in vivo μCT. Bone. 2012;50:317–24.

    Article  CAS  PubMed  Google Scholar 

  82. Monier-Faugere MC, Geng Z, Paschalis EP, et al. Intermittent and continuous administration of the bisphosphonate ibandronate in ovariohysterectomized beagle dogs: effects on bone morphometry and mineral properties. J Bone Miner Res. 1999;14:1768–78.

    Article  CAS  PubMed  Google Scholar 

  83. Savaridas T, Wallace RJ, Dawson S, Simpson AH. Effect of ibandronate on bending strength and toughness of rodent cortical bone: possible implications for fracture prevention. Bone Joint Res. 2015;4:99–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shahnazari M, Yao W, Dai W, et al. Higher doses of bisphosphonates further improve bone mass, architecture, and strength but not the tissue material properties in aged rats. Bone. 2010;46:1267–74.

    Article  CAS  PubMed  Google Scholar 

  85. Roschger P, Rinnerthaler S, Yates J, et al. Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone. 2001;29:185–91.

    Article  CAS  PubMed  Google Scholar 

  86. Rombardi A, Misof BM, et al. Mineralization density distribution of postmenopausal osteoporotic bone is restored to normal after long-term alendronate treatment: qBEI and sSAXS data from the fracture intervention trial long-term extension (FLEX). J Bone Miner Res. 2010;25:48–55.

    Article  CAS  Google Scholar 

  87. Misof BM, Patsch JM, Roschger P, et al. Intravenous treatment with ibandronate normalizes bone matrix mineralization and reduces cortical porosity after two years in male osteoporosis: a paired biopsy study. J Bone Miner Res. 2014;29:440–9.

    Article  CAS  PubMed  Google Scholar 

  88. Boivin GY, Chavassieux PM, Santora AC, et al. Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone. 2000;27:687–94.

    Article  CAS  PubMed  Google Scholar 

  89. Donnelly E, Meredith DS, Nguyen JT, et al. Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric intertrochanteric and subtrochanteric fractures. J Bone Miner Res. 2012;27:672–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Burghardt AJ, Kazakia GJ, Sode M, et al. A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover. J Bone Miner Res. 2010;25:2558–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Recker R, Masarachia P, Santora A, et al. Trabecular bone microarchitecture after alendronate treatment of osteoporotic women. Curr Med Res Opin. 2005;21:185–94.

    Article  CAS  PubMed  Google Scholar 

  92. Zebaze RM, Libanati C, Austin M, et al. Differing effects of denosumab and alendronate on cortical and trabecular bone. Bone. 2014;59:173–9.

    Article  CAS  PubMed  Google Scholar 

  93. Bala Y, Depalle B, Farlay D, et al. Bone micromechanical properties are compromised during long-term alendronate therapy independently of mineralization. J Bone Miner Res. 2012;27:825–34.

    Article  CAS  PubMed  Google Scholar 

  94. Zoehrer R, Roschger P, Paschalis EP, et al. Effects of 3- and 5-year treatment with risedronate on bone mineralization density distribution in triple biopsies of the iliac crest in postmenopausal women. J Bone Miner Res. 2006;21:1106–12.

    Article  CAS  PubMed  Google Scholar 

  95. Eriksen EF, Díez-Pérez A, Boonen S. Update on long-term treatment with bisphosphonates for postmenopausal osteoporosis: a systematic review. Bone. 2014;58:126–35.

    Article  CAS  PubMed  Google Scholar 

  96. Díaz-Curiel M, de la Piedra C, Romero F, et al. Effect of risedronate on bone mass, remodelling and biomechanical strength in orchidectomized rats. Horm Res. 2008;70:93–9.

    Article  PubMed  CAS  Google Scholar 

  97. Uyar Y, Baytur Y, Inceboz U, et al. Comparative effects of risedronate, atorvastatin, estrogen and SERMs on bone mass and strength in ovariectomized rats. Maturitas. 2009;63:261–7.

    Article  CAS  PubMed  Google Scholar 

  98. Misof BM, Roschger P, Gabriel D, et al. Annual intravenous zoledronic acid for three years increased cancellous bone matrix mineralization beyond normal values in the HORIZON biopsy cohort. J Bone Miner Res. 2013;28:442–8.

    Article  CAS  PubMed  Google Scholar 

  99. Hornby SB, Evans GP, Hornby SL, et al. Long-term zoledronic acid treatment increases bone structure and mechanical strength of long bones of ovariectomized adult rats. Calcif Tissue Int. 2003;72:519–27.

    Article  CAS  PubMed  Google Scholar 

  100. Recker RR, Delmas PD, Halse J, et al. Effects of intravenous zoledronic acid once yearly on bone remodeling and bone structure. J Bone Miner Res. 2008;23:6–16.

    Article  CAS  PubMed  Google Scholar 

  101. Gamsjaeger S, Hofstetter B, Zwettler E, et al. Effects of 3 years treatment with once-yearly zoledronic acid on the kinetics of bone matrix maturation in osteoporotic patients. Osteoporos Int. 2013;24:339–47.

    Article  CAS  PubMed  Google Scholar 

  102. Boskey A. Unpublished data.

  103. Glatt M, Pataki A, Evans GP, et al. Loss of vertebral bone and mechanical strength in estrogen-deficient rats is prevented by long-term administration of zoledronic acid. Osteoporos Int. 2004;15:707–15.

    Article  CAS  PubMed  Google Scholar 

  104. Bilston LE, Little DG, Smith NC, et al. Zoledronic acid improves the mechanical properties of normal and healing bone. Clin Biomech (Bristol, Avon) 2002; 17:716–18.

  105. Hansen S, Hauge EM, Beck Jansen JE, et al. Differing effects of PTH 1-34, PTH 1-84, and zolendronic acid on bone microarchitecture and estimated strength in postmenopausal women with osteoporosis: an 18 month open-labeled observational study using pQCT. J Bone Miner Res. 2013;28:736–45.

    Article  CAS  PubMed  Google Scholar 

  106. Binkley N, Bone H, Gilligan JP, Krause DS. Efficacy and safety of oral recombinant calcitonin tablets in postmenopausal women with low bone mass and increased fracture risk: a randomized, placebo-controlled trial. Osteoporos Int. 2014;25:2649–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chesnut CH 3rd, Majumdar S, Newitt DC, et al. Effects of salmon calcitonin on trabecular microarchitecture as determined by magnetic resonance imaging: results from the QUEST study. J Bone Miner Res. 2005;20:1548–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Khan MP, Singh AK, Singh AK, et al. Odanacatib restores trabecular bone of skeletally mature female rabbits with osteopenia but induces brittleness of cortical bone: a comparative study of the investigational drug with PTH, Estrogen, and alendronate. J Bone Miner Res. 2012;31:615–29.

    Article  CAS  Google Scholar 

  109. Bone HG, McClung MR, Roux C, et al. Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J Bone Miner Res. 2010;25:937–47.

    PubMed  Google Scholar 

  110. Tsai JN, Uihlein AV, Burnett-Bowie SA, et al. Comparative effects of teriparatide, denosumab, and combination therapy on peripheral compartmental bone density, microarchitecture, and estimated strength: the DATA-HRpQCT Study. J Bone Miner Res. 2015;30:39–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Acevedo C, Bale H, Gludovatz B, et al. Alendronate treatment alters bone tissues at multiple structural levels in healthy canine cortical bone. Bone. 2015;81:352–63.

    Article  CAS  PubMed  Google Scholar 

  112. Bala Y, Chapurlat R, Cheung AM, et al. Risedronate slows or partly reverses cortical and trabecular microarchitectural deterioration in postmenopausal women. J Bone Miner Res. 2014;29:380–8.

    Article  CAS  PubMed  Google Scholar 

  113. Fitzpatrick LA. Estrogen therapy for postmenopausal osteoporosis. Arquivos Brasileiros de Endocrinologia and Metabologia. 2006;50:705–19.

    Article  PubMed  Google Scholar 

  114. Andersson A, Bernardi AI, Stubelius A, et al. Selective oestrogen receptor modulators lasofoxifene and bazedoxifene inhibit joint inflammation and osteoporosis in ovariectomised mice with collagen-induced arthritis. Rheumatology (Oxford, England) 2016; 55:553–63.

  115. Mosekilde L, Danielsen CC, Gasser J. The effect on vertebral bone mass and strength of long term treatment with antiresorptive agents (estrogen and calcitonin), human parathyroid hormone-(1-38), and combination therapy, assessed in aged ovariectomized rats. Endocrinology. 1994;134:2126–34.

    CAS  PubMed  Google Scholar 

  116. Zebaze RM, Libanati C, McClung MR, et al. Denosumab reduces cortical porosity of te proximal femoral shaft in postmenopausal women with osteoporosis. J Bone Miner Res. 2016; (E pub ahead of print).

  117. Diab DL, Watts NB. Diagnosis and treatment of osteoporosis in older adults. Endocrinol Metab Clin N Am. 2013;42:305–17.

    Article  Google Scholar 

  118. Pinkerton JV, Thomas S, Dalkin AC. Osteoporosis treatment and prevention for postmenopausal women: current and Future Therapeutic options. Clin Obstet Gynecol. 2013;56:711–21.

    Article  PubMed  Google Scholar 

  119. Martin TJ. Parathyroid hormone-related protein, its regulation of cartilage and bone development, and role in treating bone diseases. Physiol Rev. 2016;96:831–71.

    PubMed  Google Scholar 

  120. Augustine M, Horwitz MJ. Parathyroid hormone and parathyroid hormone-related protein analogs as therapies for osteoporosis. Curr Osteoporos Rep. 2013;11:400–6.

    Article  PubMed  Google Scholar 

  121. Paschalis EP, Burr DB, Mendelsohn R, et al. Bone mineral and collagen quality in humeri of ovariectomized cynomolgus monkeys given rhPTH(1-34) for 18 months. J Bone Miner Res. 2003;18:769–75.

    Article  CAS  PubMed  Google Scholar 

  122. Stewart AF, Cain RL, Burr DB, et al. Six-month daily administration of parathyroid hormone and parathyroid hormone-related protein peptides to adult ovariectomized rats markedly enhances bone mass and biomechanical properties: a comparison of human parathyroid hormone 1-34, parathyroid hormone-related protein 1-36, and SDZ-parathyroid hormone 893. J Bone Miner Res. 2000;15:1517–25.

    Article  CAS  PubMed  Google Scholar 

  123. Obermayer-Pietsch BM, Marin F, McCloskey EV, et al. Effects of two years of daily teriparatide treatment on BMD in postmenopausal women with severe osteoporosis with and without prior antiresorptive treatment. J Bone Miner Res. 2008;23:1591–600.

    Article  CAS  PubMed  Google Scholar 

  124. Kleerekoper M, Greenspan SL, Lewiecki EM, et al. Assessing the effects of teriparatide treatment on bone mineral density, bone microarchitecture, and bone strength. J Bone Joint Surg Am. 2014;96:e90.

    Article  PubMed  Google Scholar 

  125. Fox J, Newman MK, Turner CH, et al. Effects of treatment with parathyroid hormone 1-84 on quantity and biomechanical properties of thoracic vertebral trabecular bone in ovariectomized rhesus monkeys. Calcif Tissue Int. 2008;82:212–20.

    Article  CAS  PubMed  Google Scholar 

  126. Paschalis EP, Glass EV, Donley DW, Eriksen EF. Bone mineral and collagen quality in iliac crest biopsies of patients given teriparatide: new results from the fracture prevention trial. J Clin Endocrinol Metab. 2005;90:4644–9.

    Article  CAS  PubMed  Google Scholar 

  127. Oest ME, Gong B, Esmonde-White K, et al. Parathyroid hormone attenuates radiation-induced increases in collagen crosslink ratio at periosteal surfaces of mouse tibia. Bone. 2016;86:91–7.

    Article  CAS  PubMed  Google Scholar 

  128. Recker RR, Bare SP, Smith SY, et al. Cancellous and cortical bone architecture and architecture and turnover at the iliac crest of postmenopausal osteoporotic women treated with parathyroid hormone 1-84. Bone. 2009;44:113–9.

    Article  CAS  PubMed  Google Scholar 

  129. Fox J, Miller MA, Newman MK, et al. Effects of daily treatment with parathyroid hormone 1-84 for 16 months on density, architecture and biomechanical properties of cortical bone in adult ovariectomized rhesus monkeys. Bone. 2007;41:321–30.

    Article  CAS  PubMed  Google Scholar 

  130. Burr DB, Hirano T, Turner CH, et al. Intermittently administered human parathyroid hormone(1-34) treatment increases intracortical bone turnover and porosity without reducing bone strength in the humerus of ovariectomized cynomolgus monkeys. J Bone Miner Res. 2001;16:157–65.

    Article  CAS  PubMed  Google Scholar 

  131. Hirano T, Burr DB, Cain RL, Hock JM. Changes in geometry and cortical porosity in adult, ovary-intact rabbits after 5 months treatment with LY333334 (hPTH 1-34). Calcif Tissue Int. 2000;66:456–60.

    Article  CAS  PubMed  Google Scholar 

  132. Motyl KJ, McCauley LK, McCabe LR. Amelioration of type I diabetes-induced osteoporosis by parathyroid hormone is associated with improved osteoblast survival. J Cell Physiol. 2012;227:1326–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Nemeth EF, Goodman WG. Calcimimetic and calcilytic drugs: feats, flops, and futures. Calcif Tissue Int. 2015;98:341–58.

    Article  PubMed  CAS  Google Scholar 

  134. Appelman-Dijkstra NM, Papapoulos SE. Sclerostin inhibition in the management of osteoporosis. Calcif Tissue Int. 2016;98:370–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Suen PK, Qin L. Sclerostin, an emerging therapeutic target for treating osteoporosis and osteoporotic fracture: a general review. J Orthop Translation. 2016;4:1–13.

    Article  Google Scholar 

  136. Li X, Warmington KS, Niu QT, et al. Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, and bone strength in aged male rats. J Bone Miner Res. 2010;25:2647–56.

    Article  PubMed  CAS  Google Scholar 

  137. Ominsky MS, Vlasseros F, Jolette J, et al. Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res. 2010;25:948–59.

    Article  CAS  PubMed  Google Scholar 

  138. Ross RD, Edwards LH, Acerbo AS, et al. Bone matrix quality after sclerostin antibody treatment. J Bone Miner Res. 2014;29:1597–607.

    Article  CAS  PubMed  Google Scholar 

  139. Spatz JM, Ellman R, Cloutier AM, et al. Sclerostin antibody inhibits skeletal deterioration due to reduced mechanical loading. J Bone Miner Res. 2013;28:865–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. McClung MR, Grauer A, Boonen S, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014;370:412–20.

    Article  CAS  PubMed  Google Scholar 

  141. Masci M, Wang M, Imbert L, et al. Bone mineral properties in growing Col1a2(+/G610C) mice, an animal model of osteogenesis imperfecta. Bone. 2016;87:120–9.

    Article  CAS  PubMed  Google Scholar 

  142. Cheng Q, Tang W, Sheu TJ, et al. Circulating TGF-β1 levels are negatively correlated with sclerostin levels in early postmenopausal women. Clin Chim Acta. 2016;455:87–92.

    Article  CAS  PubMed  Google Scholar 

  143. Sun J, Zhang C, Xu L, et al. The transforming growth factor-β1 (TGF-β1) genepolymorphisms (TGF-β1 T869C and TGF-β1 T29C) and susceptibility to postmenopausal osteoporosis: a meta-analysis. Medicine (Baltimore). 2015;94:e461.

    Article  CAS  Google Scholar 

  144. Mukherjee A, Larson EA, Carlos AS, et al. Congenic mice provide in vivo evidence for a genetic locus that modulates intrinsic transforming growth factor β1-mediated signaling and bone acquisition. J Bone Miner Res. 2012;27:1345–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ota K, Quint P, Ruan M, et al. TGF-β induces Wnt10b in osteoclasts from female mice to enhance coupling to osteoblasts. Endocrinology. 2013;154:3745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Grafe I, Yang T, Alexander S, et al. Excessive transforming growth factor-β signaling is a common mechanism in osteogenesis imperfecta. Nat Med. 2014;20:670–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Eijken M, Swagemakers S, Koedam M, et al. The activin A-follistatin system: potent regulator of human extracellular matrix mineralization. FASEB J. 2007;21:2949–60.

    Article  PubMed  Google Scholar 

  148. Chantry AD, Heath D, Mulivor AW, et al. Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo. J Bone Miner Res. 2010;25:2633–46.

    Article  PubMed  CAS  Google Scholar 

  149. Lin S, Svoboda KKH, Feng JQ, Jiang X. The biological function of type I receptors of bone morphogenetic protein in bone. Bone Research. 2016;4:16005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Abdulkadyrov KM, Salogshahshahub GN, Khuazheva NK, et al. Sotatercept in patients with osteolytic lesions of multiple myeloma. Br J Haematol. 2014;165:814–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Fowler TW, Kamalakar A, Akel NS, et al. Activin A inhibits RANKL-mediated osteoclast formation, movement and function in murine bone marrow macrophage cultures. J Cell Sci. 2015;128:683–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhou F, Meng S, Song H, Claret FX. Dickkopf-1 is a key regulator of myeloma bone disease: opportunities and challenges for therapeutic intervention. Blood Rev. 2013;27:261–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Iyer SP, Beck JT, Stewart AK, et al. A Phase IB multicentre dose-determination study of BHQ880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events. Br J Haematol. 2014;167:366–75.

    Article  CAS  PubMed  Google Scholar 

  154. Glantschnig H, Hampton RA, Lu P, et al. Generation and selection of novel fully human monoclonal antibodies that neutralize Dickkopf-1 (DKK1) inhibitory function in vitro and increase bone mass in vivo. J Biol Chem. 2010;285:40135–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Goldstein SD, Trucco M, Guzman WB, et al. A monoclonal antibody against the Wnt signaling inhibitor dickkopf-1 inhibits osteosarcoma metastasis in a preclinical model. Oncotarget. 2016;7:21114–23.

  156. Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone. 2008;42:456–66.

    Article  CAS  PubMed  Google Scholar 

  157. Dempster DW, Cosman F, Kurland ES, et al. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res. 2001;16:1846–53.

    Article  CAS  PubMed  Google Scholar 

  158. Pacheco-Costa R, Campos JF, Katchburian E, et al. Modifications in bone matrix of estrogen-deficient rats treated with intermittent PTH. Biomed Res Int. 2015;2015:454162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Neerup TS, Stahlhut M, Petersen JS, et al. ZP2307, a novel, cyclic PTH(1-17) analog that augments bone mass in ovariectomized rats. Bone. 2011;48:1319–27.

    Article  CAS  PubMed  Google Scholar 

  160. Leder BZ, O’Dea LS, Zanchetta JR, et al. Effects of abaloparatide, a human parathyroid hormone-related peptide analog, on bone mineral density in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2015;100:697–706.

    Article  CAS  PubMed  Google Scholar 

  161. Kostenuik PJ, Ferrari S, Pierroz D, et al. Infrequent delivery of a long-acting PTH-Fc fusion protein has potent anabolic effects on cortical and cancellous bone. J Bone Miner Res. 2007;22:1534–47.

    Article  CAS  PubMed  Google Scholar 

  162. Doublier A, Farlay D, Jaurand X, et al. Effects of strontium on the quality of bone apatite crystals: a paired biopsy study in postmenopausal osteoporotic women. Osteoporos Int. 2013;24:1079–87.

    Article  CAS  PubMed  Google Scholar 

  163. Clarke BL. Anti-sclerostin antibodies: utility in treatment of osteoporosis. Maturitas. 2014;78:199–204.

    Article  CAS  PubMed  Google Scholar 

  164. Sinder BP, White LE, Salemi JD, et al. Adult Brtl/+ mouse model of osteogenesis imperfecta demonstrates anabolic response to sclerostin antibody treatment with increased bone mass and strength. Osteoporos Int. 2014;25:2097–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sinder BP, Lloyd WR, Salemi JD, et al. Effect of anti-sclerostin therapy and osteogenesis imperfecta on tissue-level properties in growing and adult mice while controlling for tissue age. Bone. 2016;84:222–9.

    Article  CAS  PubMed  Google Scholar 

  166. Yamawaki K, Kondo Y, Okada T, et al. The soluble form of BMPRIB is a novel therapeutic candidate for treating bone related disorders. Sci Rep. 2016;6:18849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Lotinun S, Pearsall RS, Davies MV, et al. A soluble activin receptor Type IIA fusion protein (ACE-011) increases bone mass via a dual anabolic-antiresorptive effect in Cynomolgus monkeys. Bone. 2010;46:1082–8.

    Article  CAS  PubMed  Google Scholar 

  168. Joshua J, Schwaerzer GK, Kalyanaraman H, et al. Soluble guanylate cyclase as a novel treatment target for osteoporosis. Endocrinology. 2014;155:4720–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Halse J, Greenspan S, Cosman F, et al. A phase 2, randomized, placebo-controlled, dose-ranging study of the calcium-sensing receptor antagonist MK-5442 in the treatment of postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2014;99:E2207–15.

    Article  CAS  PubMed  Google Scholar 

  170. Muschitz C, Thaler HW, Dimai HP, et al. Atypical Femoral Fractures-Ongoing and History of Bone-Specific Therapy, Concomitant Diseases, Medications, and Survival. J Clin Densitom. 2015; pii:S1094-6950(15)00126-2.

  171. Adler RA, El-Hajj Fuleihan G, Bauer DC, et al. Managing Osteoporosis in Patients on Long-Term Bisphosphonate Treatment: report of a Task Force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2016;31:16–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ensrud KE, Barrett-Connor EL, Schwartz A, et al. Randomized trial of effect of alendronate continuation versus discontinuation in women with low BMD: results from the Fracture Intervention Trial long-term extension. J Bone Miner Res. 2004;19:1259–69.

    Article  CAS  PubMed  Google Scholar 

  173. Black DM, Schwartz AV, Ensrud KE, et al. Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA. 2006;296:2927–38.

    Article  CAS  PubMed  Google Scholar 

  174. Black DM, Delmas PD, Eastell R, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356:1809–22.

    Article  CAS  PubMed  Google Scholar 

  175. Eastell R, Black DM, Boonen S, et al. Effect of once-yearly zoledronic acid five milligrams on fracture risk and change in femoral neck bone mineral density. J Clin Endocrinol Metab. 2009;94:3215–25.

    Article  CAS  PubMed  Google Scholar 

  176. Black DM, Reid IR, Cauley JA, et al. The effect of 6 versus 9 years of zoledronic acid treatment in osteoporosis: a randomized second extension to the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res. 2015;30:934–44.

    Article  CAS  PubMed  Google Scholar 

  177. Hassler N, Gamsjaeger S, Hofstetter B, et al. Effects of long-term alendronate treatment on postmenopausal osteoporosis bone material properties. Osteoporos Int. 2015;26:339–52.

    Article  CAS  PubMed  Google Scholar 

  178. Gertz BJ, Holland SD, Kline W F, et al. Clinical pharmacology of alendronate sodium. Osteopor Int. 1993; 3(suppl.3):513–16.

  179. Roschger P, Lombardi A, Misof BM, et al. Mineralization density distribution of postmenopausal osteoporotic bone is restored to normal after long-term alendronate treatment: qBEI and sSAXS data from the fracture intervention trial long-term extension (FLEX). J Bone Miner Res. 2010;25:48–55.

    Article  CAS  PubMed  Google Scholar 

  180. Amugongo SK, Yao W, Jia J, et al. Effects of sequential osteoporosis treatments on trabecular bone in adult rats with low bone mass. Osteoporos Int. 2014;25:1735–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hofstetter B, Gamsjaeger S, Varga F, et al. Bone quality of the newest bone formed after two years of teriparatide therapy in patients who were previously treatment-naïve or on long-term alendronate therapy. Osteoporos Int. 2014;25:2709–19.

    Article  CAS  PubMed  Google Scholar 

  182. Lieben L, Masuyama R, Torrekens S, et al. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest. 2012;122:1803–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Seeman E. Evidence that Calcium Supplements Reduce Fracture Risk Is Lacking. Clin J Am Soc Nephro. 2010;5:S3–11.

    Article  CAS  Google Scholar 

  184. Gennari C. Calcium and vitamin D nutrition and bone disease of the elderly. Public Health Nutr. 2001;4:547–59.

    Article  CAS  PubMed  Google Scholar 

  185. Bolland MJ, Leung W, Tai V, et al. Calcium intake and risk of fracture: systematic review. The BMJ. 2015;351:h4580.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Tai V, Leung W, Grey A, et al. Calcium intake and bone mineral density: systematic review and meta-analysis. BMJ. 2015;351:h4183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Weaver CM, Alexander DD, Boushey CJ, et al. Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos Int. 2016;27:367–76.

    Article  CAS  PubMed  Google Scholar 

  188. Greene DA, Naughton GA. Calcium and vitamin-D supplementation on bone structural properties in peripubertal female identical twins: a randomized controlled trial. Osteoporos Int. 2011;22(2):489–98.

    Article  CAS  PubMed  Google Scholar 

  189. Zhang G, Qin L, Hung WY, et al. Flavonoids derived from herbal Epimedium Brevicornum Maxim prevent OVX-induced osteoporosis in rats independent of its enhancement in intestinal calcium absorption. Bone. 2006;38:818–25.

    Article  CAS  PubMed  Google Scholar 

  190. Li Y, Liang C, Slemenda CW, et al. Effect of long-term exposure to fluoride in drinking water on risks of bone fractures. J Bone Min Res. 2001;16:932–8.

    Article  CAS  Google Scholar 

  191. McDonagh M, Whiting P, Bradley M, et al. No association between water fluoridation and bone fractures. Evidence-based Dentistry. 2002;3:46.

    Google Scholar 

  192. Levy SM, Warren JJ, Philipps K, et al. Effects of life-long fluoride intake on bone measures of adolescents: a prospective cohort study. J Dent Res. 2014;93:353–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Everett ET. Fluoride’s effects on the formation of teeth and bones, and the influence of genetics. J Dent Res. 2011;90:552–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Sun F, Li X, Yang C, et al. A role for PERK in the mechanism underlying fluoride-induced bone turnover. Toxicology. 2014;325:52–66.

    Article  CAS  PubMed  Google Scholar 

  195. Riggs BL, O’Fallon WM, Lane A, et al. Clinical trial of fluoride therapy in postmenopausal osteoporotic women: extended observations and additional analysis. J Bone Miner Res. 1994;9:265–75.

    Article  CAS  PubMed  Google Scholar 

  196. Grey A, Garg S, Dray M, et al. Low-dose fluoride in postmenopausal women: a randomized controlled trial. J Clin Endocrinol Metab. 2013;98:2301–7.

    Article  CAS  PubMed  Google Scholar 

  197. Kobayashi CAN, Leite AL, Peres-Buzalaf C, et al. Bone response to fluoride exposure is influenced by genetics. PLoS One. 2014;9:21.

    Google Scholar 

  198. Mousny M, Omelon S, Wise L, et al. Fluoride effects on bone formation and mineralization are influenced by genetics. Bone. 2008;43:1067–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Mackie IG, Ralis ZA, Leyshon RL, et al. Treatment of bone weakness in patients with femoral neck fracture by fluoride, calcium and vitamin D. J Bone Joint Surg Br. 1989;71:111–7.

    CAS  PubMed  Google Scholar 

  200. Einhorn TA, Wakley GK, Linkhart S, et al. Incorporation of sodium fluoride into cortical bone does not impair the mechanical properties of the appendicular skeleton in rats. Calcif Tissue Int. 1992;51:127–31.

    Article  CAS  PubMed  Google Scholar 

  201. Søgaard CH, Mosekilde L, Schwartz W, et al. Effects of fluoride on rat vertebral body biomechanical competence and bone mass. Bone. 1995;16:163–9.

    Article  PubMed  Google Scholar 

  202. Hill TR, Aspray TJ, Francis RM. Vitamin D and bone health outcomes in older age. The 5th International Symposium of the Nutrition Society. Proceedings of the Nutrition Society. 2013; 72: 372–380

  203. Boyan BD, Schwartz Z. Rapid vitamin D-dependent PKC signaling shares features with estrogen-dependent PKC signaling in cartilage and bone. Steroids. 2004;69:591–7.

    Article  CAS  PubMed  Google Scholar 

  204. Suda T, Masuyama R, Bouillon R, Carmeliet G. Physiological functions of vitamin D: what we have learned from global and conditional VDR knockout mouse studies. Curr Opin Pharmacol. 2015;22:87–99.

    Article  CAS  PubMed  Google Scholar 

  205. Pekkinen M, Saarnio E, Viljakainen JT, et al. Vitamin D Binding Protein genotype is associated with serum 25-Hydroxyvitamin D and PTH concentrations, as well as bone health in children and adolescents in Finland. PLoS One. 2014;9:e87292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Roschger P, Gupta HS, Berzlanovich A, et al. Constant mineralization density distribution in cancellous human bone. Bone. 2003;32:316–23.

    Article  CAS  PubMed  Google Scholar 

  207. Faibish D, Gomes A, Boivin G, et al. Infrared imaging of calcified tissue in bone biopsies from adults with osteomalacia. Bone. 2005;36:6–12.

    Article  CAS  PubMed  Google Scholar 

  208. Anumula S, Magland J, Wehrli SL, et al. Multi-modality study of the compositional and mechanical implications of hypomineralization in a rabbit model of osteomalacia. Bone. 2008;42:405–13.

    Article  CAS  PubMed  Google Scholar 

  209. Schnitzler CM, Daniels ED, Mesquita JM, et al. Bone disease in African children with slipped capital femoral epiphysis: histomorphometry of iliac crest biopsies. Bone. 1998;22:259–65.

    Article  CAS  PubMed  Google Scholar 

  210. Reid IR. Towards a trial-based definition of vitamin D deficiency. Lancet Diabetes Endocrinol. 2016;4:376–7.

    Article  PubMed  Google Scholar 

  211. Glenn AJ, Fielding KA, Chen J, et al. Long-Term Vitamin D3 Supplementation Does Not Prevent Colonic Inflammation or Modulate Bone Health in IL-10 Knockout Mice at Young Adulthood. Nutrients. 2014;6:3847–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Lani A, Kourkoumelis N, Baliouskas G, Tzaphlidou M. The effect of calcium and vitamin D supplementation on osteoporotic rabbit bones studied by vibrational spectroscopy. J Biol Phys. 2014;40:401–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Plante L, Veilleux LN, Glorieux FH, et al. Effect of high-dose vitamin D supplementation on bone density in youth with osteogenesis imperfecta: a randomized controlled trial. Bone. 2016;86:36–42.

    Article  CAS  PubMed  Google Scholar 

  214. Rustico SE, Kelly A, Monk HM, Calabria AC. Calcitriol treatment in metabolic bone disease of prematurity with elevated parathyroid hormone: a preliminary study. J Clin Transl Endocrinol. 2015;2:14–20.

    Article  Google Scholar 

  215. Smith SY, Doyle N, Boyer M, et al. Eldecalcitol, a vitamin D analog, reduces bone turnover and increases trabecular and cortical bone mass, density, and strength in ovariectomized cynomolgus monkeys. Bone. 2013;57:116–22.

    Article  CAS  PubMed  Google Scholar 

  216. Sundh D, Mellström D, Ljunggren Ö, et al. Low serum vitamin D is associated with higher cortical porosity in elderly men. J Intern Med. 2016; (Epub ahead of print).

  217. Dai Z, Koh WP. B-vitamins and bone health–a review of the current evidence. Nutrients. 2015;7:3322–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Melton L, Tucker KL, Hannan MT, et al. Low plasma vitamin B12 is associated with lower BMD: the Framingham Osteoporosis Study. J Bone Miner Res. 2005;20:152–8.

    Article  Google Scholar 

  219. El Maghraoui A, Ghozlani I, Mounach A, et al. Homocysteine, folate, and vitamin B12 levels and vertebral fracture risk in postmenopausal women. J Clin Densitom. 2012;15:328–33.

    Article  PubMed  Google Scholar 

  220. Gjesdal CG, Vollset SE, Ueland PM, et al. Plasma homocysteine, folate, and vitamin B 12 and the risk of hip fracture: the hordaland homocysteine study. J Bone Miner Res. 2007;22:747–56.

    Article  CAS  PubMed  Google Scholar 

  221. Holstein JH, Herrmann M, Splett C, et al. Low serum folate and vitamin B-6 are associated with an altered cancellous bone structure in humans. Am J Clin Nutr. 2009;90:1440–5.

    Article  CAS  PubMed  Google Scholar 

  222. Bailey RL, Looker AC, Lu Z, et al. B-vitamin status and bone mineral density and risk of lumbar osteoporosis in older females in the United States. Am J Clin Nutr. 2015;102:687–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Hermann M, Umanskaya N, Traber L, et al. The effect of B-vitamins on biochemical bone turnover markers and bone mineral density in osteoporotic patients: a 1-year double blind placebo controlled trial. Clin Chem Lab Med. 2007;45:1785–92.

    Google Scholar 

  224. Massé PG, Rimnac CM, Yamauchi M, et al. Pyridoxine deficiency affects biomechanical properties of chick tibial bone. Bone. 1996;18:567–74.

    Article  PubMed  Google Scholar 

  225. Holvik K, Gjesdal CG, Tell GS, et al. Low serum concentrations of alpha-tocopherol are associated with increased risk of hip fracture. A NOREPOS study. Osteoporos Int. 2014;25:2545–54.

    Article  CAS  PubMed  Google Scholar 

  226. Guralp O. Effects of vitamin E on bone remodeling in perimenopausal women: mini review. Maturitas. 2014;79:476–80.

    Article  CAS  PubMed  Google Scholar 

  227. Muhammad M, Luke DA, Shuid AN, et al. Two different isomers of vitamin E prevent bone loss in postmenopausal osteoporosis rat model. Evid Based Complement Altern Med. 2012;2012:161527.

    Article  Google Scholar 

  228. Deng L, Ding Y, Peng Y, et al. γ-Tocotrienol protects against ovariectomy-induced bone loss via mevalonate pathway as HMG-CoA reductase inhibitor. Bone. 2014;67:200–7.

    Article  CAS  PubMed  Google Scholar 

  229. Huang ZB, Wan SL, Lu YJ, et al. Does vitamin K2 play a role in the prevention and treatment of osteoporosis for postmenopausal women: a meta-analysis of randomized controlled trials. Osteoporos Int. 2015;26:1175–86.

    Article  CAS  PubMed  Google Scholar 

  230. Hara K, Akiyama Y. Collagen-related abnormalities, reduction in bone quality, and effects of menatetrenone in rats with a congenital ascorbic acid deficiency. J Bone Miner Metab. 2009;27:324–32.

    Article  CAS  PubMed  Google Scholar 

  231. Morrow R, Deyhim F, Patil BS, Stoecker BJ. Feeding orange pulp improved bone quality in a rat model of male osteoporosis. J Med Food. 2009;1:298–303.

    Article  Google Scholar 

  232. Aghajanian P, Hall S, Wongworawat MD, Mohan S. The Roles and Mechanisms of Actions of Vitamin C in Bone: new Developments. J Bone Miner Res. 2015;30:1945–55.

    Article  CAS  PubMed  Google Scholar 

  233. Boyd SK, Szabo E, Ammann P. Increased bone strength is associated with improved bone microarchitecture in intact female rats treated with strontium ranelate: a finite element analysis study. Bone. 2011;48:1109–16.

    Article  CAS  PubMed  Google Scholar 

  234. Rossi AL, Moldovan S, Querido W, et al. Effect of strontium ranelate on bone mineral: analysis of nanoscale compositional changes. Micron. 2014;56:29–36.

    Article  CAS  PubMed  Google Scholar 

  235. Bakker A, Klein-Nulend J, Burger E. Shear stress inhibits while disuse promotes osteocyte apoptosis. Biochem Biophys Res Commun. 2004;320:1163–8.

    Article  CAS  PubMed  Google Scholar 

  236. Cesareo R, Napolitano C, Iozzino M. Strontium ranelate in postmenopausal osteoporosis treatment: a critical appraisal. Int J Womens Health. 2010;2:1–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Arlot ME, Jiang Y, Genant HK, et al. Histomorphometric and microCT analysis of bone biopsies from postmenopausal osteoporotic women treated with strontium ranelate. J Bone Miner Res. 2008;23:215–522.

    Article  CAS  PubMed  Google Scholar 

  238. Gallacher SJ, Dixon T. Impact of treatments for postmenopausal osteoporosis (bisphosphonates, parathyroid hormone, strontium ranelate, and denosumab) on bone quality: a systematic review. Calcif Tissue Int. 2010;87:469–84.

    Article  CAS  PubMed  Google Scholar 

  239. Bruel A, Vegger JB, Raffalt AC, et al. PTH (1-34), But not strontium ranelate counteract loss of trabecular thickness and bone strength in disuse osteopenic rats. Bone. 2013;53:51–8.

    Article  CAS  PubMed  Google Scholar 

  240. Yu J, Tang J, Li Z, et al. History of cardiovascular events and cardiovascular risk factors among patients initiating strontium ranelate for treatment of osteoporosis. Int J Womens Health. 2015;7:913–8.

    PubMed  PubMed Central  Google Scholar 

  241. Vestergaard P, Hermann P, Jensen JE, et al. Effects of paracetamol, non-steroidal anti-inflammatory drugs, acetylsalicylic acid, and opioids on bone mineral density and risk of fracture: results of the Danish Osteoporosis Prevention Study (DOPS). Osteoporos Int. 2012;23:1255–65.

    Article  CAS  PubMed  Google Scholar 

  242. Yamaza T, Miura Y, Bi Y, et al. Pharmacologic stem cell based intervention as a new approach to osteoporosis treatment in rodents. PLoS One. 2008;3:e2615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. An J, Hao D, Zhang Q, et al. Natural products for treatment of bone erosive diseases: the effects and mechanisms on inhibiting osteoclastogenesis and bone resorption. Int Immunopharmacol. 2016;36:118–31.

    Article  CAS  PubMed  Google Scholar 

  244. Liu Y, Liu JP, Xia Y. Chinese herbal medicines for treating osteoporosis. Cochrane Database Syst Rev. 2014; 3:CD005467.

  245. Carbone LD, Tylavsky FA, Cauley JA, et al. Association between bone mineral density and the use of nonsteroidal anti-inflammatory drugs and aspirin: impact of cyclooxygenase selectivity. J Bone Miner Res. 2003;18:1795–802.

    Article  CAS  PubMed  Google Scholar 

  246. Wei JS, Zeng R, Chen SY, et al. Effects of aspirin on fracture healing in OPF rats. Asian Pac J Trop Med. 2014;7:801–5.

    Article  CAS  PubMed  Google Scholar 

  247. Solheim LF, Rönningen H, Langeland N. Effects of acetylsalicylic acid and naproxen on the mechanical properties of intact femora in rats. Arch Orthop Trauma Surg. 1986;105:5–10.

    Article  CAS  PubMed  Google Scholar 

  248. Shuid AN, Mehat Z, Mohamed N, et al. Vitamin E exhibits bone anabolic actions in normal male rats. J Bone Miner Metab. 2010;28:149–56.

    Article  CAS  PubMed  Google Scholar 

  249. Cheung AM, Tile L, Lee Y, et al. Vitamin K supplementation in postmenopausal women with osteopenia (ECKO trial): a randomized controlled trial. PLoS Med. 2008;5:e196.

    Article  PubMed  CAS  Google Scholar 

  250. Binkley N, Harke J, Krueger D, et al. Vitamin K treatment reduces undercarboxylated osteocalcin but does not alter bone turnover, density, or geometry in healthy postmenopausal North American women. J Bone Miner Res. 2009;24:983–91.

    Article  CAS  PubMed  Google Scholar 

  251. Fu X, Moreines J, Booth SL. Vitamin K supplementation does not prevent bone loss in ovariectomized Norway rats. Nutr Metab (Lond). 2012;9:12.

    Article  CAS  PubMed Central  Google Scholar 

  252. Iwamoto J, Matsumoto H, Takeda T, et al. Effects of vitamin K(2) and risedronate on bone formation and resorption, osteocyte lacunar system, and porosity in the cortical bone of glucocorticoid-treated rats. Calcif Tissue Int. 2008;83:121–8.

    Article  CAS  PubMed  Google Scholar 

  253. Cheng S, Lyytikäinen A, Kröger H, et al. Effects of calcium, dairy product, and vitamin D supplementation on bone mass accrual and body composition in 10-12-y-old girls: a 2-y randomized trial. Am J Clin Nutr. 2005;82:1115–26.

    CAS  PubMed  Google Scholar 

  254. Doublier A, Farlay D, Khebbab MT, et al. Distribution of strontium and mineralization in iliac bone biopsies from osteoporotic women treated long-term with strontium ranelate. Eur J Endocrinol. 2011;165:469–76.

    Article  CAS  PubMed  Google Scholar 

  255. Roschger P, Manjubala I, Zoeger N, et al. Bone material quality in transiliac bone biopsies of postmenopausal osteoporotic women after 3 years of strontium ranelate treatment. J Bone Miner Res. 2010;25:891–900.

    Article  PubMed  CAS  Google Scholar 

  256. Wu Y, Adeeb SM, Duke MJ, et al. Compositional and material properties of rat bone after bisphosphonate and/or strontium ranelate drug treatment. J Pharm Pharm Sci. 2013;16:52–64.

    Article  PubMed  Google Scholar 

  257. Reginster JY, Kaufman JM, Goemaere S, et al. Maintenance of antifracture efficacy over 10 years with strontium ranelate in postmenopausal osteoporosis. Osteoporos Int. 2012;23:1115–22.

    Article  CAS  PubMed  Google Scholar 

  258. Li Z, Peng S, Pan H, Tang B, et al. Microarchitecture and nanomechanical properties of trabecular bone after strontium administration in osteoporotic goats. Biol Trace Elem Res. 2012;145:39–46.

    Article  CAS  PubMed  Google Scholar 

  259. Lundy DJ, Featherstone JD, Hodgson SF, et al. Histomorphometric analysis of iliac crest bone biopsies in placebo-treated versus fluoride-treated subjects. Osteoporos Int. 1998;5:115–29.

    Article  Google Scholar 

  260. Mirza F, Canalis E. Management of endocrine disease: secondary osteoporosis: pathophysiology and management. Eur J Endocrinol. 2015;173:R131–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Weinstein RS. Glucocorticoid-induced bone disease. NEJM. 2011;365:62–70.

    Article  CAS  PubMed  Google Scholar 

  262. Orcel P. Updated recommendations on the management of glucocorticoid-induced osteoporosis. Joint Bone Spine. 2014;81:465–8.

    Article  PubMed  Google Scholar 

  263. Pinkerton JV, Thomas S, Dalkin AC. Osteoporosis treatment and prevention for postmenopausal women: current and Future Therapeutic options. Clin Obstet Gynecol. 2013;56:711–21.

    Article  PubMed  Google Scholar 

  264. Böcker W, El Khassawna T, Bauer N, et al. Short-term glucocorticoid treatment causes spinal osteoporosis in ovariectomized rats. Eur Spine J. 2014;23:2437–48.

    Article  PubMed  Google Scholar 

  265. Govindarajan P, Khassawna T, Kampschulte M, et al. Implications of combined ovariectomy and glucocorticoid (dexamethasone) treatment on mineral, microarchitectural, biomechanical and matrix properties of rat bone. Int J Exp Pathol. 2014;94:387–98.

    Article  CAS  Google Scholar 

  266. Takahata M, Maher JR, Juneja SC, et al. Mechanisms of bone fragility in a mouse model of glucocorticoid-treated rheumatoid arthritis: implications for insufficiency fracture risk. Arthritis Rheum. 2012;64:3649–69.

    Article  PubMed  PubMed Central  Google Scholar 

  267. Pasqualetti S, Congiu T, Banfi G, Mariotti M. Alendronate rescued osteoporotic phenotype in a model of glucocorticoid-induced osteoporosis in adult zebrafish scale. Int J Exp Pathol. 2015;96:11–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Kenanidis E, Potoupnis ME, Kakoulidis P, et al. Management of glucocorticoid-induced osteoporosis: clinical data in relation to disease demographics, bone mineral density and fracture risk. Expert Opin Drug Saf. 2015;14:1035–53.

    Article  CAS  PubMed  Google Scholar 

  269. Karunaratne A, Bentley LX, Sykes D, et al. Multiscale alterations in bone matrix quality increased fragility in steroid induced osteoporosis. Bone. 2016;84:15–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Misof BM, Roschger P, Jorgetti V, et al. Subtle changes in bone mineralization density distribution in most severely affected patients with chronic obstructive pulmonary disease. Bone. 2015;79:1–7.

    Article  CAS  PubMed  Google Scholar 

  271. Tsai MY, Shyr CR, Kang HY, et al. The reduced trabecular bone mass of adult ARKO male mice results from the decreased osteogenic differentiation of bone marrow stroma cells. Biochem Biophys Res Commun. 2011;411:477–82.

    Article  CAS  PubMed  Google Scholar 

  272. Moon JH, Jung KY, Kim KM, et al. The effect of thyroid stimulating hormone suppressive therapy on bone geometry in the hip area of patients with differentiated thyroid carcinoma. Bone. 2016;83:104–10.

    Article  CAS  PubMed  Google Scholar 

  273. Mammen JS, McGready J, Oxman R, et al. Thyroid Hormone Therapy and Risk of Thyrotoxicosis in Community-Resident Older Adults: findings from the Baltimore Longitudinal Study of Aging. Thyroid. 2015;25:979–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Do Cao C, Wémeau JL. Risk-benefit ratio for TSH- suppressive Levothyroxine therapy in differentiated thyroid cancer. Ann Endocrinol (Paris). 2015; 76(Suppl 1):1S47-52.

  275. Dumic-Cule I, Draca N, Luetic AT, et al. TSH prevents bone resorption and with calcitriol synergistically stimulates bone formation in rats with low levels of calciotropic hormones. Horm Metab Res. 2014;46:305–12.

    Article  CAS  PubMed  Google Scholar 

  276. Sampath TK, Simic P, Sendak R, et al. Thyroid-stimulating hormone restores bone volume, microarchitecture, and strength in aged ovariectomized rats. J Bone Miner Res. 2007;22:849–59.

    Article  CAS  PubMed  Google Scholar 

  277. Kinjo M, Setoguchi S, Schneeweiss S, Solomon DH. Bone mineral density in subjects using central nervous system-active medications. Am J Med. 2005;118:1414.

    Article  PubMed  Google Scholar 

  278. Diem SJ, Ruppert K, Cauley JA, et al. Rates of bone loss among women initiating antidepressant medication use in midlife. J Clin Endocrinol Metab. 2013;98:4355–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Gotthardt F, Huber C, Thierfelder C, et al. Bone mineral density and its determinants in men with opioid dependence. J Bone Miner Metab. 2016; (Epub ahead of print).

  280. Chrastil J, Sampson C, Jones KB, Higgins TF. Postoperative opioid administration inhibits bone healing in an animal model. Clin Orthop Relat Res. 2013;471:4076–81.

    Article  PubMed  PubMed Central  Google Scholar 

  281. Parara EM, Galanopoulou PB, Rallis G, et al. Mandibular bone density and calcium content affected by long-term anticonvulsant treatment in rats. J Musculoskelet Neuronal Interact. 2009;9:32–7.

    CAS  PubMed  Google Scholar 

  282. Diem SJ, Blackwell TL, Stone KL, et al. Use of antidepressants and rates of hip bone loss in older women: the study of osteoporotic fractures. Arch Intern Med. 2007;167:1240–5.

    Article  PubMed  Google Scholar 

  283. Rezaieyazdi Z, Falsoleiman H, Khajehdaluee M, et al. Reduced bone density in patients on long-term warfarin. Int J Rheum Dis. 2009;12:130–5.

    Article  PubMed  Google Scholar 

  284. Stenova E, Steno B, Killinger Z, et al. Effect of long-term oral anticoagulant therapy on bone mineral density and bone turnover markers: a prospective 12 month study. Bratisl Lek Listy. 2011;112:71–6.

    CAS  PubMed  Google Scholar 

  285. Meng Y, Zhang H, Li Y, et al. Effects of unfractionated heparin on renal osteodystrophy and vascular calcification in chronic kidney disease rats. Bone. 2014;58:168–76.

    Article  CAS  PubMed  Google Scholar 

  286. Carbone LD, Johnson KC, Bush AJ, et al. Loop diuretic use and fracture in postmenopausal women: findings from the Women’s Health Initiative. Arch Intern Med. 2009;169:132–40.

    Article  PubMed  Google Scholar 

  287. Solomon DH, Ruppert K, Zhao Z, et al. Bone mineral density changes among women initiating blood pressure lowering drugs: a SWAN cohort study. Osteoporos Int. 2016;27:1181–9.

    Article  CAS  PubMed  Google Scholar 

  288. Bushinsky DA, Willett T, Asplin JR, et al. Chlorthalidone improves vertebral bone quality in genetic hypercalciuric stone-forming rats. J Bone Miner Res. 2011;26:1904–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Sugiyama T, Watarai K, Oda T, et al. Proton pump inhibitors and fracture: they impair bone quality and increase fall risk? Osteoporos Int. 2016;27:1675–6.

    Article  Google Scholar 

  290. Fossmark R, Stunes AK, Petzold C, et al. Decreased bone mineral density and reduced bone quality in H(+)/K(+) ATPase beta-subunit deficient mice. J Cell Biochem. 2012;113:141–7.

    Article  CAS  PubMed  Google Scholar 

  291. Meier C, Kraenzlin ME. Antiepileptics and bone health. Ther Adv Musculoskelet Dis. 2011;5:235–43.

    Article  CAS  Google Scholar 

  292. Petty SJ, O’Brien TJ, Wark JD. Anti-epileptic medication and bone health. Osteoporos Int. 2006;18:129–42.

    Article  PubMed  Google Scholar 

  293. Beniczky SA, Viken J, Jensen LT, Andersen NB. Bone mineral density in adult patients treated with various antiepileptic drugs. Seizure. 2012;21:471–2.

    Article  PubMed  Google Scholar 

  294. Modesto W, Bahamondes MV, Bahamondes L. Prevalence of low bone mass and osteoporosis in long-term users of the injectable contraceptive depot medroxyprogesterone acetate. J Womens Health (Larchmt). 2015;24:636–40.

    Article  Google Scholar 

  295. Lopez LM, Chen M, Mullins Long S, et al. Steroidal contraceptives and bone fractures in women: evidence from observational studies. Cochrane Database Syst Rev. 2015; 7:CD009849.

  296. Bienz M, Saad F. Androgen-deprivation therapy and bone loss in prostate cancer patients: a clinical review. Bonekey Rep. 2015;4:716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Erbağ G, Uygun K, Binnetoğlu E, et al. Aromatase inhibitor treatment for breast cancer: short-term effect on bone health. Contemp Oncol (Pozn). 2015; 19:347–74.

  298. Lee SJ, Kim KM, Brown JK, et al. Negative impact of aromatase inhibitors on proximal femoral bone mass and geometry in postmenopausal women with breast cancer. Calcif Tissue Int. 2015;97:551–9.

    Article  CAS  PubMed  Google Scholar 

  299. Billington EO, Grey A, Bolland MJ. The effect of thiazolidinediones on bone mineral density and bone turnover: systematic review and meta-analysis. Diabetologia. 2015;58:2238–46.

    Article  CAS  PubMed  Google Scholar 

  300. Zhu ZN, Jiang YF, Ding T. Risk of fracture with thiazolidinediones: an updated meta-analysis of randomized clinical trials. Bone. 2014;68:115–23.

    Article  CAS  PubMed  Google Scholar 

  301. Schwartz AV, Vittinghoff E, Margolis KL, et al. Intensive glycemic control and thiazolidinedione use: effects on cortical and trabecular bone at the radius and tibia. Calcif Tissue Int. 2013;92:477–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Wang C, Li H, Chen SG, He JW, et al. The skeletal effects of thiazolidinedione and metformin on insulin-resistant mice. J Bone Miner Metab. 2012;30:630–7.

    Article  CAS  PubMed  Google Scholar 

  303. Eckard AR, Mora S. Bone health in HIV-infected children and adolescents. Curr Opin HIV AIDS. 2016;11:294–300.

    Article  PubMed  Google Scholar 

  304. Aziz N, Butch AW, Quint JJ, Detels R. Association of blood biomarkers of bone turnover in HIV-1 infected individuals receiving anti-retroviral therapy (ART). J AIDS Clin Res. 2014;5:1000360.

    PubMed  PubMed Central  Google Scholar 

  305. Voulgaris A, Liapi C, Papadopoulos J. Effect of low-dose methylprednisolone on calcium balance and bone composition in rats. J Endocrinol Invest. 1997;20:659–63.

    Article  CAS  PubMed  Google Scholar 

  306. Aerssens J, Van Audekercke R, Geusens P, et al. Mechanical properties, bone mineral content, and bone composition (collagen, osteocalcin, IGF-I) of the rat femur: influence of ovariectomy and nandrolone decanoate (anabolic steroid) treatment. Calcif Tissue Int. 1993;53:269–77.

    Article  CAS  PubMed  Google Scholar 

  307. Huang RY, Miller LM, Carlson CS, Chance MR. Characterization of bone mineral composition in the proximal tibia of cynomolgus monkeys: effect of ovariectomy and nandrolone decanoate treatment. Bone. 2002;30:492–7.

    Article  CAS  PubMed  Google Scholar 

  308. Kaji H, Yamauchi M, Chihara K, Sugimoto T. Glucocorticoid excess affects cortical bone geometry in premenopausal, but not postmenopausal, women. Calcif Tissue Int. 2008;82:182–90.

    Article  CAS  PubMed  Google Scholar 

  309. Gadeleta SJ, Boskey AL, Paschalis E, et al. A physical, chemical, and mechanical study of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate-treated cynomolgus monkeys (Macaca fascicularis). Bone. 2000;27:541–50.

    Article  CAS  PubMed  Google Scholar 

  310. Nissen-Meyer LS, Svalheim S, Taubøll E, et al. Levetiracetam, phenytoin, and valproate act differently on rat bone mass, structure, and metabolism. Epilepsia. 2007;48:1850–60.

    Article  CAS  PubMed  Google Scholar 

  311. Warden SJ, Robling AG, Sanders MS, et al. Inhibition of the serotonin (5-hydroxytryptamine) transporter reduces bone accrual during growth. Endocrinology. 2005;2015:146685–938.

    Google Scholar 

  312. Abuohashish HM, Ahmed MM, Al-Rejaie SS, Eltahir KE. The antidepressant bupropion exerts alleviating properties in an ovariectomized osteoporotic rat model. Acta Pharmacol Sin. 2015;36:209–20.

    Article  CAS  PubMed  Google Scholar 

  313. Haffa A, Krueger D, Bruner J, et al. Diet- or warfarin-induced vitamin K insufficiency elevates circulating undercarboxylated osteocalcin without altering skeletal status in growing female rats. J Bone Miner Res. 2000;15:872–8.

    Article  CAS  PubMed  Google Scholar 

  314. Binkley N, Krueger D, Engelke J, Suttie J. Vitamin K deficiency from long-term warfarin anticoagulation does not alter skeletal status in male rhesus monkeys. J Bone Miner Res. 2007;22:695–700.

    Article  CAS  PubMed  Google Scholar 

  315. Hara K, Kobayashi M, Akiyama Y. Influence of bone osteocalcin levels on bone loss induced by ovariectomy in rats. J Bone Miner Metab. 2007;25:345–53.

    Article  CAS  PubMed  Google Scholar 

  316. Lim LS, Fink HA, Kuskowski MA, et al. Loop diuretic use and increased rates of hip bone loss in older men: the Osteoporotic Fractures in Men Study. Arch Intern Med. 2008;168:735–40.

    Article  PubMed  Google Scholar 

  317. Legroux-Gerot I, Catanzariti L, Marchandise X, et al. Bone mineral density changes in hypercalciuretic osteoporotic men treated with thiazide diuretics. Joint Bone Spine. 2004;71:51–5.

    Article  PubMed  Google Scholar 

  318. Cottrell JA, Vales FM, Schachter D, et al. Osteogenic activity of locally applied small molecule drugs in a rat femur defect model. J Biomed Biotechnol. 2010;2010:597641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  319. Kumar S, Hoffman SJ, Samadfam R, et al. The effect of rosiglitazone on bone mass and fragility is reversible and can be attenuated with alendronate. J Bone Miner Res. 2012;28:1653–65.

    Article  CAS  Google Scholar 

  320. Nicholls JJ, Brassill MJ, Williams GR, Bassett JH. The skeletal consequences of thyrotoxicosis. J Endocrinol. 2012;213:209–21.

    Article  CAS  PubMed  Google Scholar 

  321. Cosman F. Combination therapy for osteoporosis: a reappraisal. Bonekey Rep. 2014;3:518.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  322. Whitmarsh T, Treece GM, Gee AH, Poole KE. Mapping bone changes at the proximal femoral cortex of postmenopausal women in response to alendronate and teriparatide alone, combined or sequentially. J Bone Miner Res. 2015;30:1309–18.

    Article  CAS  PubMed  Google Scholar 

  323. Shao H-B, Yao Y-M, Wang Z-Y, et al. Effects of combined alendronate and alfacalcidol on prevention of fractures in osteoporosis patients: a network meta-analysis. Int J Clin Exp Med. 2015;8:12935–41.

    PubMed  PubMed Central  Google Scholar 

  324. Komm BS, Vlasseros F, Samadfam R, et al. Skeletal effects of bazedoxifene paired with conjugated estrogens in ovariectomized rats. Bone. 2011;49:376–86.

    Article  CAS  PubMed  Google Scholar 

  325. Wei J, Wang J, Gong Y, Zeng R. Effectiveness of combined salmon calcitonin and aspirin therapy for osteoporosis in ovariectomized rats. Mol Med Rep. 2015;12:1717–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  326. Keaveny TM, Hoffmann PF, Singh M, et al. Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT Scans. J Bone Min Res. 2008;23:1974–82.

    Article  CAS  Google Scholar 

  327. Johnell O, Scheele WH, Lu Y, Reginster JY, et al. Additive effects of raloxifene and alendronate on bone density and biochemical markers of bone remodeling in postmenopausal women with osteoporosis. J Clin Endocrinol Metab. 2002;87:985–92.

    Article  CAS  PubMed  Google Scholar 

  328. Diab T, Wang J, Reinwald S, et al. Effects of the Combination Treatment of Raloxifene and Alendronate on the Biomechanical Properties of Vertebral Bone. J Bone Min Res. 2011;26:270–6.

    Article  CAS  Google Scholar 

  329. Khajuria DK, Razdan R, Mahapatra DR. Effect of combined treatment with zoledronic acid and propanolol on mechanical strength in a rat model of disuse osteoporosis. Revista brasileira de reumatologia. 2015;55:501–11.

    Article  PubMed  Google Scholar 

  330. Altman AR, Tseng WJ, de Bakker CM, et al. A closer look at the immediate trabecula response to combined parathyroid hormone and alendronate treatment. Bone. 2014;61:149–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  331. Johnston S, Andrews S, Shen V, et al. The effects of combination of alendronate and human parathyroid hormone(1–34) on bone strength are synergistic in the lumbar vertebra and additive in the femur of C57BL/6 J mice. Endocrinology. 2007;148:4466–74.

    Article  CAS  PubMed  Google Scholar 

  332. Muschitz C, Kocijan R, Fahrleitner-Pammer A, et al. Overlapping and continued alendronate or raloxifene administration in patients on teriparatide: effects on areal and volumetric bone mineral density–the CONFORS Study. J Bone Miner Res. 2014;29:1777–85.

    Article  CAS  PubMed  Google Scholar 

  333. Garnero P, Bauer DC, Mareau E, et al. Effects of PTH and alendronate on type I collagen isomerization in postmenopausal women with osteoporosis: the PaTH study. J Bone Miner Res. 2008;23:1442–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Schafer AL, Burghardt AJ, Sellmeyer DE, et al. Postmenopausal women treated with combination parathyroid hormone (1-84) and ibandronate demonstrate different microstructural changes at the radius vs. tibia: the PTH and Ibandronate Combination Study (PICS). Osteoporos Int. 2013;24:2591–601.

    Article  CAS  PubMed  Google Scholar 

  335. Iwamoto J, Seki A. Effect of combined teriparatide and monthly risedronate therapy on cancellous bone mass in orchidectomized rats: a bone histomorphometry study. Calcif Tissue Int. 2015; 9723–31.

  336. Cosman F, Eriksen EF, Recknor C, et al. Effects of intravenous zoledronic acid plus subcutaneous teriparatide [rhPTH(1-34)] in postmenopausal osteoporosis. J Bone Miner Res. 2011;26:503–11.

    Article  CAS  PubMed  Google Scholar 

  337. Li YF, Li XD, Bao CY, et al. Promotion of peri-implant bone healing by systemically administered parathyroid hormone (1-34) and zoledronic acid adsorbed onto the implant surface. Osteoporos Int. 2013;24:1063–71.

    Article  CAS  PubMed  Google Scholar 

  338. Misof BM, Paschalis EP, Blouin S, et al. Effects of 1 year of daily teriparatide treatment on iliacal bone mineralization density distribution (BMDD) in postmenopausal osteoporotic women previously treated with alendronate or risedronate. J Bone Miner Res. 2010;25:2297–303.

    Article  CAS  PubMed  Google Scholar 

  339. Gamsjaeger S, Buchinger B, Zoehrer R, et al Effects of one year daily teriparatide treatment on trabecular bone material properties in postmenopausal osteoporotic women previously treated with alendronate or risedronate. Bone. 49:1160–65.

  340. Cosman F, Gilchrist N, McClung M, et al. A phase 2 study of MK-5442, a calcium-sensing receptor antagonist, in postmenopausal women with osteoporosis after long-term use of oral bisphosphonates. Osteoporos Int. 2016;27:377–86.

    Article  CAS  PubMed  Google Scholar 

  341. Tsai JN, Zhu Y, Foley K, et al. Comparative resistance to teriparatide-induced bone resorption with denosumab or alendronate. J Clin Endocrinol Metab. 2015;100:2718–23.

    Article  CAS  PubMed  Google Scholar 

  342. Nagura N, Komatsu J, Iwase H, et al. Effects of the combination of vitamin K and teriparatide on the bone metabolism in ovariectomized rats. Biomed Rep. 2015;3:295–300.

    PubMed  PubMed Central  Google Scholar 

  343. Abboskhujaeva LS, Ismailov SI, Alikhanova NM. Efficacy of strontium ranelate in combination with a D-hormone analog for the treatment of postmenopausal osteoporosis. Drugs R&D. 2014;14:315–24.

    Article  CAS  Google Scholar 

  344. Rittmaster RS, Bolognese M, Ettinger MP, et al. Enhancement of bone mass in osteoporotic women with parathyroid hormone followed by alendronate. J Clin Endocrinol Metab. 2000;85:2129–34.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors appreciate the editorial comments of Dr. Judah Gerstein, Dr. David Burr and Dr. Eve Donnelly.

Funding

The authors’ research described in this manuscript was supported by NIH Grant AR041325.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adele Boskey.

Ethics declarations

Conflict of interest

Dr. Boskey declares that she has no conflicts of interest. Dr Imbert declares that she has no conflict of interest.

Ethical Approval

All reported review data were obtained following all applicable international, national and/or institutional guidelines for the care and use of animals. All procedures reviewed in studies involving human participants were in accordance with the ethical standards of the institution and/or the appropriate governmental authorities and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Animal and Human Studies

This article does not include any studies with human or animal subjects performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imbert, L., Boskey, A. Effects of Drugs on Bone Quality. Clinic Rev Bone Miner Metab 14, 167–196 (2016). https://doi.org/10.1007/s12018-016-9220-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-016-9220-6

Keywords

Navigation