Skip to main content

Advertisement

Log in

The Functional Metabolism and Molecular Biology of Vitamin D Action

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The evolution of our understanding of the biological impact of vitamin D is briefly reviewed, with a focus on the physiology and endocrinology of the vitamin D system. This chapter attempts to bring the molecular discoveries in vitamin D metabolism and mechanisms of action into focus on known physiology and endocrinology. The latest developments on metabolism of vitamin D, the enzymes involved, and the genes responsible are presented. The impact of the molecular discoveries on current views of the importance of vitamin D in public health is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mellanby E. An experimental investigation on rickets. Lancet. 1919;1:407–12.

    Google Scholar 

  2. McCollum EV, Simmonds N, Becker JE, et al. Studies on experimental rickets. XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem. 1922;53:293–312.

    CAS  Google Scholar 

  3. Huldshinsky K. Heilung von rachitis durch kunstlickhe hohensonne. Dtsch Med Wochenschr. 1919;45:712–3.

    Google Scholar 

  4. Chick H, Palzell EJ, Hume EM. Studies of rickets in Vienna 1919–1922. Medical Research Council; 1923.

  5. Hess A. The history of rickets. In: Hess A, editor. Rickets, including osteomalacia and tetany. Philadelphia: Lee & Febiger; 1929. p. 22–37.

  6. Sebrell WH, Harris RS. Vitamin D group. The vitamins. New York: Academic Press; 1954. p. 1131–266.

    Google Scholar 

  7. Steenbock H, Black A. Fat-soluble vitamins. XVII. The induction of growth-promoting and calcifying properties in a ration by exposure to ultraviolet light. J Biol Chem. 1924;61:405–22.

    CAS  Google Scholar 

  8. Scriver CR, Reade TM, DeLuca HF, et al. Serum 1,25-(OH)2D3 levels in normal subjects and in patients with hereditary rickets or bone disease. N Engl J Med. 1978;299:976–9.

    PubMed  CAS  Google Scholar 

  9. Fraser D, Kooh SW, Kind HP, et al. Pathogenesis of hereditary vitamin D-dependent rickets: An inborn error of vitamin D metabolism involving defective conversion of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D. N Engl J Med. 1973;289:817–22.

    PubMed  CAS  Google Scholar 

  10. Kim CJ, Kaplan LE, Perwad F, et al. Vitamin D 1α-hydroxylase deficiency. J Clin Endocrinol Metab. 2007;92(8):3177–82.

    Article  PubMed  CAS  Google Scholar 

  11. Porcu L, Meloni A, Casula L, et al. A novel splicing defect (IVS6 + 1G—>T) in a patient with pseudovitamin D deficiency rickets. J Endocrinol Invest. 2002;25:557–60.

    PubMed  CAS  Google Scholar 

  12. Wang X, Zhang MYH, Miller WL, et al. Novel gene mutations in patients with 1α-hydroxylase deficiency that confer partial enzyme activity in vitro. J Clin Endocrinol Metab. 2002;87(6):2424–30.

    Article  PubMed  CAS  Google Scholar 

  13. Wang JT, Lin C-J, Burridge SM, et al. Genetics of vitamin D 1α-hydroxylase deficiency in 17 families. Am J Hum Genet. 1998;63:1694–702.

    Article  PubMed  CAS  Google Scholar 

  14. Fu GK, Lin D, Zhang MYH, et al. Cloning of human 25-hydroxyvitamin D-1α-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol Endocrinol. 1997;11:1961–70.

    Article  PubMed  CAS  Google Scholar 

  15. Kitanaka S, Murayama A, Sakaki T, et al. No enzyme activity of 25-hydroxyvitamin D3 1α-hydroxylase gene product in pseudovitamin D deficiency rickets, including that with mild clinical manifestation. J Clin Endocrinol Metab. 1999;84:4111–7.

    Article  PubMed  CAS  Google Scholar 

  16. Kitanaka S, Takeyama K-I, Murayama A, et al. Inactivating mutations in the 25-hydroxyvitamin D3 1α-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med. 1998;338:653–61.

    Article  PubMed  CAS  Google Scholar 

  17. Yoshida T, Monkawa T, Tenenhouse HS, et al. Two novel 1α-hydroxylase mutations in French-Canadians with vitamin D dependency rickets type I. Kidney Int. 1998;54:1437–43.

    Article  PubMed  CAS  Google Scholar 

  18. Smith SJ, Rucka AK, Berry JL, et al. Novel mutations in the 1α-hydroxylase (P450c1) gene in three families with pseudovitamin D-deficiency rickets resulting in loss of functional enzyme activity in blood-derived macrophages. J Bone Miner Res. 1999;14:730–9.

    Article  PubMed  CAS  Google Scholar 

  19. Brommage R, Jarnagin K, DeLuca HF, et al. 1-hydroxylation but not 24-hydroxylation of vitamin D is required for skeletal mineralization in rats. Am J Physiol. 1983;244:E298–304.

    PubMed  CAS  Google Scholar 

  20. Eil C, Lieberman UA, Rosen JF, et al. A cellular defect in hereditary vitamin D-dependent rickets type II: defective nuclear uptake of 1,25-dihydroxyvitamin D in cultured skin fibroblasts. N Engl J Med. 1981;304:1588–91.

    PubMed  CAS  Google Scholar 

  21. Bell NH, Hamstra AJ, DeLuca HF. Vitamin D-dependent rickets type II: resistance of target organs to 1,25-dihydroxyvitamin D. N Engl J Med. 1978;298:996–9.

    PubMed  Google Scholar 

  22. Rosen JF, Fleischman AR, Finberg L, et al. Rickets with alopecia: an inborn error of vitamin D metabolism. J Pediatrics. 1979;94:729–35.

    Article  CAS  Google Scholar 

  23. Marx SJ, Liberman UA, Eil C, et al. Hereditary resistance to 1,25-dihydroxyvitamin D. Recent Prog Horm Res. 1984;40:589–620.

    PubMed  CAS  Google Scholar 

  24. Wiese RJ, Goto H, Prahl JM, et al. Vitamin D-dependency rickets type II: truncated vitamin D receptor in three kindreds. Mol Cell Endocrinol. 1993;90:197–201.

    Article  PubMed  CAS  Google Scholar 

  25. Liberman UA, Marx SJ. Vitamin D dependent rickets. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 1st ed. Richmond: William Byrd Press; 1990. p. 178–82.

    Google Scholar 

  26. Liberman UA. Vitamin D-resistant diseases. J Bone Miner Res. 2007;22(S2):V105–7.

    Article  PubMed  Google Scholar 

  27. Underwood JL, DeLuca HF. Vitamin D is not directly necessary for bone growth and mineralization. Am J Physiol. 1983;246:E493–8.

    Google Scholar 

  28. DeLuca HF. Mechanism of action and metabolic fate of vitamin D. Vitam Horm. 1967;25:315–67.

    Article  PubMed  CAS  Google Scholar 

  29. DeLuca HF, Schnoes HK. Vitamin D: recent advances. Ann Rev Biochem. 1983;52:411–39.

    Article  PubMed  CAS  Google Scholar 

  30. Schachter D, Rosen SM. Active transport of Ca45 by the small intestine and its dependence on vitamin D. Am J Physiol. 1959;196:357–62.

    PubMed  CAS  Google Scholar 

  31. Higaki M, Takahashi M, Suzuki T, et al. Metabolic activities of vitamin D in animals. III. Biogenesis of vitamin D sulfate in animal tissues. J Vitaminol. 1965;11:261–5.

    CAS  Google Scholar 

  32. Martin DL, DeLuca HF. Calcium transport and the role of vitamin D. Arch Biochem Biophys. 1969;134:139–48.

    Article  PubMed  CAS  Google Scholar 

  33. Walling MW, Rothman SS. Phosphate-independent, carrier-mediated active transport of calcium by rat intestine. Am J Physiol. 1969;217:1144–8.

    PubMed  CAS  Google Scholar 

  34. Wasserman RH, Kallfelz FA, Comar CL. Active transport of calcium by rat duodenum in vivo. Science. 1961;133:883–4.

    Article  PubMed  CAS  Google Scholar 

  35. Schachter D. Vitamin D and the active transport of calcium by the small intestine. In: Wasserman RH, editor. The transfer of calcium and strontium across biological membranes. New York: Academic Press; 1963. p. 197–210.

    Google Scholar 

  36. Chen TC, Castillo L, Korycka-Dahl M, et al. Role of vitamin D metabolites in phosphate transport of rat intestine. J Nutr. 1974;104:1056–60.

    PubMed  CAS  Google Scholar 

  37. Walling MW. Effects of 1,25-dihydroxyvitamin D3 on active intestinal inorganic phosphate absorption. In: Norman AW, Schaefer K, Coburn JW, editors. Vitamin D: biochemical, chemical, and clinical aspects related to calcium metabolism. Berlin: Walter de Gruyter; 1977. p. 321–30.

    Google Scholar 

  38. Harrison HE, Harrison HC. Intestinal transport of phosphate: action of vitamin D, calcium, and potassium. Am J Physiol. 1962;201:1007–12.

    Google Scholar 

  39. Nicolaysen R, Eeg-Larsen N. The mode of action of vitamin D. In: Wolstenholme GWE, O’Connor CM, editors. Ciba foundation symposium on bone structure and metabolism. Boston: Little, Brown, and Co.; 1956. p. 175–86.

    Chapter  Google Scholar 

  40. Yamamoto M, Kawanobe Y, Takahashi H, et al. Vitamin D deficiency and renal calcium transport in the rat. J Clin Invest. 1984;74:507–13.

    Article  PubMed  CAS  Google Scholar 

  41. Carlsson A. Tracer experiments on the effect of vitamin D on the skeletal metabolism of calcium and phosphorus. Acta Physiol Scand. 1952;26:212–20.

    Article  PubMed  CAS  Google Scholar 

  42. Rasmussen H, DeLuca H, Arnaud C, et al. The relationship between vitamin D and parathyroid hormone. J Clin Invest. 1963;42:1940–6.

    Article  PubMed  CAS  Google Scholar 

  43. Morii H, Lund J, Neville PF, et al. Biological activity of a vitamin D metabolite. Arch Biochem Biophys. 1967;120(3):508–12.

    Article  CAS  Google Scholar 

  44. Steenbock H, Herting DC. Vitamin D and growth. J Nutr. 1955;57:449–68.

    PubMed  CAS  Google Scholar 

  45. Cramer JW, Steenbock H. Calcium metabolism and growth in the rat on a low phosphorus diet as affected by vitamin D and increases in calcium intake. Arch Biochem Biophys. 1956;63:9–13.

    Article  PubMed  CAS  Google Scholar 

  46. Darwish HM, DeLuca HF. Analysis of binding of the 1,25-dihydroxyvitamin D3 receptor to positive and negative vitamin D response elements. Arch Biochem Biophys. 1996;334:223–34.

    Article  PubMed  CAS  Google Scholar 

  47. Demay MB, Kiernan MS, DeLuca HF, et al. Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA. 1992;89:8097–101.

    Article  PubMed  CAS  Google Scholar 

  48. Silver J, Naveh-Many T, Mayer H, et al. Regulation of vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J Clin Invest. 1986;78:1296–301.

    Article  PubMed  CAS  Google Scholar 

  49. DeLuca HF. The transformation of a vitamin into a hormone—the vitamin D story. Harvey Lect. 1981;75:333–79.

    CAS  Google Scholar 

  50. DeLuca HF. The vitamin D-calcium axis—1983. In: Rubin RP, Weiss GB, Putney Jr JW, editors. Calcium in biological systems, vol. 53. New York: Plenum Publishing Corp; 1985. p. 491–511.

    Google Scholar 

  51. Liu S, Tang W, Zhou J, et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol. 2006;17(5):1305–15. (Epub 2006, April 5).

    Article  PubMed  CAS  Google Scholar 

  52. Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):562–658.

    Google Scholar 

  53. Bellin SA, Herting DC, Cramer JW, et al. The effect of vitamin D on urinary citrate in relation to calcium phosphorus and urinary phosphorus. Arch Biochem Biophys. 1954;80:18–23.

    Article  Google Scholar 

  54. Neville PF, DeLuca HF. The synthesis of [1, 2-3H]vitamin D3 and the tissue localization of a 0.25 μg (10 IU) dose per rat. Biochemistry. 1966;5:2201–7.

    Article  PubMed  CAS  Google Scholar 

  55. Norman AW, Lund J, DeLuca HF. Biologically active forms of vitamin D3 in kidney and intestine. Arch Biochem Biophys. 1964;108:12–21.

    Article  PubMed  CAS  Google Scholar 

  56. Lund J, DeLuca HF. Biologically active metabolites of vitamin D3 from bone, liver, and blood serum. J Lipid Res. 1966;7:739–44.

    PubMed  CAS  Google Scholar 

  57. DeLuca HF. Vitamin D: the vitamin and the hormone. Fed Proc. 1974;33:2211–9.

    PubMed  CAS  Google Scholar 

  58. Vieth R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr. 1999;69:842–56.

    PubMed  CAS  Google Scholar 

  59. Windus A, Bock F. Uber das provitamin aus dem sterin der schweineschwarte. Z Physiol Chem. 1937;245:168–70.

    Google Scholar 

  60. Esvelt RP, Schnoes HK, DeLuca HF. Vitamin D3 from rat skins irradiated in vitro with ultraviolet light. Arch Biochem Biophys. 1978;188:282–6.

    Article  PubMed  CAS  Google Scholar 

  61. Windus A, Schenck F, Weder Fv. Uber das antirachitisch wirksame bestrahlungs-produkt aus 7-dehydro-cholesterin. Hoppe-Seylers Z Physiol Chem. 1936;241:100–3.

    Google Scholar 

  62. Velluz L, Amiard G. Chimie organique-le precalciferol. Compt Rend. 1949;228:692–4.

    CAS  Google Scholar 

  63. Holick MF, Clark MB. The photobiogenesis and metabolism of vitamin D. Fed Proc. 1978;37:2567–74.

    PubMed  CAS  Google Scholar 

  64. Ponchon G, DeLuca HF, Suda T. Metabolism of [1, 2-3H-vitamin D3 and [26,27-3H-25-hydroxyvitamin D3 in rachitic chicks. Arch Biochem Biophys. 1970;141:397–408.

    Article  PubMed  CAS  Google Scholar 

  65. Horsting M, DeLuca HF. In vitro production of 25-hydroxycholecalciferol. Biochem Biophys Commun. 1969;36:251–6.

    Article  CAS  Google Scholar 

  66. Prosser DE, Jones G. Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem Sci. 2004;29(13):664–73.

    Article  PubMed  CAS  Google Scholar 

  67. Guo Y-D, Strugnell S, Back DW, et al. Transfected human liver cytochrome P-450 hydroxylates vitamin D analogs at different side-chain positions. Proc Natl Acad Sci USA. 1993;90:8668–72.

    Article  PubMed  CAS  Google Scholar 

  68. Pikuleva IA, Bjorkhem I, Waterman MR. Expression, purification, and enzymatic properties of recombinant human cytochrome P450c27 (CYP27). Arch Biochem Biophys. 1997;343(1):123–30.

    Article  PubMed  CAS  Google Scholar 

  69. Rosen H, Reshef A, Maeda N, et al. Markedly reduced bile acid synthesis but maintained levels of cholesterol and vitamin D metabolites in mice with disrupted sterol 27-hydroxylase gene. J Biol Chem. 1998;273(24):14805–12.

    Article  PubMed  CAS  Google Scholar 

  70. Repa JJ, Mangelsdorf DJ. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol. 2000;16:459–81.

    Article  PubMed  CAS  Google Scholar 

  71. Ohyama Y, Yamasaki T. Eight cytochrome P450 s catalyze vitamin D metabolism. Front Biosci. 2004;9:3007–18.

    Article  PubMed  CAS  Google Scholar 

  72. Fraser DR, Kodicek E. Unique biosynthesis by kidney of a biologically active vitamin D metabolite. Nature. 1970;228:764–6.

    Article  PubMed  CAS  Google Scholar 

  73. Gray R, Boyle I, DeLuca HF. Vitamin D metabolism: the role of kidney tissue. Science. 1971;172:1232–4.

    Article  PubMed  CAS  Google Scholar 

  74. Boyle IT, Miravet L, Gray RW, et al. The response of intestinal calcium transport to 25-hydroxy and 1,25-dihydroxyvitamin D in nephrectomized rats. Endocrinology. 1972;90:605–8.

    PubMed  CAS  Google Scholar 

  75. Holick MF, Garabedian M, DeLuca HF. 1,25-Dihydroxycholecalciferol: metabolite of vitamin D3 active on bone in anephric rats. Science. 1972;176:1146–7.

    Article  PubMed  CAS  Google Scholar 

  76. Wong RG, Norman AW, Reddy CR, et al. Biologic effects of 1,25-dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats. J Clin Invest. 1972;51:1287–91.

    Article  PubMed  CAS  Google Scholar 

  77. Dardenne O, Prud’Homme J, Arabian A. Targeted inactivation of the 25-hydroxyvitamin D3-1α-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology. 2001;142:3135–41.

    Article  PubMed  CAS  Google Scholar 

  78. Panda DK, Miao D, Tremblay ML, et al. Targeted ablation of the 25-hydroxyvitamin D 1α-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci USA. 2001;98(13):7498–503.

    Article  PubMed  CAS  Google Scholar 

  79. Norman AW. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr. 2008;88:491S–9S.

    Article  PubMed  CAS  Google Scholar 

  80. Bikle DD, Chang S, Crumrine D, et al. 25 Hydroxyvitamin D 1α-hydroxylase is required for optimal epidermal differentiation and permeability barrier homeostasis. J Invest Dermatol. 2004;122:984–92.

    Article  PubMed  CAS  Google Scholar 

  81. Hewison M, Adams JS. Extra-renal 1α-hydroxylase activity and human disease. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 79. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1379–400.

    Google Scholar 

  82. Barbour GL, Coburn JW, Slatopolsky E, et al. Hypercalcemia in an anephric patient with sarcoidosis: evidence for extrarenal generation of 1,25-dihydroxyvitamin D. N Engl J Med. 1981;305(8):440–3.

    PubMed  CAS  Google Scholar 

  83. Jones G, Ramshaw H, Zhang A, et al. Expression and activity of vitamin D-metabolizing cytochrome P450s (CYP1α and CYP24) in human nonsmall cell lung carcinomas. Endocrinology. 1999;140(7):3303–10.

    Article  PubMed  CAS  Google Scholar 

  84. Reeve L, Tanaka Y, DeLuca HF. Studies on the site of 1,25-dihydroxyvitamin D3 synthesis in vivo. J Biol Chem. 1983;258(6):3615–7.

    PubMed  CAS  Google Scholar 

  85. Shultz TD, Fox J, Heath H 3rd, et al. Do tissues other than the kidney produce 1,25-dihydroxyvitamin D3 in vivo? A reexamination. Proc Natl Acad Sci USA. 1983;80(6):1746–50.

    Article  PubMed  CAS  Google Scholar 

  86. Vanhooke JL, Prahl JM, Kimmel-Jehan C, et al. CYP27B1 null mice with LacZ reporter gene display no 25-hydroxyvitamin D3-1α-hydroxylase promoter activity in the skin. Proc Natl Acad Sci USA. 2006;103(1):75–80.

    Article  PubMed  CAS  Google Scholar 

  87. Pedersen JI, Shobaki HH, Holmberg I, et al. 25-Hydroxyvitamin D3-24-hydroxylase in rat kidney mitochondria. J Biol Chem. 1983;258:742–6.

    PubMed  CAS  Google Scholar 

  88. Omdahl JL, Morris HA, May BK. Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation. Annu Rev Nutr. 2002;22:139–66.

    Article  PubMed  CAS  Google Scholar 

  89. Akiyoshi-Shibata M, Sakaki T, Ohyama Y. Further oxidation of hydroxycalcidiol by calcidiol 24-hydroxylase. Eur J Biochem. 1994;224:335–43.

    Article  PubMed  CAS  Google Scholar 

  90. Beckman MJ, Tadikonda P, Werner E, et al. Human 25-hydroxyvitamin D3-24-hydroxylase, a multicatalytic enzyme. Biochemistry. 1996;35:8465–72.

    Article  PubMed  CAS  Google Scholar 

  91. Makin G, Lohnes D, Byford V, et al. Target cell metabolism of 1,25-dihydroxyvitamin D3 to calcitroic acid. Evidence for a pathway in kidney and bone involving 24-oxidation. Biochem J. 1989;262(1):173–80.

    PubMed  CAS  Google Scholar 

  92. Reddy GS, Tserng KY. Calcitroic acid end product of renal metabolism of 1,25-dihydroxyvitamin D3 through C-24 oxidation pathway. Biochemistry. 1989;28(4):1763–9.

    Article  PubMed  CAS  Google Scholar 

  93. Esvelt RP, Rivizzani MA, Paaren HE. Synthesis of calcitroic acid, a metabolite of 1,25-dihydroxycholecalciferol. J Org Chem. 1981;46:456–8.

    Article  CAS  Google Scholar 

  94. Onisko BL, Esvelt RP, Schnoes HK, et al. Metabolites of 1,25-dihydroxyvitamin D3 in rat bile. Biochemistry. 1980;19:4124–30.

    Article  PubMed  CAS  Google Scholar 

  95. Rasmussen H, Bordier P. Vitamin D and bone. Metab Bone Dis Relat Res. 1978;1:7–13.

    Article  CAS  Google Scholar 

  96. Ornoy A, Goodwin D, Noff D, Edelstein S. 24,25-dihydroxyvitamin D is a metabolite of vitamin D essential for bone formation. Nature. 1978;276:517–9.

    Article  PubMed  CAS  Google Scholar 

  97. Henry HL, Taylor AN, Norman AW. Response of chick parathyroid glands to the vitamin D metabolites 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. J Nutr. 1977;107:1918–26.

    PubMed  CAS  Google Scholar 

  98. Garabedian M, Lieberherr M, Nguyen TM, et al. In vitro production and activity of 24,25-dihydroxycholecalciferol in cartilage and calvarium. Clin Orthop Relat Res. 1978;135:241–8.

    PubMed  CAS  Google Scholar 

  99. Henry HL, Norman AW. Vitamin D: two dihydroxylated metabolites are required for normal chicken egg hatchability. Science. 1978;201:835–7.

    Article  PubMed  CAS  Google Scholar 

  100. Jarnagin K, Brommage R, DeLuca HF. 1-But not 24-hydroxylation of vitamin D is required for growth and reproduction in rats. Am J Physiol. 1983;244:E290–7.

    PubMed  CAS  Google Scholar 

  101. Halloran BP, DeLuca HF, Barthell E. An examination of the importance of 24-hydroxylation to the function of vitamin D during early development. Endocrinology. 1981;108:2067–71.

    PubMed  CAS  Google Scholar 

  102. Miller SC, Halloran BP, DeLuca HF. Studies on the role of 24-hydroxylation of vitamin D in the mineralization of cartilage and bone of vitamin D-deficient rats. Calcif Tissue Int. 1981;33:489–97.

    Article  PubMed  CAS  Google Scholar 

  103. St-Arnaud R, Arabian A, Glorieux FH. Abnormal bone development in mice deficient for the vitamin D 24-hydroxylase gene. In: ASBMR 18th Annual Meeting. Seattle, WA, p. S126.

  104. St-Arnaud R, Arabian A, Travers R. Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology. 2000;141(7):2658–66.

    Article  PubMed  CAS  Google Scholar 

  105. Brown EM, Gamba G, Riccardi D. Cloning and characterization of an extracellular Ca+2-sensing receptor from bovine parathyroid. Nature. 1993;366:575–80.

    Article  PubMed  CAS  Google Scholar 

  106. Omdahl JL, Gray RW, Boyle IT, et al. Regulation of metabolism of 25-hydroxycholecalciferol metabolism by kidney tissue in vitro by dietary calcium. Nature New Biol. 1972;237:63–4.

    PubMed  CAS  Google Scholar 

  107. Garabedian M, Holick MF, DeLuca HF, et al. Control of 25-hydroxycholecalciferol metabolism by the parathyroid glands. Proc Natl Acad Sci USA. 1972;69:1673–6.

    Article  PubMed  CAS  Google Scholar 

  108. Fraser DR, Kodicek E. Regulation of 25-hydroxycholecalciferol-1-hydroxylase activity in kidney by parathyroid hormone. Nature New Biol. 1973;241:163–6.

    PubMed  CAS  Google Scholar 

  109. Garabedian M, Tanaka Y, Holick MF, et al. Response of intestinal calcium transport and bone calcium mobilization to 1,25-dihydroxyvitamin D3 in thyroparathyroidectomized rats. Endocrinology. 1974;94:1022–7.

    PubMed  CAS  Google Scholar 

  110. Forte LR, Nickols GA, Anast CS. Renal adenylate cyclase and the interrelationship between parathyroid hormone and vitamin D in the regulation of urinary phosphate and adenosine cyclin 3′, 5′monophosphate excretion. J Clin Invest. 1976;57:559–68.

    Article  PubMed  CAS  Google Scholar 

  111. Tanaka Y, DeLuca HF. The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch Biochem Biophys. 1973;154:566–74.

    Article  PubMed  CAS  Google Scholar 

  112. Baxter LA, DeLuca HF. Stimulation of 25-hydroxyvitamin D3-1-hydroxylase by phosphate depletion. J Biol Chem. 1976;251:3158–61.

    PubMed  CAS  Google Scholar 

  113. Hughes MR, Brumbaugh PF, Haussler MR. Regulation of serum 1,25-dihydroxyvitamin D3 by calcium and phosphate in the rat. Science. 1975;190:578–80.

    Article  PubMed  CAS  Google Scholar 

  114. Gray RW. Evidence that somatomedins mediate the effect of hypophosphatemia to increase serum 1,25-dihydroxyvitamin D3 levels in rats. Endocrinology. 1987;121:504–12.

    PubMed  CAS  Google Scholar 

  115. Halloran BP, Spencer EM. Dietary phosphorus and 1,25-dihydroxyvitamin D metabolism: influence of insulin-like growth factor-1. Endocrinology. 1988;123:1225–9.

    PubMed  CAS  Google Scholar 

  116. Spencer EM, Tobiassen O. The mechanism of the action of growth hormone on vitamin D metabolism in the rat. Endocrinology. 1981;108:1064–70.

    PubMed  CAS  Google Scholar 

  117. Gray RW. Control of plasma 1,25-(OH)2-vitamin D concentrations by calcium and phosphorus in the rat: effects of hypophysectomy. Calcif Tissue Int. 1981;33:485–8.

    Article  PubMed  CAS  Google Scholar 

  118. Pahuja DN, DeLuca HF. Role of the hypophysis in the regulation of vitamin D metabolism. Mol Cell Endocrinol. 1981;23:345–50.

    Article  PubMed  CAS  Google Scholar 

  119. Brown DJ, Spanos E, MacIntyre I. Role of pituitary hormones in regulating renal vitamin D metabolism in man. Br Med J. 1980;280:277.

    Article  PubMed  CAS  Google Scholar 

  120. Liu S, Zhou J, Tang W. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab. 2006;291(1):E38–49.

    Article  PubMed  CAS  Google Scholar 

  121. Tanaka Y, Frank H, DeLuca HF. Biological activity of 1,25-dihydroxyvitamin D3 in the rat. Endocrinology. 1973;92:417–22.

    PubMed  CAS  Google Scholar 

  122. Tanaka Y, Lorenc RS, DeLuca HF. The role of 1,25-dihydroxyvitamin D3 and parathyroid hormone in the regulation of chick renal 25-hydroxyvitamin D3-24-hydroxylase. Arch Biochem Biophys. 1975;171:521–6.

    Article  CAS  Google Scholar 

  123. Tanaka Y, DeLuca HF. Stimulation of 24,25-dihydroxyvitamin D3 production by 1,25-dihydroxyvitamin D3. Science. 1974;183:1198–200.

    Article  PubMed  CAS  Google Scholar 

  124. Shinki T, Jin CH, Nishimura A. Parathyroid hormone inhibits 25-hydroxyvitamin D3-24-hydroxylase mRNA expression stimulated by 1,25-dihydroxyvitamin D3 in rat kidney but not in intestine. J Biol Chem. 1992;267:13757–62.

    PubMed  CAS  Google Scholar 

  125. Zierold C, Darwish HM, DeLuca HF. Identification of a vitamin D-response element in the rat calcidiol (25-hydroxyvitamin D3) 24-hydroxylase gene. Proc Natl Acad Sci USA. 1994;91:900–2.

    Article  PubMed  CAS  Google Scholar 

  126. Ohyama Y, Ozono K, Uchida M. Identification of a vitamin D-responsive element in the 5′-flanking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J Biol Chem. 1994;269:10545–50.

    PubMed  CAS  Google Scholar 

  127. Wu SX, Finch J, Zhong M. Expression of the renal 25-hydroxyvitamin D-24-hydroxylase gene-regulation by dietary phosphate. Am J Phys. 1996;40:F203–8.

    Google Scholar 

  128. Brenza HL, Kimmel-Jehan C, Jehan F. Parathyroid hormone activation of the 25-hydroxyvitamin D3-1α-hydroxylase gene promoter. Proc Natl Acad Sci USA. 1998;95:1387–91.

    Article  PubMed  CAS  Google Scholar 

  129. Brenza HL. Regulation of 25-hydroxyvitamin D3-1α-hydroxylase gene expression. PhD Thesis. University of Wisconsin-Madison; 2002.

  130. Strom M, Sandgren ME, Brown TA, et al. 1,25-Dihydroxyvitamin D3 up-regulates the 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci USA. 1989;86:9770–3.

    Article  PubMed  CAS  Google Scholar 

  131. Healy KD, Zella JB, Prahl JM, et al. Regulation of the murine renal vitamin D receptor by 1,25-dihydroxyvitamin D3 and calcium. Proc Natl Acad Sci USA. 2003;100(17):9733–7.

    Article  PubMed  CAS  Google Scholar 

  132. Sandgren ME, DeLuca HF. Serum calcium and vitamin D regulate 1,25-dihydroxyvitamin D3 receptor concentration in rat kidney in vivo. Proc Natl Acad Sci USA. 1990;87(11):4312–4.

    Article  PubMed  CAS  Google Scholar 

  133. Goff JP, Reinhardt TA, Beckman MJ, et al. Contrasting effects of exogenous 1,25-dihydroxyvitamin D [1,25-(OH)2D] versus endogenous 1,25-(OH)2D, induced by dietary calcium restriction, on vitamin D receptors. Endocrinology. 1990;126(2):1031–5.

    PubMed  CAS  Google Scholar 

  134. Beckman MJ, DeLuca HF. Regulation of renal vitamin D receptor is an important determinant of 1α, 25-dihydroxyvitamin D3 levels in vivo. Arch Biochem Biophys. 2002;401(1):44–52.

    Article  PubMed  CAS  Google Scholar 

  135. Naveh-Many T, Silver J. Regulation of parathyroid hormone gene expression by hypocalcemia, hypercalcemia, and vitamin D in the rat. J Clin Invest. 1990;86:1313–9.

    Article  PubMed  CAS  Google Scholar 

  136. Stumpf WE, Sar M, DeLuca HF. Sites of action of 1,25(OH)2vitamin D3 identified by thaw-mount autoradiography. In: Cohn DV, Talmage RV, Matthews JL, editors. Hormonal control of calcium metabolism. Amsterdam, Oxford, Princeton: Excerpta Medica; 1981. p. 222–9.

    Google Scholar 

  137. Brumbaugh PF, Haussler MR. Nuclear and cytoplasmic binding components for vitamin D metabolites. Life Sci. 1975;16:353.

    Article  PubMed  CAS  Google Scholar 

  138. Kream BE, Reynolds RD, Knutson JC. Intestinal cytosol binders of 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3. Arch Biochem Biophys. 1976;176:779–87.

    Article  PubMed  CAS  Google Scholar 

  139. Baker AR, McDonnell DP, Hughes M. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA. 1988;85:3294–8.

    Article  PubMed  CAS  Google Scholar 

  140. Burmester JK, Wiese RJ, Maeda N, et al. Structure and regulation of the rat 1,25-dihydroxyvitamin D3 receptor. Proc Natl Acad Sci USA. 1988;85:9499–502.

    Article  PubMed  CAS  Google Scholar 

  141. Pike JW, Shevde NK. The vitamin D receptor. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 11. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 167–91.

    Google Scholar 

  142. McDonnell DP, Scott RA, Kerner SA, et al. Functional domains of the human vitamin D3 receptor regulate osteocalcin gene expression. Mol Endocrinol. 1989;3:635–44.

    Article  PubMed  CAS  Google Scholar 

  143. Umesono K, Murakami KK, Thompson CC. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991;65:1255–66.

    Article  PubMed  CAS  Google Scholar 

  144. Zella LA, Kim S, Shevde NK, et al. Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. Mol Endocrinol. 2006;20(6):1231–47.

    Article  PubMed  CAS  Google Scholar 

  145. Kim S, Yamazaki M, Zella LA. Activation of receptor activator of NF-kappaB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol. 2006;26(17):6469–86.

    Article  PubMed  CAS  Google Scholar 

  146. Carlberg C, Seuter S. The vitamin D receptor. Dermatol Clin. 2007;25:515–23.

    Article  PubMed  CAS  Google Scholar 

  147. Kutuzova GD, DeLuca HF. Gene expression profiles in rat intestine identify pathways for 1,25-dihydroxyvitamin D3 stimulated calcium absorption and clarify its immunomodulatory properties. Arch Biochem Biophys. 2004;432(2):152–66.

    Article  PubMed  CAS  Google Scholar 

  148. Kutuzova GD, DeLuca HF. 1,25-Dihydroxyvitamin D3 regulates genes responsible for detoxification in intestine. Toxicol Appl Pharmacol. 2007;218(1):37–44.

    Article  PubMed  CAS  Google Scholar 

  149. Chen KS, DeLuca HF. Cloning of the human 1α,25-dihydroxyvitamin D3 24-hydroxylase gene promoter and identification of two vitamin D-responsive elements. Biochim Biophys Acta. 1995;1263(1):1–9.

    PubMed  Google Scholar 

  150. Carlberg C, Dunlop TW, Frank C. Molecular basis of the diversity of vitamin D target genes. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 18. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 313–25.

    Google Scholar 

  151. Nagai M, Sato N. Reciprocal gene expression of osteoclastogenesis inhibitory factor and osteoclast differentiation factor regulates osteoclast formation. Biochem Biophys Res Commun. 1999;257:719–23.

    Article  PubMed  CAS  Google Scholar 

  152. Strom M, Sandgren ME, Brown TA, et al. 1,25-Dihydroxyvitamin D3 up-regulates the 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci USA. 1989;86(24):9770–3.

    Article  PubMed  CAS  Google Scholar 

  153. Naveh-Many T, Marx R, Keshet E. Regulation of 1,25-dihydroxyvitamin D3 receptor gene expression by 1,25-dihydroxyvitamin D3 in the parathyroid in vivo. J Clin Invest. 1990;86(6):1968–75.

    Article  PubMed  CAS  Google Scholar 

  154. Huang L, Xu J, Wood DJ, et al. Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-kappaB in giant cell tumor of bone. Possible involvement in tumor cell-induced osteoclast-like cell formation. Am J Pathol. 2000;156(3):761–7.

    PubMed  CAS  Google Scholar 

  155. Shevde NK, Plum LA, Clagett-Dame M, et al. A potent analog of 1α, 25-dihydroxyvitamin D3 selectively induced bone formation. Proc Natl Acad Sci USA. 2002;99(21):13487–91.

    Article  PubMed  CAS  Google Scholar 

  156. Fleet JC. Rapid, membrane-initiated actions of 1,25 dihydroxyvitamin D: what are they and what do they mean? J Nutr. 2004;134:3215–8.

    PubMed  CAS  Google Scholar 

  157. Norman AW, Mizwicki MT, Norman DPG. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov. 2004;3(1):27–41.

    Article  PubMed  CAS  Google Scholar 

  158. Demay MB. Mouse models of vitamin D receptor ablation. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 20. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 341–9.

    Google Scholar 

  159. Nemere I, Yoshimoto Y, Norman AW. Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1,25-dihydroxyvitamin D3. Endocrinology. 1984;115(4):1476–83.

    PubMed  CAS  Google Scholar 

  160. Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands. Endocrine Rev. 2005;26(5):662–87.

    Article  CAS  Google Scholar 

  161. Dusso AS, Negrea L, Gunawardhana S, et al. On the mechanisms for the selective action of vitamin D analogs. Endocrinology. 1991;128(4):1687–92.

    PubMed  CAS  Google Scholar 

  162. Binderup L, Binderup E, Godtfredsen WO. Development of new vitamin D analogs. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 84. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1489–510.

    Google Scholar 

  163. Kissmeyer A-M, Binderup L. Calcipotriol (MC 903): pharmacokinetics in rats and biological activities of metabolites. A comparative study with 1,25(OH)2D3. Biochem Pharmacol. 1991;41(11):1601–6.

    Article  PubMed  CAS  Google Scholar 

  164. Segaert S, Duvold LB. Calcipotriol cream: a review of its use in the management of psoriasis. J Dermatolog Treat. 2006;17(6):327–37.

    Article  PubMed  CAS  Google Scholar 

  165. Sicinski RR, Prahl JM, Smith CM. New 1α, 25-dihydroxy-19-norvitamin D3 compounds of high biological activity: synthesis and biological evaluation of 2-hydroxymethyl, 2-methyl, and 2-methylene analogues. J Med Chem. 1998;41(23):4662–74.

    Article  PubMed  CAS  Google Scholar 

  166. Ke HZ, Qi H, Crawford DT, et al. A new vitamin D analog, 2MD, restores trabecular and cortical bone mass and strength in ovariectomized rats with established osteopenia. J Bone Miner Res. 2005;20:1742–55.

    Article  PubMed  CAS  Google Scholar 

  167. Plum LA, Fitzpatrick LA, Ma X, et al. 2MD, a new anabolic agent for osteoporosis treatment. Osteoporos Int. 2006;17(5):704–15.

    Article  PubMed  CAS  Google Scholar 

  168. Slatopolsky E, Finch JL, Brown AJ. Effect of 2-methylene-19-nor(20S)-1α-hydroxy-bishomopregnacalciferol (2MbisP), an analog of vitamin D, on secondary hyperparathyroidism. J Bone Miner Res. 2007;22:686–94.

    Article  PubMed  CAS  Google Scholar 

  169. DeLuca HF, Plum LA, Clagett-Dame M. Selective analogs of 1α, 25-dihydroxyvitamin D3 for the study of specific functions of vitamin D. J Steroid Biochem Mol Biol. 2007;103(3–5):263–8.

    Article  PubMed  CAS  Google Scholar 

  170. Brown AJ, Slatopolsky E. Drug insight: vitamin D analogs in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease. Nat Clin Pract Endocrinol Metab. 2007;3(2):134–44.

    Article  PubMed  CAS  Google Scholar 

  171. Slatopolsky E, Finch J, Ritter C, et al. A new analog of calcitriol, 19-nor-1,25-(OH)2D2, suppresses parathyroid hormone secretion in uremic rats in the absence of hypercalcemia. Am J Kidney Dis. 1995;26(5):852–60.

    Article  PubMed  CAS  Google Scholar 

  172. Tocchini-Valentini G, Rochel N, Wurtz JM, et al. Crystal structures of the vitamin D receptor complexed to superagonist 20-epi ligands. Proc Natl Acad Sci USA. 2001;98(10):5491–6.

    Article  PubMed  CAS  Google Scholar 

  173. Tocchini-Valentini G, Rochel N, Wurtz J-M, et al. Crystal structures of the vitamin D nuclear receptor liganded with the vitamin D side chain analogues calcipotriol and seocalcitol, receptor agonists of clinical importance. Insights into a structural basis for the switching of calcipotriol to a receptor antagonist by further side chain modification. J Med Chem. 2004;47:1956–61.

    Article  PubMed  CAS  Google Scholar 

  174. Rochel N, Wurtz JM, Mitschler A, et al. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell. 2000;5:173–9.

    Article  PubMed  CAS  Google Scholar 

  175. Vanhooke JL, Benning MM, Bauer CB, et al. Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2-carbon-substituted vitamin D3 hormone analogues and a LXXLL-containing coactivator peptide. Biochemistry. 2004;43(14):4101–10.

    Article  PubMed  CAS  Google Scholar 

  176. Vanhooke JL, Tadi BP, Benning MM, et al. New analogs of 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 with conformationally restricted side chains: evaluation of biological activity and structural determination of VDR-bound conformations. Arch Biochem Biophys. 2007;460:161–5.

    Article  PubMed  CAS  Google Scholar 

  177. Van den Bemd GC, Pols HA, Birkenhäger JC, et al. Conformational change and enhanced stabilization of the vitamin D receptor by the 1,25-dihydroxyvitamin D3 analog KH1060. Proc Natl Acad Sci USA. 1996;93(20):10685–90.

    Article  PubMed  Google Scholar 

  178. Väisänen S, Juntunen K, Itkonen A, et al. Conformational studies of human vitamin-D receptor by antipeptide antibodies, partial proteolytic digestion and ligand binding. Eur J Biochem. 1997;248(1):156–62.

    Article  PubMed  Google Scholar 

  179. Castillo AI, Sánchez-Martinez R, Jiménez-Lara AM, et al. Characterization of vitamin D receptor ligands with cell-specific and dissociated activity. Mol Endocrinol. 2006;20(12):3093–104.

    Article  PubMed  CAS  Google Scholar 

  180. Yamamoto H, Shevde NK, Warrier A, et al. 2-Methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 potently stimulates gene-specific DNA binding of the vitamin D receptor in osteoblasts. J Biol Chem. 2003;278(34):31756–65.

    Article  PubMed  CAS  Google Scholar 

  181. Peleg S, Sastry M, Collins ED. Distinct conformational changes induced by 20-epi analogues of 1α, 25-dihydroxyvitamin D3 are associated with enhanced activation of the vitamin D receptor. J Biol Chem. 1995;270(18):10551–8.

    Article  PubMed  CAS  Google Scholar 

  182. Christakos S, Norman AW. Studies on the mode of action of calciferol. XVIII. Evidence for a specific high affinity binding protein for 1,25 dihydroxyvitamin D3 in chick kidney and pancreas. Biochem Biophys Res Commun. 1979;89(1):56–63.

    Article  PubMed  CAS  Google Scholar 

  183. Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin D3 receptor in the immune system. Arch Biochem Biophys. 2000;374(2):334–8.

    Article  PubMed  CAS  Google Scholar 

  184. Evans KN, Bulmer JN, Kilby MD, et al. Vitamin D and placental-decidual function. J Soc Gynecol Investig. 2004;11(5):263–71.

    Article  PubMed  CAS  Google Scholar 

  185. Merke J, Milde P, Lewicka S, et al. Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Invest. 1989;83(6):1903–15.

    Article  PubMed  CAS  Google Scholar 

  186. Perez A, Raab R, Chen TC. Safety and efficacy of oral calcitriol (1,25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol. 1996;134(6):1070–8.

    Article  PubMed  CAS  Google Scholar 

  187. Pèrez A, Chen TC, Turner A. Efficacy and safety of topical calcitriol (1,25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol. 1996;134(2):238–46.

    Article  PubMed  Google Scholar 

  188. Yang S, Smith C, Prahl JM, et al. Vitamin D deficiency suppresses cell-mediated immunity in vivo. Arch Biochem Biophys. 1993;303(1):98–106.

    Article  PubMed  CAS  Google Scholar 

  189. Yang S, Smith C, DeLuca HF. 1α, 25-Dihydroxyvitamin D3 and 19-nor-1α, 25-dihydroxyvitamin D2 suppress immunoglobulin production and thymic lymphocyte proliferation in vivo. Biochim Biophys Acta. 1993;1158(3):279–86.

    PubMed  CAS  Google Scholar 

  190. Niino M, Fukazawa T, Kikuchi S. Therapeutic potential of vitamin D for multiple sclerosis. Curr Med Chem. 2008;15:499–505.

    Article  PubMed  CAS  Google Scholar 

  191. DeLuca HF, Cantorna MT. Vitamin D: its role and uses in immunology. FASEB J. 2001;15(14):2569–85.

    Article  Google Scholar 

  192. Tai K, Need AG, Horowitz M, Chapman IM. Vitamin D, glucose, insulin, and insulin sensitivity. Nutrition. 2008;24:269–85.

    Google Scholar 

  193. Abe J, Nakamura K, Takita Y. Prevention of immunological disorders in MRL/l mice by a new synthetic analogue of vitamin D3: 22-oxa-1α, 25-dihydroxyvitamin D3. J Nutr Sci Vitaminol (Tokyo). 1990;6(1):21–31.

    Google Scholar 

  194. Deeb K, Trump DL, Johnson CS. Vitamin D signaling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007;7(9):684–700.

    Article  PubMed  CAS  Google Scholar 

  195. Garland CF, Gorham ED, Mohr SB. Vitamin D and prevention of breast cancer: pooled analysis. J Steroid Biochem Mol Biol. 2007;103(3–5):708–11.

    Article  PubMed  CAS  Google Scholar 

  196. Gorham ED, Garland CF, Garland FC. Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. Am J Prev Med. 2007;32(3):210–6.

    Article  PubMed  Google Scholar 

  197. Munger KL, Levin LI, Hollis BW. Elevated serum 25-hydroxyvitamin D predicts a decreased risk of MS. Mult Scler. 2007;13:280–307.

    Google Scholar 

  198. Giovannucci E, Liu Y, Hollis BW, et al. 25-Hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med. 2008;168(11):1174–80.

    Article  PubMed  CAS  Google Scholar 

  199. Sayre RM, Dowdy JC, Shepherd JG. Reintroduction of a classic vitamin D ultraviolet source. J Steroid Biochem Mol Biol. 2007;103(3–5):686–8.

    Article  PubMed  CAS  Google Scholar 

  200. Rajakumar K, Greenspan SL, Thomas SB, et al. SOLAR ultraviolet radiation and vitamin D a historical perspective. Am J Public Health. 2007;97(10):1746–54.

    Article  PubMed  Google Scholar 

  201. Lim HW, Carucci JA, Spencer JM, et al. Commentary: a responsible approach to maintaining adequate serum vitamin D levels. J Am Acad Dermatol. 2007;57:594–5.

    Article  PubMed  Google Scholar 

  202. Rosenstreich S, Rich C, Volwiler W. Deposition in and release of vitamin D3 from body fat: evidence for a storage site in the rat. J Clin Invest. 1971;50:679–87.

    Article  PubMed  CAS  Google Scholar 

  203. Vieth R. The mechanisms of vitamin D toxicity. Bone Miner. 1990;11(3):267–72.

    Article  PubMed  CAS  Google Scholar 

  204. Shepard RM, DeLuca HF. Determination of vitamin D and its metabolites in plasma. Methods Enzymol. 1980;67:393–413.

    Article  PubMed  CAS  Google Scholar 

  205. MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76(4):1536–8.

    Article  PubMed  CAS  Google Scholar 

  206. Aksnes L, Rodland O, Aarskog D. Serum levels of vitamin D3 and 25-hydroxyvitamin D3 in elderly and young adults. Bone Miner. 1988;3:351–7.

    PubMed  CAS  Google Scholar 

  207. Clemens TL, Adams JS, Henderson SL, et al. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet. 1981;1(8263):74–6.

    Google Scholar 

  208. Matsuoka LY, Wortsman J, Haddad JG, et al. Skin types and epidermal photosynthesis of vitamin D3. J Am Acad Dermatol. 1990;23:525–6.

    Article  PubMed  CAS  Google Scholar 

  209. Matsuoka LY, Wortsman J, Haddad JG, et al. Racial pigmentation and the cutaneous synthesis of vitamin D. Arch Dermatol. 1991;127:536–8.

    Article  PubMed  CAS  Google Scholar 

  210. Liel Y, Ulmer E, Shary J, et al. Low circulating vitamin D in obesity. Calcif Tissue Int. 1988;43:199–201.

    Article  PubMed  CAS  Google Scholar 

  211. Wortsman J, Matsuoka LY, Chen TC, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690–3. (Erratum: Am J Clin Nutr 2003;77:1342).

    PubMed  CAS  Google Scholar 

  212. Matsuoka LY, Ide L, Wortsman J, et al. Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab. 1987;64:1165–8.

    PubMed  CAS  Google Scholar 

  213. Loré F, Di Cairano G, Periti P, et al. Effect of the administration of 1,25-dihydroxyvitamin D3 on serum levels of 25-hydroxyvitamin D in postmenopausal osteoporosis. Calcif Tissue Int. 1982;34:539–41.

    Article  PubMed  Google Scholar 

  214. Baran DT, Milne ML. 1,25 Dihydroxyvitamin D-induced inhibition of 3H-25 hydroxyvitamin D production by the rachitic rat liver in vitro. Calcif Tissue Int. 1983;35(4–5):461–4.

    Article  PubMed  CAS  Google Scholar 

  215. Bell NH, Shaw S, Turner RT. Evidence that 1,25-dihydroxyvitamin D3 inhibits the hepatic production of 25-hydroxyvitamin D in man. J Clin Invest. 1984;74:1540–4.

    Article  PubMed  CAS  Google Scholar 

  216. Halloran BP, Bikle DD, Levens MJ, et al. Chronic 1,25-dihydroxyvitamin D3 administration in the rat reduces the serum concentration of 25-hydroxyvitamin D by increasing metabolic clearance rate. J Clin Invest. 1986;78:622–8.

    Article  PubMed  CAS  Google Scholar 

  217. Berlin T, Björkhem I. On the regulatory importance of 1,25-dihydroxyvitamin D3 and dietary calcium on serum levels of 25-hydroxyvitamin D3 in rats. Biochem Biophys Res Commun. 1987;144(2):1055–8.

    Article  PubMed  CAS  Google Scholar 

  218. Halloran BP, Castro ME. Vitamin D kinetics in vivo: effect of 1,25-dihydroxyvitamin D administration. Am J Physiol. 1989;256:E686–91.

    PubMed  CAS  Google Scholar 

  219. Hahn TJ, Birge SJ, Scharp CR, et al. Phenobarbital-induced alterations in vitamin D metabolism. J Clin Invest. 1972;51(4):742–8.

    Google Scholar 

  220. Hahn TJ, Hendin BA, Scharp CR, et al. Effect of chronic anticonvulsant therapy on serum 25-hydroxycalciferol levels in adults. N Engl J Med. 1972;287(18):900–4.

    Article  PubMed  CAS  Google Scholar 

  221. Hahn TJ, Hendin BA, Scharp CR. Serum 25-hydroxycalciferol levels and bone mass in children on chronic anticonvulsant therapy. N Engl J Med. 1975;292:550–4.

    Article  CAS  Google Scholar 

  222. Stamp TCB, Round JM, Rowe DJF, et al. Plasma levels and therapeutic effect of 25-hydroxycholecalciferol in epileptic patients taking anticonvulsant drugs. Br Med J. 1972;4:9–12.

    Article  PubMed  CAS  Google Scholar 

  223. Bouillon R, Reynaert J, Claes JH. The effect of anticonvulsant therapy on serum levels of 25-hydroxy-vitamin D3 calcium, and parathyroid hormone. J Clin Endocrinol Metab. 1975;41:1130–5.

    PubMed  CAS  Google Scholar 

  224. Jubitz W, Haussler MR, McCain TA. Plasma 1,25-dihydroxyvitamin D levels in patients receiving anticonvulsant drugs. J Clin Endocrinol Metab. 1977;44(4):617–21.

    Google Scholar 

  225. Gascon-Barré M, Delvin EE, Glorieux FH, et al. Influence of vitamin D3 status, phenobarbital, and diphenylhydantoin treatment on the plasma 25-hydroxyvitamin D3 concentrations in the rat. Can J Physiol Pharmacol. 1981;59(10):1073–81.

    PubMed  Google Scholar 

  226. Sambrook P. Glucocorticoids and vitamin D. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 73. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1239–51.

    Google Scholar 

  227. Preece MA, Tomlinson S, Ribot CA, et al. Studies of vitamin D deficiency in man. Q J Med. 1975;XLIV(176):575–89. New series.

    Google Scholar 

  228. Baker MR, Peacock M, Nordin BEC. The decline in vitamin D status with age. Age Ageing. 1980;9:249–52.

    Article  PubMed  CAS  Google Scholar 

  229. Omdahl JL, Garry PJ, Hunsaker LA. Nutritional status in a healthy elderly population: vitamin D. Am J Clin Nutr. 1982;36:1225–33.

    PubMed  CAS  Google Scholar 

  230. Need AG, Morris HA, Horowitz M, et al. Effects of skin thickness, age, body fat, and sunlight on serum 25-hydroxyvitamin D. Am J Clin Nutr. 1993;58:882–5.

    PubMed  CAS  Google Scholar 

  231. Preece MA, Ford JA, McIntosh WB. Vitamin D deficiency among Asian immigrants to Britain. Lancet. 1973;1(7809):907–10.

    Article  PubMed  CAS  Google Scholar 

  232. Bell NH, Greene A, Epstein S, et al. Evidence of alteration of the vitamin D-endocrine system in blacks. J Clin Invest. 1985;76:470–3.

    Article  PubMed  CAS  Google Scholar 

  233. Pietrek J, Kokot F, Kuska J. Kinetics of serum 25-hydroxyvitamin D in patients with acute renal failure. Am J Clin Nutr. 1978;31:1919–26.

    PubMed  CAS  Google Scholar 

  234. Hidiroglou M, Williams CJ, Ivan M. Pharmacokinetics and amounts of 25-hydroxycholecalciferol in sheep affected by osteodystrophy. J Dairy Sci. 1979;62:567–71.

    Article  PubMed  CAS  Google Scholar 

  235. Khamiseh G, Vaziri ND, Oveisi F. Vitamin D absorption, plasma concentration and urinary excretion of 25-hydroxyvitamin D in nephritic syndrome. Proc Soc Exp Biol Med. 1991;196:210–3.

    PubMed  CAS  Google Scholar 

  236. Fox J, Della-Santina CP. Oral verapamil and calcium and vitamin D metabolism in rats: effect of dietary calcium. Am J Physiol. 1989;257:E632–8.

    PubMed  CAS  Google Scholar 

  237. Clements MR, Johnson L, Fraser DR. A new mechanism for induced vitamin D deficiency in calcium deprivation. Nature. 1987;325:62–5.

    Article  PubMed  CAS  Google Scholar 

  238. Vieth R, Fraser D, Kooh SW. Low dietary calcium reduces 25-hydroxycholecalciferol in plasma of rats. J Nutr. 1987;117:914–8.

    PubMed  CAS  Google Scholar 

  239. Dominguez JH, Gray RW, Lemann J Jr. Dietary phosphate deprivation in women and men: effects on mineral and acid balances, parathyroid hormone and the metabolism of 25-OH-vitamin D. J Clin Endocrinol Metab. 1976;45(5):1056–68.

    Google Scholar 

  240. Bell NH, Epstein S, Greene A. Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest. 1985;76:370–3.

    Article  PubMed  CAS  Google Scholar 

  241. Compston JE, Vedi S, Ledger JE. Vitamin D status and bone histomorphometry in gross obesity. Am J Clin Nutr. 1981;34:2359–32363.

    PubMed  CAS  Google Scholar 

  242. Hey H, Stokholm KH, Lund BJ. Vitamin D deficiency in obese patients and changes in circulating vitamin D metabolites following jejunoileal bypass. Int J Obes. 1982;6:469–73.

    Google Scholar 

  243. Kubota M, Ohno J, Shiina Y, et al. Vitamin D metabolism in pregnant rabbits: differences between the maternal and fetal response to administration of large amounts of vitamin D3. Endocrinology. 1982;110(6):1950–6.

    PubMed  CAS  Google Scholar 

  244. Delvin EE, Gilbert M, Pere MC, et al. In vivo metabolism of calcitriol in the pregnant rabbit doe. J Dev Physiol. 1988;10:451–9.

    PubMed  CAS  Google Scholar 

  245. Paulson SK, DeLuca HF, Battaglia F. Plasma levels of vitamin D metabolites in fetal and pregnant ewes. Proc Soc Exp Biol Med. 1987;185(3):267–71.

    PubMed  CAS  Google Scholar 

  246. Paulson SK, Ford KK, Langman CB. Pregnancy does not alter the metabolic clearance of 1,25-dihydroxyvitamin D in rats. Am J Physiol. 1990;258:E158–62.

    PubMed  CAS  Google Scholar 

  247. Omdahl JL, Jelinek G, Eaton RP. Kinetic analysis of 25-hydroxyvitamin D3 metabolism in strontium-induced rickets in the chick. J Clin Invest. 1977;60:1202–10.

    Article  PubMed  CAS  Google Scholar 

  248. Gupta MM, Round JM, Stamp TCB. Spontaneous cure of vitamin-D deficiency in Asians during summer in Britain. Lancet. 1974;1(7858):586–8.

    Article  PubMed  CAS  Google Scholar 

  249. Haddad JG, Stamp TCB. Circulating 25-hydroxyvitamin D in man. Am J Med. 1974;57:57–62.

    Article  PubMed  CAS  Google Scholar 

  250. Stamp TCB, Round JM. Seasonal changes in human plasma levels of 25-hydroxyvitamin D. Nature. 1974;247:563–5.

    Article  PubMed  CAS  Google Scholar 

  251. McLaughlin M, Raggatt PR, Brown DJ, et al. Seasonal variations in serum 25-hydroxycholecalciferol in healthy people. Lancet. 1974;1(7857):536–8.

    Article  PubMed  CAS  Google Scholar 

  252. Pettifor JM, Ross FP, Solomon L. Seasonal variation in serum 25-hydroxycholecalciferol concentrations in elderly South African patients with fractures of femoral neck. Br Med J. 1978;1(6116):826–7.

    Article  PubMed  CAS  Google Scholar 

  253. Hidiroglou M, Proulx JG, Roubos D. 25-Hydroxyvitamin D in plasma of cattle. J Dairy Sci. 1979;62:1076–80.

    Article  PubMed  CAS  Google Scholar 

  254. Juttmann JR, Visser TJ, Buurman C, et al. Seasonal fluctuations in serum concentrations of vitamin D metabolites in normal subjects. Br Med J. 1981;282:1349–52.

    Article  CAS  Google Scholar 

  255. Chesney RW, Rosen JF, Hamstra AJ. Absence of seasonal variation in serum concentrations of 1,25-dihydroxyvitamin D despite a rise in 25-hydroxyvitamin-D in summer. J Clin Endocrinol Metab. 1981;53(1):139–42.

    PubMed  CAS  Google Scholar 

  256. Smith BS, Wright H. Relative contributions of diet and sunshine to the overall vitamin D status of the grazing ewe. Vet Rec. 1984;115:537–8.

    PubMed  CAS  Google Scholar 

  257. Van der Klis FRM, Jonxis JHP, van Doormaal JJ, et al. Changes in vitamin-D metabolites and parathyroid hormone in plasma following cholecalciferol administration to pre- and postmenopausal women in the Netherlands in early spring and to postmenopausal women in Curaçao. Br J Nutr. 1996;75:637–46.

    Article  Google Scholar 

  258. O’Leary TJ, Jones G, Yip A, et al. The effects of chloroquine on serum 1,25-dihydroxyvitamin D and calcium metabolism in sarcoidosis. N Engl J Med. 1986;315(12):727–30.

    Article  PubMed  CAS  Google Scholar 

  259. Barré PE, Gascon-Barré M, Meakins JL, et al. Hydroxychloroquine treatment of hypercalcemia in a patient with sarcoidosis undergoing hemodialysis. Am J Med. 1987;82(6):1259–62.

    Article  PubMed  Google Scholar 

  260. Adams JS, Diz MM, Sharma OP. Effective reduction in the serum 1,25-dihydroxyvitamin D and calcium concentration in sarcoidosis-associated hypercalcemia with short-course chloroquine therapy. Ann Intern Med. 1989;111(5):437–8.

    PubMed  CAS  Google Scholar 

  261. Henry HL. The 25-hydroxyvitamin D 1α-hydroxylase. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 5. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 69–83.

    Google Scholar 

  262. Baksi SN, Kenny AD. Vitamin D metabolism in Japanese quail: gonadal hormones and dietary calcium effects. Am J Physiol. 1981;241(4):E275–80.

    PubMed  CAS  Google Scholar 

  263. Tanaka Y, Castillo L, DeLuca HF. Control of renal vitamin D hydroxylases in birds by sex hormones. Proc Natl Acad Sci USA. 1976;73(8):2701–5.

    Article  PubMed  CAS  Google Scholar 

  264. Haussler MR, Hughes MR, McCain TA, et al. 1,25-Dihydroxyvitamin D3: mode of action in intestine and parathyroid glands, assay in humans and isolation of its glycoside from Solanum malacoxylon. Calcif Tissue Res. 1977;22((Suppl)):1–18.

    PubMed  Google Scholar 

  265. Pike JW, Toverud S, Boass A, et al. Circulating 1α,25-(OH)2D during physiological states of calcium stress. In: Norman A, Schaefer K, Coburn J, DeLuca H, Fraser D, Grigoleit HG, Herrath DV, editors. Vitamin D: biochemical, chemical, and clinical aspects related to calcium metabolism (Proceedings of the Third workshop on vitamin D). New York: De Gruyter; 1977. p. 187–9.

  266. Gallagher JC, Riggs BL, Eisman J, et al. Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients—effect of age and dietary calcium. J Clin Invest. 1979;64(3):729–36.

    Article  PubMed  CAS  Google Scholar 

  267. Chesney RW, Rosen JF, Hamstra AJ, et al. Serum 1,25-dihydroxyvitamin D levels in normal children and in vitamin D disorders. Am J Dis Child. 1980;134(2):135–9.

    PubMed  CAS  Google Scholar 

  268. Lund B, Clausen N, Lund B, et al. Age-dependent variations in serum 1,25-dihydroxyvitamin D in childhood. Acta Endocrinol. 1980;94:426–9.

    PubMed  CAS  Google Scholar 

  269. Seino Y, Shimotsuji T, Yamaoka K, et al. Plasma 1,25-dihydroxyvitamin D concentrations in cords, newborns, infants, and children. Calcif Tissue Int. 1980;30:1–3.

    Article  PubMed  CAS  Google Scholar 

  270. Gray RW. Effects of age and sex on the regulation of plasma 1,25-(OH)2D by phosphorus in the rat. Calcif Tissue Int. 1981;33(5):477–84.

    Article  PubMed  CAS  Google Scholar 

  271. Gray RW, Gambert SR. Effect of age on plasma 1,25-(OH)2 vitamin D in the rat. Age. 1982;5(2):54–6.

    Article  CAS  Google Scholar 

  272. Manolagas SC, Culler FL, Howard JE, et al. The cytoreceptor assay for 1,25-dihydroxyvitamin D and its application to clinical studies. J Clin Endocrinol Metab. 1983;56:751–60.

    PubMed  CAS  Google Scholar 

  273. Armbrecht HJ, Forte LR, Halloran BP. Effect of age and dietary calcium on renal 25(OH)D metabolism, serum 1,25(OH)2D, and PTH. Am J Physiol. 1984;246:E266–70.

    PubMed  CAS  Google Scholar 

  274. Epstein S, Bryce G, Hinman JW, et al. The influence of age on bone mineral regulating hormones. Bone. 1986;7:421–5.

    Article  PubMed  CAS  Google Scholar 

  275. Buchanan JR, Myers CA, Greer RBIII. Effect of declining renal function on bone density in aging women. Calcif Tissue Int. 1988;43:1–6.

    Article  PubMed  CAS  Google Scholar 

  276. Fox J. Production and metabolic clearance rates of 1,25-dihydroxyvitamin D3 during maturation in rats: studies using a rapid, primed-infusion technique. Horm Metab Res. 1990;22:278–82.

    Article  PubMed  CAS  Google Scholar 

  277. Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab. 1986;63(3):766–9.

    PubMed  CAS  Google Scholar 

  278. Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D and total serum calcium in hypercalcemic patients. J Clin Endocrinol Metab. 1988;66(5):934–8.

    PubMed  CAS  Google Scholar 

  279. Saggese G, Bertelloni S, Baroncelli GI, et al. Ketoconazole decreases the serum ionized calcium and 1,25-dihydroxyvitamin D3 levels in tuberculosis-associated hypercalcemia. Am J Dis Child. 1993;147(3):270–3.

    PubMed  CAS  Google Scholar 

  280. Boyle IT, Gray RW, DeLuca HF. Regulation by calcium of in vivo synthesis of 1,25-dihydroxycholecalciferol and 21,25-dihydroxycholecalciferol. Proc Natl Acad Sci USA. 1971;68(9):2131–4.

    Article  PubMed  CAS  Google Scholar 

  281. Morrissey RL, Wasserman RH. Calcium absorption and calcium-binding protein in chicks on differing calcium and phosphorus intakes. Am J Physiol. 1971;220(5):1509–15.

    PubMed  CAS  Google Scholar 

  282. Haussler MR, Baylink DJ, Hughes MR. The assay of 1α,25-dihydroxyvitamin D3: physiologic and pathologic modulation of circulating hormone levels. Clin Endocrinol. 1976;5:151s–65s.

    Article  Google Scholar 

  283. Hughes MR, Baylink DJ, Jones PG, et al. Radioligand receptor assay for 25-hydroxyvitamin D2/D3 and 1α, 25-dihydroxyvitamin D2/D3. J Clin Invest. 1976;58:61–70.

    Article  PubMed  CAS  Google Scholar 

  284. Taylor CM, Caverzasio J, Jung A. Unilateral nephrectomy and 1,25-dihydroxyvitamin D3. Kidney Int. 1983;24:37–42.

    Article  PubMed  CAS  Google Scholar 

  285. Fox J, Ross R. Effects of low phosphorus and low calcium diets on the production and metabolic clearance rates of 1,25-dihydroxycholecalciferol in pigs. J Endocrinol. 1985;105:169–73.

    Article  PubMed  CAS  Google Scholar 

  286. Paulson SK, Kenny AD. Effect of dietary mineral and vitamin D content and parathyroidectomy on the plasma disappearance rate of 1,25-dihydroxyvitamin D3 in rats. Biopharm Drug Dispos. 1985;6:359–72.

    Article  PubMed  CAS  Google Scholar 

  287. Jongen MJ, Bishop JE, Cade C, et al. Effect of dietary calcium, phosphate and vitamin D deprivation on the pharmacokinetics of 1,25-dihydroxyvitamin D3 in the rat. Horm Metab Res. 1987;19:481–5.

    Article  PubMed  CAS  Google Scholar 

  288. Baxter LA, DeLuca HF. Stimulation of 25-hydroxyvitamin D3-1α-hydroxylase by phosphate depletion. J Biol Chem. 1976;251(10):3158–61.

    PubMed  CAS  Google Scholar 

  289. Gray RW, Wilz DR, Caldas AE, et al. The importance of phosphate in regulating plasma 1,25-(OH)2-vitamin D levels in humans: studies in healthy subjects, in calcium-stone formers and in patients with primary hyperparathyroidism. J Clin Endocrinol Metab. 1977;45:299–306.

    PubMed  CAS  Google Scholar 

  290. Gray RW, Garthwaite TL, Phillips LS. Growth hormone and triiodothyronine permit an increase in plasma 1,25(OH)2D concentrations in response to dietary phosphate deprivation in hypophysectomized rats. Calcif Tissue Int. 1983;35:100–6.

    Article  PubMed  CAS  Google Scholar 

  291. Llach F, Massry SG. On the mechanism of secondary hyperparathyroidism in moderate renal insufficiency. J Clin Endocrinol Metab. 1985;61:601–6.

    PubMed  CAS  Google Scholar 

  292. Rader JI, Baylink DJ, Hughes MR, et al. Calcium and phosphorus deficiency in rats: effects on PTH and 1,25-dihydroxyvitamin D3. Am J Physiol. 1979;236(2):E118–22.

    PubMed  CAS  Google Scholar 

  293. Insogna KL, Broadus AE, Gertner JM. Impaired phosphorus conservation and 1,25 dihydroxyvitamin D generation during phosphorus deprivation in familial hypophosphatemic rickets. J Clin Invest. 1983;71:1561–9.

    Article  Google Scholar 

  294. Lufkin EG, Kumar R, Heath HIII. Hyperphosphatemic tumoral calcinosis: effects of phosphate depletion on vitamin D metabolism, and of acute hypocalcemia on parathyroid hormone secretion and action. J Clin Endocrinol Metab. 1983;56(6):1319–22.

    PubMed  CAS  Google Scholar 

  295. Maierhofer WJ, Gray RW, Lemann J Jr. Phosphate deprivation increases serum 1,25-(OH)2-vitamin D concentrations in healthy men. Kidney Int. 1984;25:571–5.

    Article  PubMed  CAS  Google Scholar 

  296. Portale AA, Booth BE, Halloran BP, et al. Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J Clin Invest. 1984;73:1580–9.

    Article  PubMed  CAS  Google Scholar 

  297. Portale AA, Halloran BP, Murphy MM, et al. Oral intake of phosphorus can determine the serum concentration of 1,25-dihydroxyvitamin D by determining its production rate in humans. J Clin Invest. 1986;77:7–12.

    Article  PubMed  CAS  Google Scholar 

  298. Halloran BP, Barthell EN, DeLuca HF. Vitamin D metabolism during pregnancy and lactation in the rat. Proc Natl Acad Sci USA. 1979;76(11):5549–53.

    Article  PubMed  CAS  Google Scholar 

  299. Kumar R, Cohen WR, Silva P, et al. Elevated 1,25-dihydroxyvitamin D plasma levels in normal human pregnancy and lactation. J Clin Invest. 1979;63:342–4.

    Article  PubMed  CAS  Google Scholar 

  300. Steichen JJ, Tsang RC, Gratton TL, et al. Vitamin D homeostasis in the perinatal period: 1,25-dihydroxyvitamin D in maternal, cord, and neonatal blood. N Engl J Med. 1980;302(6):315–9.

    Article  PubMed  CAS  Google Scholar 

  301. Wieland P, Fischer JA, Trechsel U, et al. Perinatal parathyroid hormone, vitamin D metabolites, and calcitonin in man. Am J Physiol. 1980;239(5):E385–90.

    PubMed  CAS  Google Scholar 

  302. Mawer EB, Backhouse J, Hill LF, et al. Vitamin D metabolism and parathyroid function in man. Clin Sci Mol Med. 1975;48:349–65.

    PubMed  CAS  Google Scholar 

  303. Kaplan RA, Haussler MR, Deftos LJ, et al. The role of 1α, 25-dihydroxyvitamin D in the mediation of intestinal hyperabsorption of calcium in primary hyperparathyroidism and absorptive hypercalciuria. J Clin Invest. 1977;59:756–60.

    Article  PubMed  CAS  Google Scholar 

  304. Lambert PW, Hollis BW, Bell NH, et al. Demonstration of a lack of change in serum 1α, 25-dihydroxyvitamin D in response to parathyroid extract in pseudohypoparathyroidism. J Clin Invest. 1980;66:782–91.

    Article  PubMed  CAS  Google Scholar 

  305. Piel CF, Doorf BS, Avioli LV. Metabolism of tritiated 25-hydroxycholecalciferol in chronically uremic children before and after successful renal homotransplantation. J Clin Endocrinol Metab. 1973;37:944–8.

    PubMed  CAS  Google Scholar 

  306. Eisman JA, Hamstra AJ, Kream BE, et al. A sensitive, precise, and convenient method for determination of 1,25-dihydroxyvitamin D in human plasma. Arch Biochem Biophys. 1976;176(1):235–43.

    Article  PubMed  CAS  Google Scholar 

  307. Christiansen C, Christensen MS, Melsen F, et al. Mineral metabolism in chronic renal failure with specific reference to serum concentration of 1,25(OH)2D and 24,25(OH)2D. Clin Nephrol. 1981;15(1):18–22.

    PubMed  CAS  Google Scholar 

  308. Juttmann JR, Buurman CJ, De Kam E, et al. Serum concentrations of metabolites of vitamin D in patients with chronic renal failure (CRF). Consequences for the treatment with 1α-hydroxy derivatives. Clin Endocrinol (Oxf). 1981;14(3):225–36.

    Article  CAS  Google Scholar 

  309. Papapoulos SE, Clemens TL, Sandler LM, et al. The effect of renal function on changes in circulating concentrations of 1,25-dihydroxycholcalciferol after an oral dose. Clin Sci. 1982;62:427–9.

    PubMed  CAS  Google Scholar 

  310. Pitts TO, Piraino BH, Mitro R. Hyperparathyroidism and 1,25-dihydroxyvitamin D deficiency in mild, moderate, and severe renal failure. J Clin Endocrinol Metab. 1988;67:876–81.

    PubMed  CAS  Google Scholar 

  311. Dusso A, Lopez-Hilker S, Lewis-Finch J, et al. Metabolic clearance rate and production rate of calcitriol in uremia. Kidney Int. 1989;35:860–4.

    Article  PubMed  CAS  Google Scholar 

  312. Patel S, Simpson RU, Hsu CH. Effect of vitamin D metabolites on calcitriol metabolism in experimental renal failure. Kidney Int. 1989;36:234–9.

    Article  PubMed  CAS  Google Scholar 

  313. Portale AA, Booth BE, Tsai HC, et al. Reduced plasma concentration of 1,25-dihydroxyvitamin D in children with moderate renal insufficiency. Kidney Int. 1982;21:627–43.

    Article  PubMed  CAS  Google Scholar 

  314. Wilson L, Felsenfeld A, Drezner MK, et al. Altered divalent ion metabolism n early renal failure: role of 1,25(OH)2D. Kidney Int. 1985;27:565–73.

    Article  PubMed  CAS  Google Scholar 

  315. St. John A, Thomas MB, Davies CP, et al. Determinants of intact parathyroid hormone and free 1,25-dihydroxyvitamin D levels in mild and moderate renal failure. Nephron. 1992;61:422–7.

    Article  PubMed  CAS  Google Scholar 

  316. Salusky IB, Goodman WG, Horst R, et al. Pharmacokinetics of calcitriol in continuous ambulatory and cycling peritoneal dialysis patients. Am J Kidney Dis. 1990;XVI(2):126–32.

    Google Scholar 

  317. Fox J. Verapamil induces PTH resistance but increases duodenal calcium absorption in rats. Am J Physiol. 1988;255:E702–7.

    PubMed  CAS  Google Scholar 

  318. Avioli LV, Lee SW, McDonald JE, et al. Metabolism of vitamin D3 3H in human subjects—distribution in blood, bile, feces, and urine. J Clin Invest. 1967;46(6):983–92.

    PubMed  CAS  Google Scholar 

  319. Gray RW, Weber HP, Dominguez JH, et al. The metabolism of vitamin D3 and 25-hydroxyvitamin D3 in normal and anephric humans. J Clin Endocrinol Metab. 1974;39:1045–56.

    PubMed  CAS  Google Scholar 

  320. Arnaud SB, Goldsmith RS, Lambert PW, et al. 25-Hydroxyvitamin D3: evidence of an enterohepatic circulation in man. Proc Soc Exp Biol Med. 1975;149:570–2.

    PubMed  CAS  Google Scholar 

  321. Norman AW, DeLuca HF. The preparation of 3H-vitamin D2 and D3—their localization in the rat. Biochemistry. 1963;2:1160–8.

    Article  PubMed  CAS  Google Scholar 

  322. Haddad JG Jr, Boisseau V, Avioli LV. Placental transfer of vitamin D3 and 25-hydroxycholecalciferol in the rat. J Lab Clin Med. 1971;77(6):908–15.

    PubMed  CAS  Google Scholar 

  323. Rojanasathit S, Haddad JG. Hepatic accumulation of vitamin D3 and 25-hydroxyvitamin D3. Biochim Biophys Acta. 1976;421:12–21.

    PubMed  CAS  Google Scholar 

  324. Weisman Y, Vargas A, Duckett G, et al. Synthesis of 1,25-dihydroxyvitamin D in the nephrectomized pregnant rat. Endocrinology. 1978;103(6):1992–6.

    PubMed  CAS  Google Scholar 

  325. Weisman Y, Sapir R, Harell A, et al. Maternal-perinatal interrelationships of vitamin D metabolism in rats. Biochim Biophys Acta. 1976;428:388–95.

    PubMed  CAS  Google Scholar 

  326. Dueland S, Pedersen JI, Helgerud P, et al. Absorption, distribution, and transport of vitamin D3 and 25-hydroxyvitamin D3 in the rat. Am J Physiol. 1983;245:E463–7.

    PubMed  CAS  Google Scholar 

  327. Noff D, Edelstein S. Vitamin D and its hydroxylated metabolites in the rat. Placental and lacteal transport, subsequent metabolic pathways and tissue distribution. Horm Res. 1978;9:292–300.

    Article  PubMed  CAS  Google Scholar 

  328. Larsson S-E, Lorentzon R. Excretion of active metabolites of vitamin D in urine and bile of the adult rat. Clin Sci Mol Med. 1977;53:373–7.

    PubMed  CAS  Google Scholar 

  329. Stumpf WE, O’Brien LP. Autoradiographic studies with 3H 1,25 dihydroxyvitamin D3 in thyroid and associated tissues of the neck region. Histochemistry. 1987;87(1):53–8.

    Article  PubMed  CAS  Google Scholar 

  330. Stumpf WE, Hayakawa N. Salivary glands epithelial and myoepithelial cells are major vitamin D targets. Eur J Drug Metab Pharmacokinet. 2007;32(3):123–9.

    PubMed  CAS  Google Scholar 

  331. Stumpf WE, Sar M, O’Brien LP. Vitamin D sites of action in the pituitary studied by combined autoradiography-immunohistochemistry. Histochemistry. 1987;88(1):11–6.

    Article  PubMed  CAS  Google Scholar 

  332. Frolik CA, DeLuca HF. Stimulation of 1,25-dihydroxycholecalciferol metabolism in vitamin D-deficient rats by 1,25-dihydroxycholecalciferol treatment. J Cin Invest. 1973;52(3):543–8.

    Article  CAS  Google Scholar 

  333. Stumpf WE, Sar M, Reid FA, et al. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach kidney, skin, pituitary, and parathyroid. Science. 1979;206:1188–90.

    Article  PubMed  CAS  Google Scholar 

  334. Stumpf WE, Sar M, Narbaitz R, et al. Cellular and subcellular localization of 1,25-(OH)2 vitamin D3 in rat kidney—comparison with localization of parathyroid-hormone and estradiol. Proc Natl Acad Sci USA. 1980;77(2):1149–53.

    Article  PubMed  CAS  Google Scholar 

  335. Stumpf WE, Sar M, Reid FA, et al. Autoradiographic studies with 3H 1,25-(OH)2 vitamin D3 and 3H 25-OH-vitamin D3 in rat parathyroid glands. Cell Tissue Res. 1981;221(2):333–8.

    Article  PubMed  CAS  Google Scholar 

  336. Stumpf WE, Sar M, Clark SA, et al. Brain target sites for 1,25-dihydroxyvitamin D3. Science. 1982;215(4538):1403–5.

    Article  PubMed  CAS  Google Scholar 

  337. Stumpf WE, Narbaitz R, Huang S, et al. Autoradiographic localization of 1,25-dihydroxyvitamin D3 in rat placenta and yolk sac. Horm Res. 1983;18:215–20.

    Article  PubMed  CAS  Google Scholar 

  338. Sar M, Stumpf WE, DeLuca HF. Thyrotropes in the pituitary are target cells for 1,25 dihydroxy vitamin D3. Cell Tissue Res. 1980;209:161–6.

    Article  PubMed  CAS  Google Scholar 

  339. Simpson RU, DeLuca HF. Characterization of a receptor-like protein for 1,25-dihydroxyvitamin D3 in rat skin. Proc Natl Acad Sci USA. 1980;77(10):5822–6.

    Article  PubMed  CAS  Google Scholar 

  340. Clark SA, Stumpf WE, Sar M. Target cells for 1,25-dihydroxyvitamin D3 in the pancreas. Cell Tissue Res. 1980;209(3):515–20.

    Article  PubMed  CAS  Google Scholar 

  341. Clark SA, Dame MC, Kim YS, et al. 1,25-Dihydroxyvitamin D3 in teeth of rats and humans: receptors and nuclear localization. Anat Rec. 1985;212(3):250–4.

    Article  PubMed  CAS  Google Scholar 

  342. Narbaitz R, Stumpf W, Sar M. The role of autoradiographic and immunocytochemical techniques in the clarification of sites of metabolism and action of vitamin D. J Histochem Cytochem. 1981;29(1):91–100.

    PubMed  CAS  Google Scholar 

  343. Rhoten WB, Christakos S. Immunocytochemical localization of vitamin D-dependent calcium binding protein in mammalian nephron. Endocrinology. 1981;109(3):981–3.

    PubMed  CAS  Google Scholar 

  344. Gascon-Barré M, Huet PM. Role of the liver in the homeostasis of calciferol metabolism in the dog. Endocrinology. 1982;110(2):563–70.

    PubMed  Google Scholar 

  345. Merke J, Kreusser W, Bier B. Demonstration and characterization of a testicular receptor for 1,25-dihydroxycholecalciferol in the rat. Eur J Biochem. 1983;130(2):303–8.

    Article  PubMed  CAS  Google Scholar 

  346. Levy FO, Eikvar L, Jutte NHPM. Appearance of the rat testicular receptor for calcitriol (1,25-dihydroxyvitamin D3) during development. J Steroid Biochem. 1985;23(1):51–6.

    Article  PubMed  CAS  Google Scholar 

  347. Stumpf WE, O’Brien LP. 1,25 (OH)2 vitamin D3 sites of action in the brain. An autoradiographic study. Histochemistry. 1987;87(5):393–406.

    Article  PubMed  CAS  Google Scholar 

  348. Narbaitz R, Stumpf WE, Sar M, et al. Autoradiographic localization of target cells for 1,25-dihydroxyvitamin D3 in bones from fetal rats. Calcif Tissue Int. 1983;35(2):177–82.

    Article  PubMed  CAS  Google Scholar 

  349. Mawer EB, Lumb GA, Stanbury SW. Long biological half-life of vitamin D3 and its polar metabolites in human serum. Nature. 1969;222:482483.

    Article  Google Scholar 

  350. Smith JE, Goodman D. The turnover and transport of vitamin D and of a polar metabolite with the properties of 25-hydroxycholecalciferol in human plasma. J Clin Invest. 1971;50:2159–67.

    Article  PubMed  CAS  Google Scholar 

  351. Ponchon G, DeLuca HF. Ethanol-induced artifacts in the metabolism of 3H-vitamin D3. Proc Soc Exp Biol Med. 1969;131:727–31.

    PubMed  CAS  Google Scholar 

  352. Brouwer DA, van Beek J, Ferwerda H, et al. Rat adipose tissue rapidly accumulates and slowly releases an orally-administered high vitamin D dose. Br J Nutr. 1998;79(6):527–32.

    Article  PubMed  CAS  Google Scholar 

  353. Bec P, Bayard F, Louvet JP. 25-Hydroxycholecalciferol dynamics in human plasma. Rev Eur Etud Clin Biol. 1972;XVII:793–6.

    Google Scholar 

  354. Batchelor AJ, Compston JE. Reduced plasma half-life of radio-labeled 25-hydroxyvitamin D3 in subjects receiving a high-fibre diet. Br J Nutr. 1983;49:213–6.

    Article  PubMed  CAS  Google Scholar 

  355. Davie MW, Lawson DEM, Emberson C. Vitamin D from skin: contribution to vitamin D status compared with oral vitamin D in normal and anticonvulsant-treated subjects. Clin Sci. 1982;63:461–72.

    PubMed  CAS  Google Scholar 

  356. Clements MR, Davies M, Hayes ME. The role of 1,25-dihydroxyvitamin D in the mechanism of acquired vitamin D deficiency. Clin Endocrinol. 1991;37(1):17–27.

    Article  Google Scholar 

  357. Vicchio D, Yergey A, O’Brien K. Quantification and kinetics of 25-hydroxyvitamin D3 by isotope dilution liquid chromatography/thermospray mass spectrometry. Biol Mass Spectrom. 1993;22:53–8.

    Article  PubMed  CAS  Google Scholar 

  358. Haddad JG Jr, Rojanasathit S. Acute administration of 25-hydroxycholecalciferol in man. J Clin Endocrinol Metab. 1976;42:284–90.

    Article  PubMed  CAS  Google Scholar 

  359. Salusky IB, Goodman WG, Horst R. Pharmacokinetics of calcitriol in continuous ambulatory and cycling peritoneal dialysis patients. Am J Kidney Dis. 1990;XVI(2):126–32.

    Google Scholar 

  360. Vieth R, Kooh SW, Balfe JW. Tracer kinetics and actions of oral and intraperitoneal 1,25-dihydroxyvitamin D3 administration in rats. Kidney Int. 1990;38:857–61.

    Article  PubMed  CAS  Google Scholar 

  361. Mawer EB, Backhouse J, Davies M, et al. Metabolic fate of administered 1,25-dihydroxycholecalciferol in controls and in patients with hypoparathyroidism. Lancet. 1971;1(7971):1203–6.

    Google Scholar 

  362. Salusky I, Goodman WG, Horst R, et al. Plasma kinetics of intravenous calcitriol in normal and dialysed subjects and acute effect on serum PTH levels. In: Norman A, Schaefer K, Grigoleti HG, Herrath DV, et al., editors. Vitamin D: molecular, cellular, and clinical endocrinology (proceedings of the seventh workshop on vitamin D). New York: De Gruyter; 1988. p. 781–2.

    Google Scholar 

  363. Levine BS, Song M. Pharmacokinetics and efficacy of pulse oral versus intravenous calcitriol in hemodialysis patients. J Am Soc Nephrol. 1996;7:488–96.

    PubMed  CAS  Google Scholar 

  364. Torregrosa JV, Campistol JM, Más M, et al. Usefulness and pharmacokinetics of subcutaneous calcitriol in the treatment of secondary hyperparathyroidism. Nephrol Dial Transplant. 1996;11(3):54–7.

    PubMed  CAS  Google Scholar 

  365. Bianchi ML, Ardissino GL, Schmitt CP, et al. No difference in intestinal strontium absorption after an oral or an intravenous 1,25(OH)2D3 bolus in normal subjects. J Bone Miner Res. 1999;14:1789–95.

    Article  PubMed  CAS  Google Scholar 

  366. Brandi L, Egfjord M, Olgaard K. Pharmacokinetics of 1,25(OH)2D3 and 1α(OH)D3 in normal and uraemic men. Nephrol Dial Transplant. 2002;17(5):829–42.

    Article  PubMed  CAS  Google Scholar 

  367. Fakih MG, Trump D, Muindi JR. A phase I pharmacokinetic and pharmacodynamic study of intravenous calcitriol in combination with oral Gefitinib in patients with advanced solid tumors. Clin Cancer Res. 2007;13(4):1216–23.

    Article  PubMed  CAS  Google Scholar 

  368. Frolik CA, DeLuca HF. Metabolism of 1,25-dihydroxycholecalciferol in the rat. J Clin Invest. 1972;51(11):2900–6.

    Article  PubMed  CAS  Google Scholar 

  369. Mason RS, Lissner D, Posen S. Blood concentrations of dihydroxylated vitamin D metabolites after an oral dose. Br Med J. 1980;280:449–50.

    Article  PubMed  CAS  Google Scholar 

  370. Ohno J, Kubota M, Hirasawa Y, et al. Clinical evaluation of 1α-hydroxycholecalciferol and 1α,25-dihydroxycholecalciferol in the treatment of renal osteodystrophy. In: Norman A, Schaefer K, Herrath DV, Grigoleit HG, editors. Vitamin D, chemical, biochemical and clinical endocrinology of calcium metabolism. New York: W. DeGruyter; 1982. p. 847–52.

    Google Scholar 

  371. Levine BS, Singer FR, Bryce GF, et al. Pharmacokinetics and biologic effects of calcitriol in normal humans. J Lab Clin Med. 1985;105:239–46.

    PubMed  CAS  Google Scholar 

  372. Seino Y, Tanaka H, Yamaoka K, et al. Circulating 1α, 25-dihydroxyvitamin D levels after a single dose of 1α, 25-dihydroxyvitamin D3 or 1α-hydroxyvitamin D3 in normal men. Bone Miner. 1987;2:469–85.

    Google Scholar 

  373. Kimura Y, Nakayama M, Kuriyama S, et al. Pharmacokinetics of active vitamin D3, 1α-hydroxyvitamin D3 and 1α, 25-dihydroxyvitamin D3 in patients on chronic hemodialysis. Clin Nephrol. 1991;35(2):72–7.

    PubMed  CAS  Google Scholar 

  374. Dechant KL, Goa KL. Calcitriol. A review of its use in the treatment of postmenopausal osteoporosis and its potential in corticosteroid-induced osteoporosis. Drugs Aging. 1994;5(4):300–12.

    Article  PubMed  CAS  Google Scholar 

  375. Beer TM, Munar M, Henner WD. A phase I trial of pulse calcitriol in patients with refractory malignancies. Pulse dosing permits substantial dose escalation. Cancer. 2001;91(12):2431–9.

    Article  PubMed  CAS  Google Scholar 

  376. Muindi JR, Peng Y, Potter DM, et al. Pharmacokinetics of high-dose oral calcitriol: results from a phase 1 trial of calcitriol and paclitaxel. Clin Pharmacol Ther. 2002;72:648–59.

    Article  PubMed  CAS  Google Scholar 

  377. Selgas R, Martinez M-E, Miranda B, et al. The pharmacokinetics of a single dose of calcitriol administered subcutaneously in continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 1993;13:122–5.

    PubMed  CAS  Google Scholar 

  378. Smith DC, Johnson CS, Freeman CC, et al. A phase I trial of calcitriol (1,25-dihydroxycholecalciferol) in patients with advanced malignancy. Clin Cancer Res. 1999;5:1339–45.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector F. DeLuca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plum, L.A., DeLuca, H.F. The Functional Metabolism and Molecular Biology of Vitamin D Action. Clinic Rev Bone Miner Metab 7, 20–41 (2009). https://doi.org/10.1007/s12018-009-9040-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-009-9040-z

Keywords

Navigation