The Functional Metabolism and Molecular Biology of Vitamin D Action

Original Paper


The evolution of our understanding of the biological impact of vitamin D is briefly reviewed, with a focus on the physiology and endocrinology of the vitamin D system. This chapter attempts to bring the molecular discoveries in vitamin D metabolism and mechanisms of action into focus on known physiology and endocrinology. The latest developments on metabolism of vitamin D, the enzymes involved, and the genes responsible are presented. The impact of the molecular discoveries on current views of the importance of vitamin D in public health is also presented.


Vitamin D Calcium Phosphorus Homeostasis Metabolism Pharmacokinetics Distribution 


  1. 1.
    Mellanby E. An experimental investigation on rickets. Lancet. 1919;1:407–12.Google Scholar
  2. 2.
    McCollum EV, Simmonds N, Becker JE, et al. Studies on experimental rickets. XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem. 1922;53:293–312.Google Scholar
  3. 3.
    Huldshinsky K. Heilung von rachitis durch kunstlickhe hohensonne. Dtsch Med Wochenschr. 1919;45:712–3.Google Scholar
  4. 4.
    Chick H, Palzell EJ, Hume EM. Studies of rickets in Vienna 1919–1922. Medical Research Council; 1923.Google Scholar
  5. 5.
    Hess A. The history of rickets. In: Hess A, editor. Rickets, including osteomalacia and tetany. Philadelphia: Lee & Febiger; 1929. p. 22–37.Google Scholar
  6. 6.
    Sebrell WH, Harris RS. Vitamin D group. The vitamins. New York: Academic Press; 1954. p. 1131–266.Google Scholar
  7. 7.
    Steenbock H, Black A. Fat-soluble vitamins. XVII. The induction of growth-promoting and calcifying properties in a ration by exposure to ultraviolet light. J Biol Chem. 1924;61:405–22.Google Scholar
  8. 8.
    Scriver CR, Reade TM, DeLuca HF, et al. Serum 1,25-(OH)2D3 levels in normal subjects and in patients with hereditary rickets or bone disease. N Engl J Med. 1978;299:976–9.PubMedGoogle Scholar
  9. 9.
    Fraser D, Kooh SW, Kind HP, et al. Pathogenesis of hereditary vitamin D-dependent rickets: An inborn error of vitamin D metabolism involving defective conversion of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D. N Engl J Med. 1973;289:817–22.PubMedGoogle Scholar
  10. 10.
    Kim CJ, Kaplan LE, Perwad F, et al. Vitamin D 1α-hydroxylase deficiency. J Clin Endocrinol Metab. 2007;92(8):3177–82.PubMedCrossRefGoogle Scholar
  11. 11.
    Porcu L, Meloni A, Casula L, et al. A novel splicing defect (IVS6 + 1G—>T) in a patient with pseudovitamin D deficiency rickets. J Endocrinol Invest. 2002;25:557–60.PubMedGoogle Scholar
  12. 12.
    Wang X, Zhang MYH, Miller WL, et al. Novel gene mutations in patients with 1α-hydroxylase deficiency that confer partial enzyme activity in vitro. J Clin Endocrinol Metab. 2002;87(6):2424–30.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang JT, Lin C-J, Burridge SM, et al. Genetics of vitamin D 1α-hydroxylase deficiency in 17 families. Am J Hum Genet. 1998;63:1694–702.PubMedCrossRefGoogle Scholar
  14. 14.
    Fu GK, Lin D, Zhang MYH, et al. Cloning of human 25-hydroxyvitamin D-1α-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol Endocrinol. 1997;11:1961–70.PubMedCrossRefGoogle Scholar
  15. 15.
    Kitanaka S, Murayama A, Sakaki T, et al. No enzyme activity of 25-hydroxyvitamin D3 1α-hydroxylase gene product in pseudovitamin D deficiency rickets, including that with mild clinical manifestation. J Clin Endocrinol Metab. 1999;84:4111–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Kitanaka S, Takeyama K-I, Murayama A, et al. Inactivating mutations in the 25-hydroxyvitamin D3 1α-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med. 1998;338:653–61.PubMedCrossRefGoogle Scholar
  17. 17.
    Yoshida T, Monkawa T, Tenenhouse HS, et al. Two novel 1α-hydroxylase mutations in French-Canadians with vitamin D dependency rickets type I. Kidney Int. 1998;54:1437–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Smith SJ, Rucka AK, Berry JL, et al. Novel mutations in the 1α-hydroxylase (P450c1) gene in three families with pseudovitamin D-deficiency rickets resulting in loss of functional enzyme activity in blood-derived macrophages. J Bone Miner Res. 1999;14:730–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Brommage R, Jarnagin K, DeLuca HF, et al. 1-hydroxylation but not 24-hydroxylation of vitamin D is required for skeletal mineralization in rats. Am J Physiol. 1983;244:E298–304.PubMedGoogle Scholar
  20. 20.
    Eil C, Lieberman UA, Rosen JF, et al. A cellular defect in hereditary vitamin D-dependent rickets type II: defective nuclear uptake of 1,25-dihydroxyvitamin D in cultured skin fibroblasts. N Engl J Med. 1981;304:1588–91.PubMedGoogle Scholar
  21. 21.
    Bell NH, Hamstra AJ, DeLuca HF. Vitamin D-dependent rickets type II: resistance of target organs to 1,25-dihydroxyvitamin D. N Engl J Med. 1978;298:996–9.PubMedGoogle Scholar
  22. 22.
    Rosen JF, Fleischman AR, Finberg L, et al. Rickets with alopecia: an inborn error of vitamin D metabolism. J Pediatrics. 1979;94:729–35.CrossRefGoogle Scholar
  23. 23.
    Marx SJ, Liberman UA, Eil C, et al. Hereditary resistance to 1,25-dihydroxyvitamin D. Recent Prog Horm Res. 1984;40:589–620.PubMedGoogle Scholar
  24. 24.
    Wiese RJ, Goto H, Prahl JM, et al. Vitamin D-dependency rickets type II: truncated vitamin D receptor in three kindreds. Mol Cell Endocrinol. 1993;90:197–201.PubMedCrossRefGoogle Scholar
  25. 25.
    Liberman UA, Marx SJ. Vitamin D dependent rickets. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 1st ed. Richmond: William Byrd Press; 1990. p. 178–82.Google Scholar
  26. 26.
    Liberman UA. Vitamin D-resistant diseases. J Bone Miner Res. 2007;22(S2):V105–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Underwood JL, DeLuca HF. Vitamin D is not directly necessary for bone growth and mineralization. Am J Physiol. 1983;246:E493–8.Google Scholar
  28. 28.
    DeLuca HF. Mechanism of action and metabolic fate of vitamin D. Vitam Horm. 1967;25:315–67.PubMedCrossRefGoogle Scholar
  29. 29.
    DeLuca HF, Schnoes HK. Vitamin D: recent advances. Ann Rev Biochem. 1983;52:411–39.PubMedCrossRefGoogle Scholar
  30. 30.
    Schachter D, Rosen SM. Active transport of Ca45 by the small intestine and its dependence on vitamin D. Am J Physiol. 1959;196:357–62.PubMedGoogle Scholar
  31. 31.
    Higaki M, Takahashi M, Suzuki T, et al. Metabolic activities of vitamin D in animals. III. Biogenesis of vitamin D sulfate in animal tissues. J Vitaminol. 1965;11:261–5.Google Scholar
  32. 32.
    Martin DL, DeLuca HF. Calcium transport and the role of vitamin D. Arch Biochem Biophys. 1969;134:139–48.PubMedCrossRefGoogle Scholar
  33. 33.
    Walling MW, Rothman SS. Phosphate-independent, carrier-mediated active transport of calcium by rat intestine. Am J Physiol. 1969;217:1144–8.PubMedGoogle Scholar
  34. 34.
    Wasserman RH, Kallfelz FA, Comar CL. Active transport of calcium by rat duodenum in vivo. Science. 1961;133:883–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Schachter D. Vitamin D and the active transport of calcium by the small intestine. In: Wasserman RH, editor. The transfer of calcium and strontium across biological membranes. New York: Academic Press; 1963. p. 197–210.Google Scholar
  36. 36.
    Chen TC, Castillo L, Korycka-Dahl M, et al. Role of vitamin D metabolites in phosphate transport of rat intestine. J Nutr. 1974;104:1056–60.PubMedGoogle Scholar
  37. 37.
    Walling MW. Effects of 1,25-dihydroxyvitamin D3 on active intestinal inorganic phosphate absorption. In: Norman AW, Schaefer K, Coburn JW, editors. Vitamin D: biochemical, chemical, and clinical aspects related to calcium metabolism. Berlin: Walter de Gruyter; 1977. p. 321–30.Google Scholar
  38. 38.
    Harrison HE, Harrison HC. Intestinal transport of phosphate: action of vitamin D, calcium, and potassium. Am J Physiol. 1962;201:1007–12.Google Scholar
  39. 39.
    Nicolaysen R, Eeg-Larsen N. The mode of action of vitamin D. In: Wolstenholme GWE, O’Connor CM, editors. Ciba foundation symposium on bone structure and metabolism. Boston: Little, Brown, and Co.; 1956. p. 175–86.CrossRefGoogle Scholar
  40. 40.
    Yamamoto M, Kawanobe Y, Takahashi H, et al. Vitamin D deficiency and renal calcium transport in the rat. J Clin Invest. 1984;74:507–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Carlsson A. Tracer experiments on the effect of vitamin D on the skeletal metabolism of calcium and phosphorus. Acta Physiol Scand. 1952;26:212–20.PubMedCrossRefGoogle Scholar
  42. 42.
    Rasmussen H, DeLuca H, Arnaud C, et al. The relationship between vitamin D and parathyroid hormone. J Clin Invest. 1963;42:1940–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Morii H, Lund J, Neville PF, et al. Biological activity of a vitamin D metabolite. Arch Biochem Biophys. 1967;120(3):508–12.CrossRefGoogle Scholar
  44. 44.
    Steenbock H, Herting DC. Vitamin D and growth. J Nutr. 1955;57:449–68.PubMedGoogle Scholar
  45. 45.
    Cramer JW, Steenbock H. Calcium metabolism and growth in the rat on a low phosphorus diet as affected by vitamin D and increases in calcium intake. Arch Biochem Biophys. 1956;63:9–13.PubMedCrossRefGoogle Scholar
  46. 46.
    Darwish HM, DeLuca HF. Analysis of binding of the 1,25-dihydroxyvitamin D3 receptor to positive and negative vitamin D response elements. Arch Biochem Biophys. 1996;334:223–34.PubMedCrossRefGoogle Scholar
  47. 47.
    Demay MB, Kiernan MS, DeLuca HF, et al. Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA. 1992;89:8097–101.PubMedCrossRefGoogle Scholar
  48. 48.
    Silver J, Naveh-Many T, Mayer H, et al. Regulation of vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J Clin Invest. 1986;78:1296–301.PubMedCrossRefGoogle Scholar
  49. 49.
    DeLuca HF. The transformation of a vitamin into a hormone—the vitamin D story. Harvey Lect. 1981;75:333–79.Google Scholar
  50. 50.
    DeLuca HF. The vitamin D-calcium axis—1983. In: Rubin RP, Weiss GB, Putney Jr JW, editors. Calcium in biological systems, vol. 53. New York: Plenum Publishing Corp; 1985. p. 491–511.Google Scholar
  51. 51.
    Liu S, Tang W, Zhou J, et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol. 2006;17(5):1305–15. (Epub 2006, April 5).PubMedCrossRefGoogle Scholar
  52. 52.
    Shimada T, Kakitani M, Yamazaki Y, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):562–658.Google Scholar
  53. 53.
    Bellin SA, Herting DC, Cramer JW, et al. The effect of vitamin D on urinary citrate in relation to calcium phosphorus and urinary phosphorus. Arch Biochem Biophys. 1954;80:18–23.CrossRefGoogle Scholar
  54. 54.
    Neville PF, DeLuca HF. The synthesis of [1, 2-3H]vitamin D3 and the tissue localization of a 0.25 μg (10 IU) dose per rat. Biochemistry. 1966;5:2201–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Norman AW, Lund J, DeLuca HF. Biologically active forms of vitamin D3 in kidney and intestine. Arch Biochem Biophys. 1964;108:12–21.PubMedCrossRefGoogle Scholar
  56. 56.
    Lund J, DeLuca HF. Biologically active metabolites of vitamin D3 from bone, liver, and blood serum. J Lipid Res. 1966;7:739–44.PubMedGoogle Scholar
  57. 57.
    DeLuca HF. Vitamin D: the vitamin and the hormone. Fed Proc. 1974;33:2211–9.PubMedGoogle Scholar
  58. 58.
    Vieth R. Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr. 1999;69:842–56.PubMedGoogle Scholar
  59. 59.
    Windus A, Bock F. Uber das provitamin aus dem sterin der schweineschwarte. Z Physiol Chem. 1937;245:168–70.Google Scholar
  60. 60.
    Esvelt RP, Schnoes HK, DeLuca HF. Vitamin D3 from rat skins irradiated in vitro with ultraviolet light. Arch Biochem Biophys. 1978;188:282–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Windus A, Schenck F, Weder Fv. Uber das antirachitisch wirksame bestrahlungs-produkt aus 7-dehydro-cholesterin. Hoppe-Seylers Z Physiol Chem. 1936;241:100–3.Google Scholar
  62. 62.
    Velluz L, Amiard G. Chimie organique-le precalciferol. Compt Rend. 1949;228:692–4.Google Scholar
  63. 63.
    Holick MF, Clark MB. The photobiogenesis and metabolism of vitamin D. Fed Proc. 1978;37:2567–74.PubMedGoogle Scholar
  64. 64.
    Ponchon G, DeLuca HF, Suda T. Metabolism of [1, 2-3H-vitamin D3 and [26,27-3H-25-hydroxyvitamin D3 in rachitic chicks. Arch Biochem Biophys. 1970;141:397–408.PubMedCrossRefGoogle Scholar
  65. 65.
    Horsting M, DeLuca HF. In vitro production of 25-hydroxycholecalciferol. Biochem Biophys Commun. 1969;36:251–6.CrossRefGoogle Scholar
  66. 66.
    Prosser DE, Jones G. Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem Sci. 2004;29(13):664–73.PubMedCrossRefGoogle Scholar
  67. 67.
    Guo Y-D, Strugnell S, Back DW, et al. Transfected human liver cytochrome P-450 hydroxylates vitamin D analogs at different side-chain positions. Proc Natl Acad Sci USA. 1993;90:8668–72.PubMedCrossRefGoogle Scholar
  68. 68.
    Pikuleva IA, Bjorkhem I, Waterman MR. Expression, purification, and enzymatic properties of recombinant human cytochrome P450c27 (CYP27). Arch Biochem Biophys. 1997;343(1):123–30.PubMedCrossRefGoogle Scholar
  69. 69.
    Rosen H, Reshef A, Maeda N, et al. Markedly reduced bile acid synthesis but maintained levels of cholesterol and vitamin D metabolites in mice with disrupted sterol 27-hydroxylase gene. J Biol Chem. 1998;273(24):14805–12.PubMedCrossRefGoogle Scholar
  70. 70.
    Repa JJ, Mangelsdorf DJ. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol. 2000;16:459–81.PubMedCrossRefGoogle Scholar
  71. 71.
    Ohyama Y, Yamasaki T. Eight cytochrome P450 s catalyze vitamin D metabolism. Front Biosci. 2004;9:3007–18.PubMedCrossRefGoogle Scholar
  72. 72.
    Fraser DR, Kodicek E. Unique biosynthesis by kidney of a biologically active vitamin D metabolite. Nature. 1970;228:764–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Gray R, Boyle I, DeLuca HF. Vitamin D metabolism: the role of kidney tissue. Science. 1971;172:1232–4.PubMedCrossRefGoogle Scholar
  74. 74.
    Boyle IT, Miravet L, Gray RW, et al. The response of intestinal calcium transport to 25-hydroxy and 1,25-dihydroxyvitamin D in nephrectomized rats. Endocrinology. 1972;90:605–8.PubMedGoogle Scholar
  75. 75.
    Holick MF, Garabedian M, DeLuca HF. 1,25-Dihydroxycholecalciferol: metabolite of vitamin D3 active on bone in anephric rats. Science. 1972;176:1146–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Wong RG, Norman AW, Reddy CR, et al. Biologic effects of 1,25-dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats. J Clin Invest. 1972;51:1287–91.PubMedCrossRefGoogle Scholar
  77. 77.
    Dardenne O, Prud’Homme J, Arabian A. Targeted inactivation of the 25-hydroxyvitamin D3-1α-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology. 2001;142:3135–41.PubMedCrossRefGoogle Scholar
  78. 78.
    Panda DK, Miao D, Tremblay ML, et al. Targeted ablation of the 25-hydroxyvitamin D 1α-hydroxylase enzyme: evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci USA. 2001;98(13):7498–503.PubMedCrossRefGoogle Scholar
  79. 79.
    Norman AW. From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr. 2008;88:491S–9S.PubMedCrossRefGoogle Scholar
  80. 80.
    Bikle DD, Chang S, Crumrine D, et al. 25 Hydroxyvitamin D 1α-hydroxylase is required for optimal epidermal differentiation and permeability barrier homeostasis. J Invest Dermatol. 2004;122:984–92.PubMedCrossRefGoogle Scholar
  81. 81.
    Hewison M, Adams JS. Extra-renal 1α-hydroxylase activity and human disease. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 79. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1379–400.Google Scholar
  82. 82.
    Barbour GL, Coburn JW, Slatopolsky E, et al. Hypercalcemia in an anephric patient with sarcoidosis: evidence for extrarenal generation of 1,25-dihydroxyvitamin D. N Engl J Med. 1981;305(8):440–3.PubMedGoogle Scholar
  83. 83.
    Jones G, Ramshaw H, Zhang A, et al. Expression and activity of vitamin D-metabolizing cytochrome P450s (CYP1α and CYP24) in human nonsmall cell lung carcinomas. Endocrinology. 1999;140(7):3303–10.PubMedCrossRefGoogle Scholar
  84. 84.
    Reeve L, Tanaka Y, DeLuca HF. Studies on the site of 1,25-dihydroxyvitamin D3 synthesis in vivo. J Biol Chem. 1983;258(6):3615–7.PubMedGoogle Scholar
  85. 85.
    Shultz TD, Fox J, Heath H 3rd, et al. Do tissues other than the kidney produce 1,25-dihydroxyvitamin D3 in vivo? A reexamination. Proc Natl Acad Sci USA. 1983;80(6):1746–50.PubMedCrossRefGoogle Scholar
  86. 86.
    Vanhooke JL, Prahl JM, Kimmel-Jehan C, et al. CYP27B1 null mice with LacZ reporter gene display no 25-hydroxyvitamin D3-1α-hydroxylase promoter activity in the skin. Proc Natl Acad Sci USA. 2006;103(1):75–80.PubMedCrossRefGoogle Scholar
  87. 87.
    Pedersen JI, Shobaki HH, Holmberg I, et al. 25-Hydroxyvitamin D3-24-hydroxylase in rat kidney mitochondria. J Biol Chem. 1983;258:742–6.PubMedGoogle Scholar
  88. 88.
    Omdahl JL, Morris HA, May BK. Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation. Annu Rev Nutr. 2002;22:139–66.PubMedCrossRefGoogle Scholar
  89. 89.
    Akiyoshi-Shibata M, Sakaki T, Ohyama Y. Further oxidation of hydroxycalcidiol by calcidiol 24-hydroxylase. Eur J Biochem. 1994;224:335–43.PubMedCrossRefGoogle Scholar
  90. 90.
    Beckman MJ, Tadikonda P, Werner E, et al. Human 25-hydroxyvitamin D3-24-hydroxylase, a multicatalytic enzyme. Biochemistry. 1996;35:8465–72.PubMedCrossRefGoogle Scholar
  91. 91.
    Makin G, Lohnes D, Byford V, et al. Target cell metabolism of 1,25-dihydroxyvitamin D3 to calcitroic acid. Evidence for a pathway in kidney and bone involving 24-oxidation. Biochem J. 1989;262(1):173–80.PubMedGoogle Scholar
  92. 92.
    Reddy GS, Tserng KY. Calcitroic acid end product of renal metabolism of 1,25-dihydroxyvitamin D3 through C-24 oxidation pathway. Biochemistry. 1989;28(4):1763–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Esvelt RP, Rivizzani MA, Paaren HE. Synthesis of calcitroic acid, a metabolite of 1,25-dihydroxycholecalciferol. J Org Chem. 1981;46:456–8.CrossRefGoogle Scholar
  94. 94.
    Onisko BL, Esvelt RP, Schnoes HK, et al. Metabolites of 1,25-dihydroxyvitamin D3 in rat bile. Biochemistry. 1980;19:4124–30.PubMedCrossRefGoogle Scholar
  95. 95.
    Rasmussen H, Bordier P. Vitamin D and bone. Metab Bone Dis Relat Res. 1978;1:7–13.CrossRefGoogle Scholar
  96. 96.
    Ornoy A, Goodwin D, Noff D, Edelstein S. 24,25-dihydroxyvitamin D is a metabolite of vitamin D essential for bone formation. Nature. 1978;276:517–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Henry HL, Taylor AN, Norman AW. Response of chick parathyroid glands to the vitamin D metabolites 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. J Nutr. 1977;107:1918–26.PubMedGoogle Scholar
  98. 98.
    Garabedian M, Lieberherr M, Nguyen TM, et al. In vitro production and activity of 24,25-dihydroxycholecalciferol in cartilage and calvarium. Clin Orthop Relat Res. 1978;135:241–8.PubMedGoogle Scholar
  99. 99.
    Henry HL, Norman AW. Vitamin D: two dihydroxylated metabolites are required for normal chicken egg hatchability. Science. 1978;201:835–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Jarnagin K, Brommage R, DeLuca HF. 1-But not 24-hydroxylation of vitamin D is required for growth and reproduction in rats. Am J Physiol. 1983;244:E290–7.PubMedGoogle Scholar
  101. 101.
    Halloran BP, DeLuca HF, Barthell E. An examination of the importance of 24-hydroxylation to the function of vitamin D during early development. Endocrinology. 1981;108:2067–71.PubMedGoogle Scholar
  102. 102.
    Miller SC, Halloran BP, DeLuca HF. Studies on the role of 24-hydroxylation of vitamin D in the mineralization of cartilage and bone of vitamin D-deficient rats. Calcif Tissue Int. 1981;33:489–97.PubMedCrossRefGoogle Scholar
  103. 103.
    St-Arnaud R, Arabian A, Glorieux FH. Abnormal bone development in mice deficient for the vitamin D 24-hydroxylase gene. In: ASBMR 18th Annual Meeting. Seattle, WA, p. S126.Google Scholar
  104. 104.
    St-Arnaud R, Arabian A, Travers R. Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology. 2000;141(7):2658–66.PubMedCrossRefGoogle Scholar
  105. 105.
    Brown EM, Gamba G, Riccardi D. Cloning and characterization of an extracellular Ca+2-sensing receptor from bovine parathyroid. Nature. 1993;366:575–80.PubMedCrossRefGoogle Scholar
  106. 106.
    Omdahl JL, Gray RW, Boyle IT, et al. Regulation of metabolism of 25-hydroxycholecalciferol metabolism by kidney tissue in vitro by dietary calcium. Nature New Biol. 1972;237:63–4.PubMedGoogle Scholar
  107. 107.
    Garabedian M, Holick MF, DeLuca HF, et al. Control of 25-hydroxycholecalciferol metabolism by the parathyroid glands. Proc Natl Acad Sci USA. 1972;69:1673–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Fraser DR, Kodicek E. Regulation of 25-hydroxycholecalciferol-1-hydroxylase activity in kidney by parathyroid hormone. Nature New Biol. 1973;241:163–6.PubMedGoogle Scholar
  109. 109.
    Garabedian M, Tanaka Y, Holick MF, et al. Response of intestinal calcium transport and bone calcium mobilization to 1,25-dihydroxyvitamin D3 in thyroparathyroidectomized rats. Endocrinology. 1974;94:1022–7.PubMedGoogle Scholar
  110. 110.
    Forte LR, Nickols GA, Anast CS. Renal adenylate cyclase and the interrelationship between parathyroid hormone and vitamin D in the regulation of urinary phosphate and adenosine cyclin 3′, 5′monophosphate excretion. J Clin Invest. 1976;57:559–68.PubMedCrossRefGoogle Scholar
  111. 111.
    Tanaka Y, DeLuca HF. The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch Biochem Biophys. 1973;154:566–74.PubMedCrossRefGoogle Scholar
  112. 112.
    Baxter LA, DeLuca HF. Stimulation of 25-hydroxyvitamin D3-1-hydroxylase by phosphate depletion. J Biol Chem. 1976;251:3158–61.PubMedGoogle Scholar
  113. 113.
    Hughes MR, Brumbaugh PF, Haussler MR. Regulation of serum 1,25-dihydroxyvitamin D3 by calcium and phosphate in the rat. Science. 1975;190:578–80.PubMedCrossRefGoogle Scholar
  114. 114.
    Gray RW. Evidence that somatomedins mediate the effect of hypophosphatemia to increase serum 1,25-dihydroxyvitamin D3 levels in rats. Endocrinology. 1987;121:504–12.PubMedGoogle Scholar
  115. 115.
    Halloran BP, Spencer EM. Dietary phosphorus and 1,25-dihydroxyvitamin D metabolism: influence of insulin-like growth factor-1. Endocrinology. 1988;123:1225–9.PubMedGoogle Scholar
  116. 116.
    Spencer EM, Tobiassen O. The mechanism of the action of growth hormone on vitamin D metabolism in the rat. Endocrinology. 1981;108:1064–70.PubMedGoogle Scholar
  117. 117.
    Gray RW. Control of plasma 1,25-(OH)2-vitamin D concentrations by calcium and phosphorus in the rat: effects of hypophysectomy. Calcif Tissue Int. 1981;33:485–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Pahuja DN, DeLuca HF. Role of the hypophysis in the regulation of vitamin D metabolism. Mol Cell Endocrinol. 1981;23:345–50.PubMedCrossRefGoogle Scholar
  119. 119.
    Brown DJ, Spanos E, MacIntyre I. Role of pituitary hormones in regulating renal vitamin D metabolism in man. Br Med J. 1980;280:277.PubMedCrossRefGoogle Scholar
  120. 120.
    Liu S, Zhou J, Tang W. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab. 2006;291(1):E38–49.PubMedCrossRefGoogle Scholar
  121. 121.
    Tanaka Y, Frank H, DeLuca HF. Biological activity of 1,25-dihydroxyvitamin D3 in the rat. Endocrinology. 1973;92:417–22.PubMedGoogle Scholar
  122. 122.
    Tanaka Y, Lorenc RS, DeLuca HF. The role of 1,25-dihydroxyvitamin D3 and parathyroid hormone in the regulation of chick renal 25-hydroxyvitamin D3-24-hydroxylase. Arch Biochem Biophys. 1975;171:521–6.CrossRefGoogle Scholar
  123. 123.
    Tanaka Y, DeLuca HF. Stimulation of 24,25-dihydroxyvitamin D3 production by 1,25-dihydroxyvitamin D3. Science. 1974;183:1198–200.PubMedCrossRefGoogle Scholar
  124. 124.
    Shinki T, Jin CH, Nishimura A. Parathyroid hormone inhibits 25-hydroxyvitamin D3-24-hydroxylase mRNA expression stimulated by 1,25-dihydroxyvitamin D3 in rat kidney but not in intestine. J Biol Chem. 1992;267:13757–62.PubMedGoogle Scholar
  125. 125.
    Zierold C, Darwish HM, DeLuca HF. Identification of a vitamin D-response element in the rat calcidiol (25-hydroxyvitamin D3) 24-hydroxylase gene. Proc Natl Acad Sci USA. 1994;91:900–2.PubMedCrossRefGoogle Scholar
  126. 126.
    Ohyama Y, Ozono K, Uchida M. Identification of a vitamin D-responsive element in the 5′-flanking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J Biol Chem. 1994;269:10545–50.PubMedGoogle Scholar
  127. 127.
    Wu SX, Finch J, Zhong M. Expression of the renal 25-hydroxyvitamin D-24-hydroxylase gene-regulation by dietary phosphate. Am J Phys. 1996;40:F203–8.Google Scholar
  128. 128.
    Brenza HL, Kimmel-Jehan C, Jehan F. Parathyroid hormone activation of the 25-hydroxyvitamin D3-1α-hydroxylase gene promoter. Proc Natl Acad Sci USA. 1998;95:1387–91.PubMedCrossRefGoogle Scholar
  129. 129.
    Brenza HL. Regulation of 25-hydroxyvitamin D3-1α-hydroxylase gene expression. PhD Thesis. University of Wisconsin-Madison; 2002.Google Scholar
  130. 130.
    Strom M, Sandgren ME, Brown TA, et al. 1,25-Dihydroxyvitamin D3 up-regulates the 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci USA. 1989;86:9770–3.PubMedCrossRefGoogle Scholar
  131. 131.
    Healy KD, Zella JB, Prahl JM, et al. Regulation of the murine renal vitamin D receptor by 1,25-dihydroxyvitamin D3 and calcium. Proc Natl Acad Sci USA. 2003;100(17):9733–7.PubMedCrossRefGoogle Scholar
  132. 132.
    Sandgren ME, DeLuca HF. Serum calcium and vitamin D regulate 1,25-dihydroxyvitamin D3 receptor concentration in rat kidney in vivo. Proc Natl Acad Sci USA. 1990;87(11):4312–4.PubMedCrossRefGoogle Scholar
  133. 133.
    Goff JP, Reinhardt TA, Beckman MJ, et al. Contrasting effects of exogenous 1,25-dihydroxyvitamin D [1,25-(OH)2D] versus endogenous 1,25-(OH)2D, induced by dietary calcium restriction, on vitamin D receptors. Endocrinology. 1990;126(2):1031–5.PubMedGoogle Scholar
  134. 134.
    Beckman MJ, DeLuca HF. Regulation of renal vitamin D receptor is an important determinant of 1α, 25-dihydroxyvitamin D3 levels in vivo. Arch Biochem Biophys. 2002;401(1):44–52.PubMedCrossRefGoogle Scholar
  135. 135.
    Naveh-Many T, Silver J. Regulation of parathyroid hormone gene expression by hypocalcemia, hypercalcemia, and vitamin D in the rat. J Clin Invest. 1990;86:1313–9.PubMedCrossRefGoogle Scholar
  136. 136.
    Stumpf WE, Sar M, DeLuca HF. Sites of action of 1,25(OH)2vitamin D3 identified by thaw-mount autoradiography. In: Cohn DV, Talmage RV, Matthews JL, editors. Hormonal control of calcium metabolism. Amsterdam, Oxford, Princeton: Excerpta Medica; 1981. p. 222–9.Google Scholar
  137. 137.
    Brumbaugh PF, Haussler MR. Nuclear and cytoplasmic binding components for vitamin D metabolites. Life Sci. 1975;16:353.PubMedCrossRefGoogle Scholar
  138. 138.
    Kream BE, Reynolds RD, Knutson JC. Intestinal cytosol binders of 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3. Arch Biochem Biophys. 1976;176:779–87.PubMedCrossRefGoogle Scholar
  139. 139.
    Baker AR, McDonnell DP, Hughes M. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA. 1988;85:3294–8.PubMedCrossRefGoogle Scholar
  140. 140.
    Burmester JK, Wiese RJ, Maeda N, et al. Structure and regulation of the rat 1,25-dihydroxyvitamin D3 receptor. Proc Natl Acad Sci USA. 1988;85:9499–502.PubMedCrossRefGoogle Scholar
  141. 141.
    Pike JW, Shevde NK. The vitamin D receptor. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 11. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 167–91.Google Scholar
  142. 142.
    McDonnell DP, Scott RA, Kerner SA, et al. Functional domains of the human vitamin D3 receptor regulate osteocalcin gene expression. Mol Endocrinol. 1989;3:635–44.PubMedCrossRefGoogle Scholar
  143. 143.
    Umesono K, Murakami KK, Thompson CC. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991;65:1255–66.PubMedCrossRefGoogle Scholar
  144. 144.
    Zella LA, Kim S, Shevde NK, et al. Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3. Mol Endocrinol. 2006;20(6):1231–47.PubMedCrossRefGoogle Scholar
  145. 145.
    Kim S, Yamazaki M, Zella LA. Activation of receptor activator of NF-kappaB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol. 2006;26(17):6469–86.PubMedCrossRefGoogle Scholar
  146. 146.
    Carlberg C, Seuter S. The vitamin D receptor. Dermatol Clin. 2007;25:515–23.PubMedCrossRefGoogle Scholar
  147. 147.
    Kutuzova GD, DeLuca HF. Gene expression profiles in rat intestine identify pathways for 1,25-dihydroxyvitamin D3 stimulated calcium absorption and clarify its immunomodulatory properties. Arch Biochem Biophys. 2004;432(2):152–66.PubMedCrossRefGoogle Scholar
  148. 148.
    Kutuzova GD, DeLuca HF. 1,25-Dihydroxyvitamin D3 regulates genes responsible for detoxification in intestine. Toxicol Appl Pharmacol. 2007;218(1):37–44.PubMedCrossRefGoogle Scholar
  149. 149.
    Chen KS, DeLuca HF. Cloning of the human 1α,25-dihydroxyvitamin D3 24-hydroxylase gene promoter and identification of two vitamin D-responsive elements. Biochim Biophys Acta. 1995;1263(1):1–9.PubMedGoogle Scholar
  150. 150.
    Carlberg C, Dunlop TW, Frank C. Molecular basis of the diversity of vitamin D target genes. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 18. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 313–25.Google Scholar
  151. 151.
    Nagai M, Sato N. Reciprocal gene expression of osteoclastogenesis inhibitory factor and osteoclast differentiation factor regulates osteoclast formation. Biochem Biophys Res Commun. 1999;257:719–23.PubMedCrossRefGoogle Scholar
  152. 152.
    Strom M, Sandgren ME, Brown TA, et al. 1,25-Dihydroxyvitamin D3 up-regulates the 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci USA. 1989;86(24):9770–3.PubMedCrossRefGoogle Scholar
  153. 153.
    Naveh-Many T, Marx R, Keshet E. Regulation of 1,25-dihydroxyvitamin D3 receptor gene expression by 1,25-dihydroxyvitamin D3 in the parathyroid in vivo. J Clin Invest. 1990;86(6):1968–75.PubMedCrossRefGoogle Scholar
  154. 154.
    Huang L, Xu J, Wood DJ, et al. Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-kappaB in giant cell tumor of bone. Possible involvement in tumor cell-induced osteoclast-like cell formation. Am J Pathol. 2000;156(3):761–7.PubMedGoogle Scholar
  155. 155.
    Shevde NK, Plum LA, Clagett-Dame M, et al. A potent analog of 1α, 25-dihydroxyvitamin D3 selectively induced bone formation. Proc Natl Acad Sci USA. 2002;99(21):13487–91.PubMedCrossRefGoogle Scholar
  156. 156.
    Fleet JC. Rapid, membrane-initiated actions of 1,25 dihydroxyvitamin D: what are they and what do they mean? J Nutr. 2004;134:3215–8.PubMedGoogle Scholar
  157. 157.
    Norman AW, Mizwicki MT, Norman DPG. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov. 2004;3(1):27–41.PubMedCrossRefGoogle Scholar
  158. 158.
    Demay MB. Mouse models of vitamin D receptor ablation. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 20. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 341–9.Google Scholar
  159. 159.
    Nemere I, Yoshimoto Y, Norman AW. Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1,25-dihydroxyvitamin D3. Endocrinology. 1984;115(4):1476–83.PubMedGoogle Scholar
  160. 160.
    Nagpal S, Na S, Rathnachalam R. Noncalcemic actions of vitamin D receptor ligands. Endocrine Rev. 2005;26(5):662–87.CrossRefGoogle Scholar
  161. 161.
    Dusso AS, Negrea L, Gunawardhana S, et al. On the mechanisms for the selective action of vitamin D analogs. Endocrinology. 1991;128(4):1687–92.PubMedGoogle Scholar
  162. 162.
    Binderup L, Binderup E, Godtfredsen WO. Development of new vitamin D analogs. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 84. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1489–510.Google Scholar
  163. 163.
    Kissmeyer A-M, Binderup L. Calcipotriol (MC 903): pharmacokinetics in rats and biological activities of metabolites. A comparative study with 1,25(OH)2D3. Biochem Pharmacol. 1991;41(11):1601–6.PubMedCrossRefGoogle Scholar
  164. 164.
    Segaert S, Duvold LB. Calcipotriol cream: a review of its use in the management of psoriasis. J Dermatolog Treat. 2006;17(6):327–37.PubMedCrossRefGoogle Scholar
  165. 165.
    Sicinski RR, Prahl JM, Smith CM. New 1α, 25-dihydroxy-19-norvitamin D3 compounds of high biological activity: synthesis and biological evaluation of 2-hydroxymethyl, 2-methyl, and 2-methylene analogues. J Med Chem. 1998;41(23):4662–74.PubMedCrossRefGoogle Scholar
  166. 166.
    Ke HZ, Qi H, Crawford DT, et al. A new vitamin D analog, 2MD, restores trabecular and cortical bone mass and strength in ovariectomized rats with established osteopenia. J Bone Miner Res. 2005;20:1742–55.PubMedCrossRefGoogle Scholar
  167. 167.
    Plum LA, Fitzpatrick LA, Ma X, et al. 2MD, a new anabolic agent for osteoporosis treatment. Osteoporos Int. 2006;17(5):704–15.PubMedCrossRefGoogle Scholar
  168. 168.
    Slatopolsky E, Finch JL, Brown AJ. Effect of 2-methylene-19-nor(20S)-1α-hydroxy-bishomopregnacalciferol (2MbisP), an analog of vitamin D, on secondary hyperparathyroidism. J Bone Miner Res. 2007;22:686–94.PubMedCrossRefGoogle Scholar
  169. 169.
    DeLuca HF, Plum LA, Clagett-Dame M. Selective analogs of 1α, 25-dihydroxyvitamin D3 for the study of specific functions of vitamin D. J Steroid Biochem Mol Biol. 2007;103(3–5):263–8.PubMedCrossRefGoogle Scholar
  170. 170.
    Brown AJ, Slatopolsky E. Drug insight: vitamin D analogs in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease. Nat Clin Pract Endocrinol Metab. 2007;3(2):134–44.PubMedCrossRefGoogle Scholar
  171. 171.
    Slatopolsky E, Finch J, Ritter C, et al. A new analog of calcitriol, 19-nor-1,25-(OH)2D2, suppresses parathyroid hormone secretion in uremic rats in the absence of hypercalcemia. Am J Kidney Dis. 1995;26(5):852–60.PubMedCrossRefGoogle Scholar
  172. 172.
    Tocchini-Valentini G, Rochel N, Wurtz JM, et al. Crystal structures of the vitamin D receptor complexed to superagonist 20-epi ligands. Proc Natl Acad Sci USA. 2001;98(10):5491–6.PubMedCrossRefGoogle Scholar
  173. 173.
    Tocchini-Valentini G, Rochel N, Wurtz J-M, et al. Crystal structures of the vitamin D nuclear receptor liganded with the vitamin D side chain analogues calcipotriol and seocalcitol, receptor agonists of clinical importance. Insights into a structural basis for the switching of calcipotriol to a receptor antagonist by further side chain modification. J Med Chem. 2004;47:1956–61.PubMedCrossRefGoogle Scholar
  174. 174.
    Rochel N, Wurtz JM, Mitschler A, et al. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol Cell. 2000;5:173–9.PubMedCrossRefGoogle Scholar
  175. 175.
    Vanhooke JL, Benning MM, Bauer CB, et al. Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2-carbon-substituted vitamin D3 hormone analogues and a LXXLL-containing coactivator peptide. Biochemistry. 2004;43(14):4101–10.PubMedCrossRefGoogle Scholar
  176. 176.
    Vanhooke JL, Tadi BP, Benning MM, et al. New analogs of 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 with conformationally restricted side chains: evaluation of biological activity and structural determination of VDR-bound conformations. Arch Biochem Biophys. 2007;460:161–5.PubMedCrossRefGoogle Scholar
  177. 177.
    Van den Bemd GC, Pols HA, Birkenhäger JC, et al. Conformational change and enhanced stabilization of the vitamin D receptor by the 1,25-dihydroxyvitamin D3 analog KH1060. Proc Natl Acad Sci USA. 1996;93(20):10685–90.PubMedCrossRefGoogle Scholar
  178. 178.
    Väisänen S, Juntunen K, Itkonen A, et al. Conformational studies of human vitamin-D receptor by antipeptide antibodies, partial proteolytic digestion and ligand binding. Eur J Biochem. 1997;248(1):156–62.PubMedCrossRefGoogle Scholar
  179. 179.
    Castillo AI, Sánchez-Martinez R, Jiménez-Lara AM, et al. Characterization of vitamin D receptor ligands with cell-specific and dissociated activity. Mol Endocrinol. 2006;20(12):3093–104.PubMedCrossRefGoogle Scholar
  180. 180.
    Yamamoto H, Shevde NK, Warrier A, et al. 2-Methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 potently stimulates gene-specific DNA binding of the vitamin D receptor in osteoblasts. J Biol Chem. 2003;278(34):31756–65.PubMedCrossRefGoogle Scholar
  181. 181.
    Peleg S, Sastry M, Collins ED. Distinct conformational changes induced by 20-epi analogues of 1α, 25-dihydroxyvitamin D3 are associated with enhanced activation of the vitamin D receptor. J Biol Chem. 1995;270(18):10551–8.PubMedCrossRefGoogle Scholar
  182. 182.
    Christakos S, Norman AW. Studies on the mode of action of calciferol. XVIII. Evidence for a specific high affinity binding protein for 1,25 dihydroxyvitamin D3 in chick kidney and pancreas. Biochem Biophys Res Commun. 1979;89(1):56–63.PubMedCrossRefGoogle Scholar
  183. 183.
    Veldman CM, Cantorna MT, DeLuca HF. Expression of 1,25-dihydroxyvitamin D3 receptor in the immune system. Arch Biochem Biophys. 2000;374(2):334–8.PubMedCrossRefGoogle Scholar
  184. 184.
    Evans KN, Bulmer JN, Kilby MD, et al. Vitamin D and placental-decidual function. J Soc Gynecol Investig. 2004;11(5):263–71.PubMedCrossRefGoogle Scholar
  185. 185.
    Merke J, Milde P, Lewicka S, et al. Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Invest. 1989;83(6):1903–15.PubMedCrossRefGoogle Scholar
  186. 186.
    Perez A, Raab R, Chen TC. Safety and efficacy of oral calcitriol (1,25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol. 1996;134(6):1070–8.PubMedCrossRefGoogle Scholar
  187. 187.
    Pèrez A, Chen TC, Turner A. Efficacy and safety of topical calcitriol (1,25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol. 1996;134(2):238–46.PubMedCrossRefGoogle Scholar
  188. 188.
    Yang S, Smith C, Prahl JM, et al. Vitamin D deficiency suppresses cell-mediated immunity in vivo. Arch Biochem Biophys. 1993;303(1):98–106.PubMedCrossRefGoogle Scholar
  189. 189.
    Yang S, Smith C, DeLuca HF. 1α, 25-Dihydroxyvitamin D3 and 19-nor-1α, 25-dihydroxyvitamin D2 suppress immunoglobulin production and thymic lymphocyte proliferation in vivo. Biochim Biophys Acta. 1993;1158(3):279–86.PubMedGoogle Scholar
  190. 190.
    Niino M, Fukazawa T, Kikuchi S. Therapeutic potential of vitamin D for multiple sclerosis. Curr Med Chem. 2008;15:499–505.PubMedCrossRefGoogle Scholar
  191. 191.
    DeLuca HF, Cantorna MT. Vitamin D: its role and uses in immunology. FASEB J. 2001;15(14):2569–85.CrossRefGoogle Scholar
  192. 192.
    Tai K, Need AG, Horowitz M, Chapman IM. Vitamin D, glucose, insulin, and insulin sensitivity. Nutrition. 2008;24:269–85.Google Scholar
  193. 193.
    Abe J, Nakamura K, Takita Y. Prevention of immunological disorders in MRL/l mice by a new synthetic analogue of vitamin D3: 22-oxa-1α, 25-dihydroxyvitamin D3. J Nutr Sci Vitaminol (Tokyo). 1990;6(1):21–31.Google Scholar
  194. 194.
    Deeb K, Trump DL, Johnson CS. Vitamin D signaling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007;7(9):684–700.PubMedCrossRefGoogle Scholar
  195. 195.
    Garland CF, Gorham ED, Mohr SB. Vitamin D and prevention of breast cancer: pooled analysis. J Steroid Biochem Mol Biol. 2007;103(3–5):708–11.PubMedCrossRefGoogle Scholar
  196. 196.
    Gorham ED, Garland CF, Garland FC. Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. Am J Prev Med. 2007;32(3):210–6.PubMedCrossRefGoogle Scholar
  197. 197.
    Munger KL, Levin LI, Hollis BW. Elevated serum 25-hydroxyvitamin D predicts a decreased risk of MS. Mult Scler. 2007;13:280–307.Google Scholar
  198. 198.
    Giovannucci E, Liu Y, Hollis BW, et al. 25-Hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med. 2008;168(11):1174–80.PubMedCrossRefGoogle Scholar
  199. 199.
    Sayre RM, Dowdy JC, Shepherd JG. Reintroduction of a classic vitamin D ultraviolet source. J Steroid Biochem Mol Biol. 2007;103(3–5):686–8.PubMedCrossRefGoogle Scholar
  200. 200.
    Rajakumar K, Greenspan SL, Thomas SB, et al. SOLAR ultraviolet radiation and vitamin D a historical perspective. Am J Public Health. 2007;97(10):1746–54.PubMedCrossRefGoogle Scholar
  201. 201.
    Lim HW, Carucci JA, Spencer JM, et al. Commentary: a responsible approach to maintaining adequate serum vitamin D levels. J Am Acad Dermatol. 2007;57:594–5.PubMedCrossRefGoogle Scholar
  202. 202.
    Rosenstreich S, Rich C, Volwiler W. Deposition in and release of vitamin D3 from body fat: evidence for a storage site in the rat. J Clin Invest. 1971;50:679–87.PubMedCrossRefGoogle Scholar
  203. 203.
    Vieth R. The mechanisms of vitamin D toxicity. Bone Miner. 1990;11(3):267–72.PubMedCrossRefGoogle Scholar
  204. 204.
    Shepard RM, DeLuca HF. Determination of vitamin D and its metabolites in plasma. Methods Enzymol. 1980;67:393–413.PubMedCrossRefGoogle Scholar
  205. 205.
    MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest. 1985;76(4):1536–8.PubMedCrossRefGoogle Scholar
  206. 206.
    Aksnes L, Rodland O, Aarskog D. Serum levels of vitamin D3 and 25-hydroxyvitamin D3 in elderly and young adults. Bone Miner. 1988;3:351–7.PubMedGoogle Scholar
  207. 207.
    Clemens TL, Adams JS, Henderson SL, et al. Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet. 1981;1(8263):74–6.Google Scholar
  208. 208.
    Matsuoka LY, Wortsman J, Haddad JG, et al. Skin types and epidermal photosynthesis of vitamin D3. J Am Acad Dermatol. 1990;23:525–6.PubMedCrossRefGoogle Scholar
  209. 209.
    Matsuoka LY, Wortsman J, Haddad JG, et al. Racial pigmentation and the cutaneous synthesis of vitamin D. Arch Dermatol. 1991;127:536–8.PubMedCrossRefGoogle Scholar
  210. 210.
    Liel Y, Ulmer E, Shary J, et al. Low circulating vitamin D in obesity. Calcif Tissue Int. 1988;43:199–201.PubMedCrossRefGoogle Scholar
  211. 211.
    Wortsman J, Matsuoka LY, Chen TC, et al. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72:690–3. (Erratum: Am J Clin Nutr 2003;77:1342).PubMedGoogle Scholar
  212. 212.
    Matsuoka LY, Ide L, Wortsman J, et al. Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab. 1987;64:1165–8.PubMedGoogle Scholar
  213. 213.
    Loré F, Di Cairano G, Periti P, et al. Effect of the administration of 1,25-dihydroxyvitamin D3 on serum levels of 25-hydroxyvitamin D in postmenopausal osteoporosis. Calcif Tissue Int. 1982;34:539–41.PubMedCrossRefGoogle Scholar
  214. 214.
    Baran DT, Milne ML. 1,25 Dihydroxyvitamin D-induced inhibition of 3H-25 hydroxyvitamin D production by the rachitic rat liver in vitro. Calcif Tissue Int. 1983;35(4–5):461–4.PubMedCrossRefGoogle Scholar
  215. 215.
    Bell NH, Shaw S, Turner RT. Evidence that 1,25-dihydroxyvitamin D3 inhibits the hepatic production of 25-hydroxyvitamin D in man. J Clin Invest. 1984;74:1540–4.PubMedCrossRefGoogle Scholar
  216. 216.
    Halloran BP, Bikle DD, Levens MJ, et al. Chronic 1,25-dihydroxyvitamin D3 administration in the rat reduces the serum concentration of 25-hydroxyvitamin D by increasing metabolic clearance rate. J Clin Invest. 1986;78:622–8.PubMedCrossRefGoogle Scholar
  217. 217.
    Berlin T, Björkhem I. On the regulatory importance of 1,25-dihydroxyvitamin D3 and dietary calcium on serum levels of 25-hydroxyvitamin D3 in rats. Biochem Biophys Res Commun. 1987;144(2):1055–8.PubMedCrossRefGoogle Scholar
  218. 218.
    Halloran BP, Castro ME. Vitamin D kinetics in vivo: effect of 1,25-dihydroxyvitamin D administration. Am J Physiol. 1989;256:E686–91.PubMedGoogle Scholar
  219. 219.
    Hahn TJ, Birge SJ, Scharp CR, et al. Phenobarbital-induced alterations in vitamin D metabolism. J Clin Invest. 1972;51(4):742–8.Google Scholar
  220. 220.
    Hahn TJ, Hendin BA, Scharp CR, et al. Effect of chronic anticonvulsant therapy on serum 25-hydroxycalciferol levels in adults. N Engl J Med. 1972;287(18):900–4.PubMedCrossRefGoogle Scholar
  221. 221.
    Hahn TJ, Hendin BA, Scharp CR. Serum 25-hydroxycalciferol levels and bone mass in children on chronic anticonvulsant therapy. N Engl J Med. 1975;292:550–4.CrossRefGoogle Scholar
  222. 222.
    Stamp TCB, Round JM, Rowe DJF, et al. Plasma levels and therapeutic effect of 25-hydroxycholecalciferol in epileptic patients taking anticonvulsant drugs. Br Med J. 1972;4:9–12.PubMedCrossRefGoogle Scholar
  223. 223.
    Bouillon R, Reynaert J, Claes JH. The effect of anticonvulsant therapy on serum levels of 25-hydroxy-vitamin D3 calcium, and parathyroid hormone. J Clin Endocrinol Metab. 1975;41:1130–5.PubMedGoogle Scholar
  224. 224.
    Jubitz W, Haussler MR, McCain TA. Plasma 1,25-dihydroxyvitamin D levels in patients receiving anticonvulsant drugs. J Clin Endocrinol Metab. 1977;44(4):617–21.Google Scholar
  225. 225.
    Gascon-Barré M, Delvin EE, Glorieux FH, et al. Influence of vitamin D3 status, phenobarbital, and diphenylhydantoin treatment on the plasma 25-hydroxyvitamin D3 concentrations in the rat. Can J Physiol Pharmacol. 1981;59(10):1073–81.PubMedGoogle Scholar
  226. 226.
    Sambrook P. Glucocorticoids and vitamin D. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 73. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 1239–51.Google Scholar
  227. 227.
    Preece MA, Tomlinson S, Ribot CA, et al. Studies of vitamin D deficiency in man. Q J Med. 1975;XLIV(176):575–89. New series.Google Scholar
  228. 228.
    Baker MR, Peacock M, Nordin BEC. The decline in vitamin D status with age. Age Ageing. 1980;9:249–52.PubMedCrossRefGoogle Scholar
  229. 229.
    Omdahl JL, Garry PJ, Hunsaker LA. Nutritional status in a healthy elderly population: vitamin D. Am J Clin Nutr. 1982;36:1225–33.PubMedGoogle Scholar
  230. 230.
    Need AG, Morris HA, Horowitz M, et al. Effects of skin thickness, age, body fat, and sunlight on serum 25-hydroxyvitamin D. Am J Clin Nutr. 1993;58:882–5.PubMedGoogle Scholar
  231. 231.
    Preece MA, Ford JA, McIntosh WB. Vitamin D deficiency among Asian immigrants to Britain. Lancet. 1973;1(7809):907–10.PubMedCrossRefGoogle Scholar
  232. 232.
    Bell NH, Greene A, Epstein S, et al. Evidence of alteration of the vitamin D-endocrine system in blacks. J Clin Invest. 1985;76:470–3.PubMedCrossRefGoogle Scholar
  233. 233.
    Pietrek J, Kokot F, Kuska J. Kinetics of serum 25-hydroxyvitamin D in patients with acute renal failure. Am J Clin Nutr. 1978;31:1919–26.PubMedGoogle Scholar
  234. 234.
    Hidiroglou M, Williams CJ, Ivan M. Pharmacokinetics and amounts of 25-hydroxycholecalciferol in sheep affected by osteodystrophy. J Dairy Sci. 1979;62:567–71.PubMedCrossRefGoogle Scholar
  235. 235.
    Khamiseh G, Vaziri ND, Oveisi F. Vitamin D absorption, plasma concentration and urinary excretion of 25-hydroxyvitamin D in nephritic syndrome. Proc Soc Exp Biol Med. 1991;196:210–3.PubMedGoogle Scholar
  236. 236.
    Fox J, Della-Santina CP. Oral verapamil and calcium and vitamin D metabolism in rats: effect of dietary calcium. Am J Physiol. 1989;257:E632–8.PubMedGoogle Scholar
  237. 237.
    Clements MR, Johnson L, Fraser DR. A new mechanism for induced vitamin D deficiency in calcium deprivation. Nature. 1987;325:62–5.PubMedCrossRefGoogle Scholar
  238. 238.
    Vieth R, Fraser D, Kooh SW. Low dietary calcium reduces 25-hydroxycholecalciferol in plasma of rats. J Nutr. 1987;117:914–8.PubMedGoogle Scholar
  239. 239.
    Dominguez JH, Gray RW, Lemann J Jr. Dietary phosphate deprivation in women and men: effects on mineral and acid balances, parathyroid hormone and the metabolism of 25-OH-vitamin D. J Clin Endocrinol Metab. 1976;45(5):1056–68.Google Scholar
  240. 240.
    Bell NH, Epstein S, Greene A. Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest. 1985;76:370–3.PubMedCrossRefGoogle Scholar
  241. 241.
    Compston JE, Vedi S, Ledger JE. Vitamin D status and bone histomorphometry in gross obesity. Am J Clin Nutr. 1981;34:2359–32363.PubMedGoogle Scholar
  242. 242.
    Hey H, Stokholm KH, Lund BJ. Vitamin D deficiency in obese patients and changes in circulating vitamin D metabolites following jejunoileal bypass. Int J Obes. 1982;6:469–73.Google Scholar
  243. 243.
    Kubota M, Ohno J, Shiina Y, et al. Vitamin D metabolism in pregnant rabbits: differences between the maternal and fetal response to administration of large amounts of vitamin D3. Endocrinology. 1982;110(6):1950–6.PubMedGoogle Scholar
  244. 244.
    Delvin EE, Gilbert M, Pere MC, et al. In vivo metabolism of calcitriol in the pregnant rabbit doe. J Dev Physiol. 1988;10:451–9.PubMedGoogle Scholar
  245. 245.
    Paulson SK, DeLuca HF, Battaglia F. Plasma levels of vitamin D metabolites in fetal and pregnant ewes. Proc Soc Exp Biol Med. 1987;185(3):267–71.PubMedGoogle Scholar
  246. 246.
    Paulson SK, Ford KK, Langman CB. Pregnancy does not alter the metabolic clearance of 1,25-dihydroxyvitamin D in rats. Am J Physiol. 1990;258:E158–62.PubMedGoogle Scholar
  247. 247.
    Omdahl JL, Jelinek G, Eaton RP. Kinetic analysis of 25-hydroxyvitamin D3 metabolism in strontium-induced rickets in the chick. J Clin Invest. 1977;60:1202–10.PubMedCrossRefGoogle Scholar
  248. 248.
    Gupta MM, Round JM, Stamp TCB. Spontaneous cure of vitamin-D deficiency in Asians during summer in Britain. Lancet. 1974;1(7858):586–8.PubMedCrossRefGoogle Scholar
  249. 249.
    Haddad JG, Stamp TCB. Circulating 25-hydroxyvitamin D in man. Am J Med. 1974;57:57–62.PubMedCrossRefGoogle Scholar
  250. 250.
    Stamp TCB, Round JM. Seasonal changes in human plasma levels of 25-hydroxyvitamin D. Nature. 1974;247:563–5.PubMedCrossRefGoogle Scholar
  251. 251.
    McLaughlin M, Raggatt PR, Brown DJ, et al. Seasonal variations in serum 25-hydroxycholecalciferol in healthy people. Lancet. 1974;1(7857):536–8.PubMedCrossRefGoogle Scholar
  252. 252.
    Pettifor JM, Ross FP, Solomon L. Seasonal variation in serum 25-hydroxycholecalciferol concentrations in elderly South African patients with fractures of femoral neck. Br Med J. 1978;1(6116):826–7.PubMedCrossRefGoogle Scholar
  253. 253.
    Hidiroglou M, Proulx JG, Roubos D. 25-Hydroxyvitamin D in plasma of cattle. J Dairy Sci. 1979;62:1076–80.PubMedCrossRefGoogle Scholar
  254. 254.
    Juttmann JR, Visser TJ, Buurman C, et al. Seasonal fluctuations in serum concentrations of vitamin D metabolites in normal subjects. Br Med J. 1981;282:1349–52.CrossRefGoogle Scholar
  255. 255.
    Chesney RW, Rosen JF, Hamstra AJ. Absence of seasonal variation in serum concentrations of 1,25-dihydroxyvitamin D despite a rise in 25-hydroxyvitamin-D in summer. J Clin Endocrinol Metab. 1981;53(1):139–42.PubMedGoogle Scholar
  256. 256.
    Smith BS, Wright H. Relative contributions of diet and sunshine to the overall vitamin D status of the grazing ewe. Vet Rec. 1984;115:537–8.PubMedGoogle Scholar
  257. 257.
    Van der Klis FRM, Jonxis JHP, van Doormaal JJ, et al. Changes in vitamin-D metabolites and parathyroid hormone in plasma following cholecalciferol administration to pre- and postmenopausal women in the Netherlands in early spring and to postmenopausal women in Curaçao. Br J Nutr. 1996;75:637–46.CrossRefGoogle Scholar
  258. 258.
    O’Leary TJ, Jones G, Yip A, et al. The effects of chloroquine on serum 1,25-dihydroxyvitamin D and calcium metabolism in sarcoidosis. N Engl J Med. 1986;315(12):727–30.PubMedCrossRefGoogle Scholar
  259. 259.
    Barré PE, Gascon-Barré M, Meakins JL, et al. Hydroxychloroquine treatment of hypercalcemia in a patient with sarcoidosis undergoing hemodialysis. Am J Med. 1987;82(6):1259–62.PubMedCrossRefGoogle Scholar
  260. 260.
    Adams JS, Diz MM, Sharma OP. Effective reduction in the serum 1,25-dihydroxyvitamin D and calcium concentration in sarcoidosis-associated hypercalcemia with short-course chloroquine therapy. Ann Intern Med. 1989;111(5):437–8.PubMedGoogle Scholar
  261. 261.
    Henry HL. The 25-hydroxyvitamin D 1α-hydroxylase. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D, vol. 5. 2nd ed. San Diego, CA: Elsevier Academic Press; 2005. p. 69–83.Google Scholar
  262. 262.
    Baksi SN, Kenny AD. Vitamin D metabolism in Japanese quail: gonadal hormones and dietary calcium effects. Am J Physiol. 1981;241(4):E275–80.PubMedGoogle Scholar
  263. 263.
    Tanaka Y, Castillo L, DeLuca HF. Control of renal vitamin D hydroxylases in birds by sex hormones. Proc Natl Acad Sci USA. 1976;73(8):2701–5.PubMedCrossRefGoogle Scholar
  264. 264.
    Haussler MR, Hughes MR, McCain TA, et al. 1,25-Dihydroxyvitamin D3: mode of action in intestine and parathyroid glands, assay in humans and isolation of its glycoside from Solanum malacoxylon. Calcif Tissue Res. 1977;22((Suppl)):1–18.PubMedGoogle Scholar
  265. 265.
    Pike JW, Toverud S, Boass A, et al. Circulating 1α,25-(OH)2D during physiological states of calcium stress. In: Norman A, Schaefer K, Coburn J, DeLuca H, Fraser D, Grigoleit HG, Herrath DV, editors. Vitamin D: biochemical, chemical, and clinical aspects related to calcium metabolism (Proceedings of the Third workshop on vitamin D). New York: De Gruyter; 1977. p. 187–9.Google Scholar
  266. 266.
    Gallagher JC, Riggs BL, Eisman J, et al. Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients—effect of age and dietary calcium. J Clin Invest. 1979;64(3):729–36.PubMedCrossRefGoogle Scholar
  267. 267.
    Chesney RW, Rosen JF, Hamstra AJ, et al. Serum 1,25-dihydroxyvitamin D levels in normal children and in vitamin D disorders. Am J Dis Child. 1980;134(2):135–9.PubMedGoogle Scholar
  268. 268.
    Lund B, Clausen N, Lund B, et al. Age-dependent variations in serum 1,25-dihydroxyvitamin D in childhood. Acta Endocrinol. 1980;94:426–9.PubMedGoogle Scholar
  269. 269.
    Seino Y, Shimotsuji T, Yamaoka K, et al. Plasma 1,25-dihydroxyvitamin D concentrations in cords, newborns, infants, and children. Calcif Tissue Int. 1980;30:1–3.PubMedCrossRefGoogle Scholar
  270. 270.
    Gray RW. Effects of age and sex on the regulation of plasma 1,25-(OH)2D by phosphorus in the rat. Calcif Tissue Int. 1981;33(5):477–84.PubMedCrossRefGoogle Scholar
  271. 271.
    Gray RW, Gambert SR. Effect of age on plasma 1,25-(OH)2 vitamin D in the rat. Age. 1982;5(2):54–6.CrossRefGoogle Scholar
  272. 272.
    Manolagas SC, Culler FL, Howard JE, et al. The cytoreceptor assay for 1,25-dihydroxyvitamin D and its application to clinical studies. J Clin Endocrinol Metab. 1983;56:751–60.PubMedGoogle Scholar
  273. 273.
    Armbrecht HJ, Forte LR, Halloran BP. Effect of age and dietary calcium on renal 25(OH)D metabolism, serum 1,25(OH)2D, and PTH. Am J Physiol. 1984;246:E266–70.PubMedGoogle Scholar
  274. 274.
    Epstein S, Bryce G, Hinman JW, et al. The influence of age on bone mineral regulating hormones. Bone. 1986;7:421–5.PubMedCrossRefGoogle Scholar
  275. 275.
    Buchanan JR, Myers CA, Greer RBIII. Effect of declining renal function on bone density in aging women. Calcif Tissue Int. 1988;43:1–6.PubMedCrossRefGoogle Scholar
  276. 276.
    Fox J. Production and metabolic clearance rates of 1,25-dihydroxyvitamin D3 during maturation in rats: studies using a rapid, primed-infusion technique. Horm Metab Res. 1990;22:278–82.PubMedCrossRefGoogle Scholar
  277. 277.
    Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab. 1986;63(3):766–9.PubMedGoogle Scholar
  278. 278.
    Glass AR, Eil C. Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D and total serum calcium in hypercalcemic patients. J Clin Endocrinol Metab. 1988;66(5):934–8.PubMedGoogle Scholar
  279. 279.
    Saggese G, Bertelloni S, Baroncelli GI, et al. Ketoconazole decreases the serum ionized calcium and 1,25-dihydroxyvitamin D3 levels in tuberculosis-associated hypercalcemia. Am J Dis Child. 1993;147(3):270–3.PubMedGoogle Scholar
  280. 280.
    Boyle IT, Gray RW, DeLuca HF. Regulation by calcium of in vivo synthesis of 1,25-dihydroxycholecalciferol and 21,25-dihydroxycholecalciferol. Proc Natl Acad Sci USA. 1971;68(9):2131–4.PubMedCrossRefGoogle Scholar
  281. 281.
    Morrissey RL, Wasserman RH. Calcium absorption and calcium-binding protein in chicks on differing calcium and phosphorus intakes. Am J Physiol. 1971;220(5):1509–15.PubMedGoogle Scholar
  282. 282.
    Haussler MR, Baylink DJ, Hughes MR. The assay of 1α,25-dihydroxyvitamin D3: physiologic and pathologic modulation of circulating hormone levels. Clin Endocrinol. 1976;5:151s–65s.CrossRefGoogle Scholar
  283. 283.
    Hughes MR, Baylink DJ, Jones PG, et al. Radioligand receptor assay for 25-hydroxyvitamin D2/D3 and 1α, 25-dihydroxyvitamin D2/D3. J Clin Invest. 1976;58:61–70.PubMedCrossRefGoogle Scholar
  284. 284.
    Taylor CM, Caverzasio J, Jung A. Unilateral nephrectomy and 1,25-dihydroxyvitamin D3. Kidney Int. 1983;24:37–42.PubMedCrossRefGoogle Scholar
  285. 285.
    Fox J, Ross R. Effects of low phosphorus and low calcium diets on the production and metabolic clearance rates of 1,25-dihydroxycholecalciferol in pigs. J Endocrinol. 1985;105:169–73.PubMedCrossRefGoogle Scholar
  286. 286.
    Paulson SK, Kenny AD. Effect of dietary mineral and vitamin D content and parathyroidectomy on the plasma disappearance rate of 1,25-dihydroxyvitamin D3 in rats. Biopharm Drug Dispos. 1985;6:359–72.PubMedCrossRefGoogle Scholar
  287. 287.
    Jongen MJ, Bishop JE, Cade C, et al. Effect of dietary calcium, phosphate and vitamin D deprivation on the pharmacokinetics of 1,25-dihydroxyvitamin D3 in the rat. Horm Metab Res. 1987;19:481–5.PubMedCrossRefGoogle Scholar
  288. 288.
    Baxter LA, DeLuca HF. Stimulation of 25-hydroxyvitamin D3-1α-hydroxylase by phosphate depletion. J Biol Chem. 1976;251(10):3158–61.PubMedGoogle Scholar
  289. 289.
    Gray RW, Wilz DR, Caldas AE, et al. The importance of phosphate in regulating plasma 1,25-(OH)2-vitamin D levels in humans: studies in healthy subjects, in calcium-stone formers and in patients with primary hyperparathyroidism. J Clin Endocrinol Metab. 1977;45:299–306.PubMedGoogle Scholar
  290. 290.
    Gray RW, Garthwaite TL, Phillips LS. Growth hormone and triiodothyronine permit an increase in plasma 1,25(OH)2D concentrations in response to dietary phosphate deprivation in hypophysectomized rats. Calcif Tissue Int. 1983;35:100–6.PubMedCrossRefGoogle Scholar
  291. 291.
    Llach F, Massry SG. On the mechanism of secondary hyperparathyroidism in moderate renal insufficiency. J Clin Endocrinol Metab. 1985;61:601–6.PubMedGoogle Scholar
  292. 292.
    Rader JI, Baylink DJ, Hughes MR, et al. Calcium and phosphorus deficiency in rats: effects on PTH and 1,25-dihydroxyvitamin D3. Am J Physiol. 1979;236(2):E118–22.PubMedGoogle Scholar
  293. 293.
    Insogna KL, Broadus AE, Gertner JM. Impaired phosphorus conservation and 1,25 dihydroxyvitamin D generation during phosphorus deprivation in familial hypophosphatemic rickets. J Clin Invest. 1983;71:1561–9.CrossRefGoogle Scholar
  294. 294.
    Lufkin EG, Kumar R, Heath HIII. Hyperphosphatemic tumoral calcinosis: effects of phosphate depletion on vitamin D metabolism, and of acute hypocalcemia on parathyroid hormone secretion and action. J Clin Endocrinol Metab. 1983;56(6):1319–22.PubMedGoogle Scholar
  295. 295.
    Maierhofer WJ, Gray RW, Lemann J Jr. Phosphate deprivation increases serum 1,25-(OH)2-vitamin D concentrations in healthy men. Kidney Int. 1984;25:571–5.PubMedCrossRefGoogle Scholar
  296. 296.
    Portale AA, Booth BE, Halloran BP, et al. Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J Clin Invest. 1984;73:1580–9.PubMedCrossRefGoogle Scholar
  297. 297.
    Portale AA, Halloran BP, Murphy MM, et al. Oral intake of phosphorus can determine the serum concentration of 1,25-dihydroxyvitamin D by determining its production rate in humans. J Clin Invest. 1986;77:7–12.PubMedCrossRefGoogle Scholar
  298. 298.
    Halloran BP, Barthell EN, DeLuca HF. Vitamin D metabolism during pregnancy and lactation in the rat. Proc Natl Acad Sci USA. 1979;76(11):5549–53.PubMedCrossRefGoogle Scholar
  299. 299.
    Kumar R, Cohen WR, Silva P, et al. Elevated 1,25-dihydroxyvitamin D plasma levels in normal human pregnancy and lactation. J Clin Invest. 1979;63:342–4.PubMedCrossRefGoogle Scholar
  300. 300.
    Steichen JJ, Tsang RC, Gratton TL, et al. Vitamin D homeostasis in the perinatal period: 1,25-dihydroxyvitamin D in maternal, cord, and neonatal blood. N Engl J Med. 1980;302(6):315–9.PubMedCrossRefGoogle Scholar
  301. 301.
    Wieland P, Fischer JA, Trechsel U, et al. Perinatal parathyroid hormone, vitamin D metabolites, and calcitonin in man. Am J Physiol. 1980;239(5):E385–90.PubMedGoogle Scholar
  302. 302.
    Mawer EB, Backhouse J, Hill LF, et al. Vitamin D metabolism and parathyroid function in man. Clin Sci Mol Med. 1975;48:349–65.PubMedGoogle Scholar
  303. 303.
    Kaplan RA, Haussler MR, Deftos LJ, et al. The role of 1α, 25-dihydroxyvitamin D in the mediation of intestinal hyperabsorption of calcium in primary hyperparathyroidism and absorptive hypercalciuria. J Clin Invest. 1977;59:756–60.PubMedCrossRefGoogle Scholar
  304. 304.
    Lambert PW, Hollis BW, Bell NH, et al. Demonstration of a lack of change in serum 1α, 25-dihydroxyvitamin D in response to parathyroid extract in pseudohypoparathyroidism. J Clin Invest. 1980;66:782–91.PubMedCrossRefGoogle Scholar
  305. 305.
    Piel CF, Doorf BS, Avioli LV. Metabolism of tritiated 25-hydroxycholecalciferol in chronically uremic children before and after successful renal homotransplantation. J Clin Endocrinol Metab. 1973;37:944–8.PubMedGoogle Scholar
  306. 306.
    Eisman JA, Hamstra AJ, Kream BE, et al. A sensitive, precise, and convenient method for determination of 1,25-dihydroxyvitamin D in human plasma. Arch Biochem Biophys. 1976;176(1):235–43.PubMedCrossRefGoogle Scholar
  307. 307.
    Christiansen C, Christensen MS, Melsen F, et al. Mineral metabolism in chronic renal failure with specific reference to serum concentration of 1,25(OH)2D and 24,25(OH)2D. Clin Nephrol. 1981;15(1):18–22.PubMedGoogle Scholar
  308. 308.
    Juttmann JR, Buurman CJ, De Kam E, et al. Serum concentrations of metabolites of vitamin D in patients with chronic renal failure (CRF). Consequences for the treatment with 1α-hydroxy derivatives. Clin Endocrinol (Oxf). 1981;14(3):225–36.CrossRefGoogle Scholar
  309. 309.
    Papapoulos SE, Clemens TL, Sandler LM, et al. The effect of renal function on changes in circulating concentrations of 1,25-dihydroxycholcalciferol after an oral dose. Clin Sci. 1982;62:427–9.PubMedGoogle Scholar
  310. 310.
    Pitts TO, Piraino BH, Mitro R. Hyperparathyroidism and 1,25-dihydroxyvitamin D deficiency in mild, moderate, and severe renal failure. J Clin Endocrinol Metab. 1988;67:876–81.PubMedGoogle Scholar
  311. 311.
    Dusso A, Lopez-Hilker S, Lewis-Finch J, et al. Metabolic clearance rate and production rate of calcitriol in uremia. Kidney Int. 1989;35:860–4.PubMedCrossRefGoogle Scholar
  312. 312.
    Patel S, Simpson RU, Hsu CH. Effect of vitamin D metabolites on calcitriol metabolism in experimental renal failure. Kidney Int. 1989;36:234–9.PubMedCrossRefGoogle Scholar
  313. 313.
    Portale AA, Booth BE, Tsai HC, et al. Reduced plasma concentration of 1,25-dihydroxyvitamin D in children with moderate renal insufficiency. Kidney Int. 1982;21:627–43.PubMedCrossRefGoogle Scholar
  314. 314.
    Wilson L, Felsenfeld A, Drezner MK, et al. Altered divalent ion metabolism n early renal failure: role of 1,25(OH)2D. Kidney Int. 1985;27:565–73.PubMedCrossRefGoogle Scholar
  315. 315.
    St. John A, Thomas MB, Davies CP, et al. Determinants of intact parathyroid hormone and free 1,25-dihydroxyvitamin D levels in mild and moderate renal failure. Nephron. 1992;61:422–7.PubMedCrossRefGoogle Scholar
  316. 316.
    Salusky IB, Goodman WG, Horst R, et al. Pharmacokinetics of calcitriol in continuous ambulatory and cycling peritoneal dialysis patients. Am J Kidney Dis. 1990;XVI(2):126–32.Google Scholar
  317. 317.
    Fox J. Verapamil induces PTH resistance but increases duodenal calcium absorption in rats. Am J Physiol. 1988;255:E702–7.PubMedGoogle Scholar
  318. 318.
    Avioli LV, Lee SW, McDonald JE, et al. Metabolism of vitamin D3 3H in human subjects—distribution in blood, bile, feces, and urine. J Clin Invest. 1967;46(6):983–92.PubMedGoogle Scholar
  319. 319.
    Gray RW, Weber HP, Dominguez JH, et al. The metabolism of vitamin D3 and 25-hydroxyvitamin D3 in normal and anephric humans. J Clin Endocrinol Metab. 1974;39:1045–56.PubMedGoogle Scholar
  320. 320.
    Arnaud SB, Goldsmith RS, Lambert PW, et al. 25-Hydroxyvitamin D3: evidence of an enterohepatic circulation in man. Proc Soc Exp Biol Med. 1975;149:570–2.PubMedGoogle Scholar
  321. 321.
    Norman AW, DeLuca HF. The preparation of 3H-vitamin D2 and D3—their localization in the rat. Biochemistry. 1963;2:1160–8.PubMedCrossRefGoogle Scholar
  322. 322.
    Haddad JG Jr, Boisseau V, Avioli LV. Placental transfer of vitamin D3 and 25-hydroxycholecalciferol in the rat. J Lab Clin Med. 1971;77(6):908–15.PubMedGoogle Scholar
  323. 323.
    Rojanasathit S, Haddad JG. Hepatic accumulation of vitamin D3 and 25-hydroxyvitamin D3. Biochim Biophys Acta. 1976;421:12–21.PubMedGoogle Scholar
  324. 324.
    Weisman Y, Vargas A, Duckett G, et al. Synthesis of 1,25-dihydroxyvitamin D in the nephrectomized pregnant rat. Endocrinology. 1978;103(6):1992–6.PubMedGoogle Scholar
  325. 325.
    Weisman Y, Sapir R, Harell A, et al. Maternal-perinatal interrelationships of vitamin D metabolism in rats. Biochim Biophys Acta. 1976;428:388–95.PubMedGoogle Scholar
  326. 326.
    Dueland S, Pedersen JI, Helgerud P, et al. Absorption, distribution, and transport of vitamin D3 and 25-hydroxyvitamin D3 in the rat. Am J Physiol. 1983;245:E463–7.PubMedGoogle Scholar
  327. 327.
    Noff D, Edelstein S. Vitamin D and its hydroxylated metabolites in the rat. Placental and lacteal transport, subsequent metabolic pathways and tissue distribution. Horm Res. 1978;9:292–300.PubMedCrossRefGoogle Scholar
  328. 328.
    Larsson S-E, Lorentzon R. Excretion of active metabolites of vitamin D in urine and bile of the adult rat. Clin Sci Mol Med. 1977;53:373–7.PubMedGoogle Scholar
  329. 329.
    Stumpf WE, O’Brien LP. Autoradiographic studies with 3H 1,25 dihydroxyvitamin D3 in thyroid and associated tissues of the neck region. Histochemistry. 1987;87(1):53–8.PubMedCrossRefGoogle Scholar
  330. 330.
    Stumpf WE, Hayakawa N. Salivary glands epithelial and myoepithelial cells are major vitamin D targets. Eur J Drug Metab Pharmacokinet. 2007;32(3):123–9.PubMedGoogle Scholar
  331. 331.
    Stumpf WE, Sar M, O’Brien LP. Vitamin D sites of action in the pituitary studied by combined autoradiography-immunohistochemistry. Histochemistry. 1987;88(1):11–6.PubMedCrossRefGoogle Scholar
  332. 332.
    Frolik CA, DeLuca HF. Stimulation of 1,25-dihydroxycholecalciferol metabolism in vitamin D-deficient rats by 1,25-dihydroxycholecalciferol treatment. J Cin Invest. 1973;52(3):543–8.CrossRefGoogle Scholar
  333. 333.
    Stumpf WE, Sar M, Reid FA, et al. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach kidney, skin, pituitary, and parathyroid. Science. 1979;206:1188–90.PubMedCrossRefGoogle Scholar
  334. 334.
    Stumpf WE, Sar M, Narbaitz R, et al. Cellular and subcellular localization of 1,25-(OH)2 vitamin D3 in rat kidney—comparison with localization of parathyroid-hormone and estradiol. Proc Natl Acad Sci USA. 1980;77(2):1149–53.PubMedCrossRefGoogle Scholar
  335. 335.
    Stumpf WE, Sar M, Reid FA, et al. Autoradiographic studies with 3H 1,25-(OH)2 vitamin D3 and 3H 25-OH-vitamin D3 in rat parathyroid glands. Cell Tissue Res. 1981;221(2):333–8.PubMedCrossRefGoogle Scholar
  336. 336.
    Stumpf WE, Sar M, Clark SA, et al. Brain target sites for 1,25-dihydroxyvitamin D3. Science. 1982;215(4538):1403–5.PubMedCrossRefGoogle Scholar
  337. 337.
    Stumpf WE, Narbaitz R, Huang S, et al. Autoradiographic localization of 1,25-dihydroxyvitamin D3 in rat placenta and yolk sac. Horm Res. 1983;18:215–20.PubMedCrossRefGoogle Scholar
  338. 338.
    Sar M, Stumpf WE, DeLuca HF. Thyrotropes in the pituitary are target cells for 1,25 dihydroxy vitamin D3. Cell Tissue Res. 1980;209:161–6.PubMedCrossRefGoogle Scholar
  339. 339.
    Simpson RU, DeLuca HF. Characterization of a receptor-like protein for 1,25-dihydroxyvitamin D3 in rat skin. Proc Natl Acad Sci USA. 1980;77(10):5822–6.PubMedCrossRefGoogle Scholar
  340. 340.
    Clark SA, Stumpf WE, Sar M. Target cells for 1,25-dihydroxyvitamin D3 in the pancreas. Cell Tissue Res. 1980;209(3):515–20.PubMedCrossRefGoogle Scholar
  341. 341.
    Clark SA, Dame MC, Kim YS, et al. 1,25-Dihydroxyvitamin D3 in teeth of rats and humans: receptors and nuclear localization. Anat Rec. 1985;212(3):250–4.PubMedCrossRefGoogle Scholar
  342. 342.
    Narbaitz R, Stumpf W, Sar M. The role of autoradiographic and immunocytochemical techniques in the clarification of sites of metabolism and action of vitamin D. J Histochem Cytochem. 1981;29(1):91–100.PubMedGoogle Scholar
  343. 343.
    Rhoten WB, Christakos S. Immunocytochemical localization of vitamin D-dependent calcium binding protein in mammalian nephron. Endocrinology. 1981;109(3):981–3.PubMedGoogle Scholar
  344. 344.
    Gascon-Barré M, Huet PM. Role of the liver in the homeostasis of calciferol metabolism in the dog. Endocrinology. 1982;110(2):563–70.PubMedGoogle Scholar
  345. 345.
    Merke J, Kreusser W, Bier B. Demonstration and characterization of a testicular receptor for 1,25-dihydroxycholecalciferol in the rat. Eur J Biochem. 1983;130(2):303–8.PubMedCrossRefGoogle Scholar
  346. 346.
    Levy FO, Eikvar L, Jutte NHPM. Appearance of the rat testicular receptor for calcitriol (1,25-dihydroxyvitamin D3) during development. J Steroid Biochem. 1985;23(1):51–6.PubMedCrossRefGoogle Scholar
  347. 347.
    Stumpf WE, O’Brien LP. 1,25 (OH)2 vitamin D3 sites of action in the brain. An autoradiographic study. Histochemistry. 1987;87(5):393–406.PubMedCrossRefGoogle Scholar
  348. 348.
    Narbaitz R, Stumpf WE, Sar M, et al. Autoradiographic localization of target cells for 1,25-dihydroxyvitamin D3 in bones from fetal rats. Calcif Tissue Int. 1983;35(2):177–82.PubMedCrossRefGoogle Scholar
  349. 349.
    Mawer EB, Lumb GA, Stanbury SW. Long biological half-life of vitamin D3 and its polar metabolites in human serum. Nature. 1969;222:482483.CrossRefGoogle Scholar
  350. 350.
    Smith JE, Goodman D. The turnover and transport of vitamin D and of a polar metabolite with the properties of 25-hydroxycholecalciferol in human plasma. J Clin Invest. 1971;50:2159–67.PubMedCrossRefGoogle Scholar
  351. 351.
    Ponchon G, DeLuca HF. Ethanol-induced artifacts in the metabolism of 3H-vitamin D3. Proc Soc Exp Biol Med. 1969;131:727–31.PubMedGoogle Scholar
  352. 352.
    Brouwer DA, van Beek J, Ferwerda H, et al. Rat adipose tissue rapidly accumulates and slowly releases an orally-administered high vitamin D dose. Br J Nutr. 1998;79(6):527–32.PubMedCrossRefGoogle Scholar
  353. 353.
    Bec P, Bayard F, Louvet JP. 25-Hydroxycholecalciferol dynamics in human plasma. Rev Eur Etud Clin Biol. 1972;XVII:793–6.Google Scholar
  354. 354.
    Batchelor AJ, Compston JE. Reduced plasma half-life of radio-labeled 25-hydroxyvitamin D3 in subjects receiving a high-fibre diet. Br J Nutr. 1983;49:213–6.PubMedCrossRefGoogle Scholar
  355. 355.
    Davie MW, Lawson DEM, Emberson C. Vitamin D from skin: contribution to vitamin D status compared with oral vitamin D in normal and anticonvulsant-treated subjects. Clin Sci. 1982;63:461–72.PubMedGoogle Scholar
  356. 356.
    Clements MR, Davies M, Hayes ME. The role of 1,25-dihydroxyvitamin D in the mechanism of acquired vitamin D deficiency. Clin Endocrinol. 1991;37(1):17–27.CrossRefGoogle Scholar
  357. 357.
    Vicchio D, Yergey A, O’Brien K. Quantification and kinetics of 25-hydroxyvitamin D3 by isotope dilution liquid chromatography/thermospray mass spectrometry. Biol Mass Spectrom. 1993;22:53–8.PubMedCrossRefGoogle Scholar
  358. 358.
    Haddad JG Jr, Rojanasathit S. Acute administration of 25-hydroxycholecalciferol in man. J Clin Endocrinol Metab. 1976;42:284–90.PubMedCrossRefGoogle Scholar
  359. 359.
    Salusky IB, Goodman WG, Horst R. Pharmacokinetics of calcitriol in continuous ambulatory and cycling peritoneal dialysis patients. Am J Kidney Dis. 1990;XVI(2):126–32.Google Scholar
  360. 360.
    Vieth R, Kooh SW, Balfe JW. Tracer kinetics and actions of oral and intraperitoneal 1,25-dihydroxyvitamin D3 administration in rats. Kidney Int. 1990;38:857–61.PubMedCrossRefGoogle Scholar
  361. 361.
    Mawer EB, Backhouse J, Davies M, et al. Metabolic fate of administered 1,25-dihydroxycholecalciferol in controls and in patients with hypoparathyroidism. Lancet. 1971;1(7971):1203–6.Google Scholar
  362. 362.
    Salusky I, Goodman WG, Horst R, et al. Plasma kinetics of intravenous calcitriol in normal and dialysed subjects and acute effect on serum PTH levels. In: Norman A, Schaefer K, Grigoleti HG, Herrath DV, et al., editors. Vitamin D: molecular, cellular, and clinical endocrinology (proceedings of the seventh workshop on vitamin D). New York: De Gruyter; 1988. p. 781–2.Google Scholar
  363. 363.
    Levine BS, Song M. Pharmacokinetics and efficacy of pulse oral versus intravenous calcitriol in hemodialysis patients. J Am Soc Nephrol. 1996;7:488–96.PubMedGoogle Scholar
  364. 364.
    Torregrosa JV, Campistol JM, Más M, et al. Usefulness and pharmacokinetics of subcutaneous calcitriol in the treatment of secondary hyperparathyroidism. Nephrol Dial Transplant. 1996;11(3):54–7.PubMedGoogle Scholar
  365. 365.
    Bianchi ML, Ardissino GL, Schmitt CP, et al. No difference in intestinal strontium absorption after an oral or an intravenous 1,25(OH)2D3 bolus in normal subjects. J Bone Miner Res. 1999;14:1789–95.PubMedCrossRefGoogle Scholar
  366. 366.
    Brandi L, Egfjord M, Olgaard K. Pharmacokinetics of 1,25(OH)2D3 and 1α(OH)D3 in normal and uraemic men. Nephrol Dial Transplant. 2002;17(5):829–42.PubMedCrossRefGoogle Scholar
  367. 367.
    Fakih MG, Trump D, Muindi JR. A phase I pharmacokinetic and pharmacodynamic study of intravenous calcitriol in combination with oral Gefitinib in patients with advanced solid tumors. Clin Cancer Res. 2007;13(4):1216–23.PubMedCrossRefGoogle Scholar
  368. 368.
    Frolik CA, DeLuca HF. Metabolism of 1,25-dihydroxycholecalciferol in the rat. J Clin Invest. 1972;51(11):2900–6.PubMedCrossRefGoogle Scholar
  369. 369.
    Mason RS, Lissner D, Posen S. Blood concentrations of dihydroxylated vitamin D metabolites after an oral dose. Br Med J. 1980;280:449–50.PubMedCrossRefGoogle Scholar
  370. 370.
    Ohno J, Kubota M, Hirasawa Y, et al. Clinical evaluation of 1α-hydroxycholecalciferol and 1α,25-dihydroxycholecalciferol in the treatment of renal osteodystrophy. In: Norman A, Schaefer K, Herrath DV, Grigoleit HG, editors. Vitamin D, chemical, biochemical and clinical endocrinology of calcium metabolism. New York: W. DeGruyter; 1982. p. 847–52.Google Scholar
  371. 371.
    Levine BS, Singer FR, Bryce GF, et al. Pharmacokinetics and biologic effects of calcitriol in normal humans. J Lab Clin Med. 1985;105:239–46.PubMedGoogle Scholar
  372. 372.
    Seino Y, Tanaka H, Yamaoka K, et al. Circulating 1α, 25-dihydroxyvitamin D levels after a single dose of 1α, 25-dihydroxyvitamin D3 or 1α-hydroxyvitamin D3 in normal men. Bone Miner. 1987;2:469–85.Google Scholar
  373. 373.
    Kimura Y, Nakayama M, Kuriyama S, et al. Pharmacokinetics of active vitamin D3, 1α-hydroxyvitamin D3 and 1α, 25-dihydroxyvitamin D3 in patients on chronic hemodialysis. Clin Nephrol. 1991;35(2):72–7.PubMedGoogle Scholar
  374. 374.
    Dechant KL, Goa KL. Calcitriol. A review of its use in the treatment of postmenopausal osteoporosis and its potential in corticosteroid-induced osteoporosis. Drugs Aging. 1994;5(4):300–12.PubMedCrossRefGoogle Scholar
  375. 375.
    Beer TM, Munar M, Henner WD. A phase I trial of pulse calcitriol in patients with refractory malignancies. Pulse dosing permits substantial dose escalation. Cancer. 2001;91(12):2431–9.PubMedCrossRefGoogle Scholar
  376. 376.
    Muindi JR, Peng Y, Potter DM, et al. Pharmacokinetics of high-dose oral calcitriol: results from a phase 1 trial of calcitriol and paclitaxel. Clin Pharmacol Ther. 2002;72:648–59.PubMedCrossRefGoogle Scholar
  377. 377.
    Selgas R, Martinez M-E, Miranda B, et al. The pharmacokinetics of a single dose of calcitriol administered subcutaneously in continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 1993;13:122–5.PubMedGoogle Scholar
  378. 378.
    Smith DC, Johnson CS, Freeman CC, et al. A phase I trial of calcitriol (1,25-dihydroxycholecalciferol) in patients with advanced malignancy. Clin Cancer Res. 1999;5:1339–45.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations