Skip to main content
Log in

2MD, a new anabolic agent for osteoporosis treatment

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Introduction

2-Methylene-19-nor-(20S)-1α,25-dihydroxyvitamin D3 (2MD) is a new analog of 1α,25-dihydroxyvitamin D3 (1,25-(OH)2D3) that has unique properties (distinct from 1α,25-dihydroxyvitamin D3) in stimulating osteoblasts to form bone in culture. This analog has now been extensively tested in aged ovariectomized female rats maintained on a diet adequate in calcium and phosphorus.

Methods

Retired female rats obtained from Sprague–Dawley were ovariectomized, and were either dosed with vehicle or 2MD at 5–7 ng/kg body weight each day.

Results

A marked increase in total bone mass resulted during the 28-week study. This increase in bone mass resulted from an increase in both cortical and trabecular bone, with increases to the order of 25% in the cancellous bone. Histomorphometry revealed that 2MD increased bone mass primarily by increasing bone formation. It also revealed little or no effect on bone resorption. The resulting bone is of high quality revealed by histology and biomechanical testing.

Conclusion

Throughout the study, serum calcium remained within the normal range and thus 2MD shows great promise for the treatment of bone diseases characterized by bone loss, including osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. US Department of Health and Human Services (2004) Bone health and osteoporosis: a report of the surgeon general. Rockville, MD

  2. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster J-Y, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitla BH (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441

    Article  PubMed  CAS  Google Scholar 

  3. Deal C, Gideon J (2003) Recombinant human PTH 1–34 (Forteo): an anabolic drug for osteoporosis. Cleveland Clin J Med 70:585–601

    Article  Google Scholar 

  4. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, Dannata J, Falogh A, Lemmel E-M, Pors-Nielsen S, Rizzoli R, Genant HK, Reginster J-Y (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468

    Article  PubMed  CAS  Google Scholar 

  5. Sicinski RR, Prahl JM, Smith CM, DeLuca HF (1998) New 1α,25-dihydroxy-19-norvitamin D3 compounds of high biological activity: synthesis and biological evaluation of 2-hydroxymethyl, 2-methyl, and 2-methylene analogues. J Med Chem 41:4662–4674

    Article  PubMed  CAS  Google Scholar 

  6. Shevde NK, Plum LA, Clagett-Dame M, Yamamoto H, Pike JW, DeLuca HF (2002) A potent analog of 1α,25-dihydroxyvitamin D3 selectively induces bone formation. Proc Natl Acad Sci USA 99:13487–13491

    Article  PubMed  CAS  Google Scholar 

  7. Yasuda H, Shima N, Nakagawa N, Yamagushi K, Kinosaki M, Mochizuka S-I, Tomoyasu A, Yano K, Gotto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  PubMed  CAS  Google Scholar 

  8. Suda T, DeLuca HF, Tanaka Y (1970) Biological activity of 25-hydroxyergocalciferol in rats. J Nutr 100:1049–1052

    PubMed  CAS  Google Scholar 

  9. Haffa A, Krueger D, Bruner J, Engelke J, Gundberg C, Akhter M, Binkley N (2000) Diet- or warfarin-induced vitamin K insufficiency elevates circulating undercarboxylated osteocalcin without altering skeletal status in growing female rats. J Bone Miner Res 15:872–878

    Article  PubMed  CAS  Google Scholar 

  10. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier P, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. J Bone Miner Res 2:595–610

    Article  PubMed  CAS  Google Scholar 

  11. Westerlind KC, Gibson KJ, Malone P, Evans GL, Turner RT (1998) Differential effects of estrogen metabolites on bone and reproductive tissues of ovariectomized rats. J Bone Miner Res 13:1023–1031

    Article  PubMed  CAS  Google Scholar 

  12. Simone WS, Lacey DL, Dunstan CR, Kelley M, Chang M-S, Lüthy R, Nguyen HQ, Wooden S, Bennett L et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  PubMed  Google Scholar 

  13. Sibonga JD, Zhang M, Ritman EL, Turner RT (2000) Restoration of bone mass in the severely osteopenic senescent rat. J Gerontol Biol Sci 55A:B71–B78

    CAS  Google Scholar 

  14. Markose ER, Stein JL, Stein GS, Lian JB (1990) Vitamin D-mediated modifications in protein-DNA interactions at two promoter elements of the osteocalcin gene. Proc Natl Acad Sci USA 87:1701–1705

    Article  PubMed  CAS  Google Scholar 

  15. Okazaki T, Zajac JD, Igarashi T, Ogata E, Kronenberg HM (1991) Negative regulatory elements in the human parathyroid hormone gene. J Biol Chem 266:21903–21910

    PubMed  CAS  Google Scholar 

  16. Fraser DR, Kodicek E (1970) Unique biosynthesis by kidney of a biologically active vitamin D metabolite. Nature 228:764–766

    Article  PubMed  CAS  Google Scholar 

  17. Holick MF, Schnoes HK, DeLuca HF, Suda T, Cousins RJ (1971) Isolation and identification of 1,25-dihydroxycholecalciferol. A metabolite of vitamin D active in intestine. Biochemistry 10:2799–2804

    Article  PubMed  CAS  Google Scholar 

  18. Kleerekoper M, Frame B, Villanueva AR, Oliver I, Rao DS, Matkovic V, Parfitt AM, Chir B (1981) Treatment of osteoporosis with sodium fluoride alternating with calcium and vitamin D. In: DeLuca HF, Frost HM, Jee WSS, Johnson CC, Parfitt AM (eds) Osteoporosis: recent advances in pathogenesis and treatment. University Park Press, Baltimore,pp 441–448

    Google Scholar 

  19. Gallagher JC, Riggs BL (1990) Action of 1,25-dihydroxyvitamin D3 on calcium balance and bone turnover and its effect on vertebral fracture rate. Metabolism 39:30–34

    Article  PubMed  CAS  Google Scholar 

  20. Aloia JF, Vaswani A, Yeh JK, Ellis K. Yasumura S, Cohn SH (1988) Calcitriol in the treatment of postmenopausal osteoporosis. Am J Med 84:401–408

    Article  PubMed  CAS  Google Scholar 

  21. Dambacher MA, Kranich M, Schacht E, Neff M (1997) Can the fast bone loss in osteoporotic and osteopenic patients be stopped with active vitamin D metabolites? Calcif Tissue Int 60:115–118

    Article  PubMed  CAS  Google Scholar 

  22. Ott SM, Chesnut CH III (1989) Calcitriol treatment is not effective in postmenopausal osteoporosis. Ann Int Med 110:267–274

    PubMed  CAS  Google Scholar 

  23. Caniggia A, Nuti R, Lore F, Martini G, Turchetti V, Righi G (1990) Long-term treatment with calcitriol in postmenopausal osteoporosis. Metabolism 39:43–49

    Article  PubMed  CAS  Google Scholar 

  24. Tilyard MW, Spears GFS, Thomson J, Dovey S (1992) Treatment of postmenopausal osteoporosis with calcitriol or calcium. N Engl J Med 326:357–362

    Article  PubMed  CAS  Google Scholar 

  25. Orimo H, Shiraki M, Hayashi T, Nakamura T (1987) Reduced occurrence of vertebral crush fractures in senile osteoporosis treated with 1α(OH)-vitamin D3. Bone Miner 3:47–52

    PubMed  CAS  Google Scholar 

  26. Orimo H, Shiraki M, Hayashi Y, Hoshino T, Onaya T, Miyazaki S, Kurosawa H, Nakamura T (1994) Effects of 1α-hydroxyvitamin D3 on lumbar bone mineral density and vertebral fractures in patients with postmenopausal osteoporosis. Calcif Tissue Int 54:370–376

    Article  PubMed  CAS  Google Scholar 

  27. Hayashi Y, Fujita T, Inoue T (1992) Decrease of vertebral fracture in osteoporotics by administration of 1α-hydroxy-vitamin D3. J Bone Miner Metab 10:184–188

    Article  Google Scholar 

  28. Riggs BL, Nelson KI (1985) Effect of long term treatment with calcitriol on calcium absorption and mineral metabolism in postmenopausal osteoporosis. J Clin Endocrinol Metab 61:457–461

    Article  PubMed  CAS  Google Scholar 

  29. Francis RM, Boyle IT, Moniz C, Sutcliffe AM, Davis BS, Beastall GH, Cowan RA, Downes N (1996) A comparison of the effects of alfacalcidol treatment and vitamin D2 supplementation on calcium absorption in elderly women with vertebral fractures. Osteoporos Int 6:284–290

    Article  PubMed  CAS  Google Scholar 

  30. Need AG, Morris HA, Horowitz M, Nordin BEC (1997) The response to calcitriol therapy in postmenopausal osteoporotic women is a function of initial calcium absorptive status. Calcif Tissue Int 61:6–9

    Article  PubMed  CAS  Google Scholar 

  31. Gallagher JC, Goldgar D (1990) Treatment of postmenopausal osteoporosis with high doses of synthetic calcitriol. A randomized controlled study. Ann Int Med 113:649–655

    PubMed  CAS  Google Scholar 

  32. Vanhooke JL, Benning MM, Bauer CB, Pike JW, DeLuca HF (2004) Molecular structures of the rat vitamin D receptor ligand binding domain complexed with 2-carbon-substituted vitamin D3 hormone analogues and a LXXLL-containing coactivator peptide. Biochemistry 43:4101–4110

    Article  PubMed  CAS  Google Scholar 

  33. Yamamoto H, Shevde NK, Warrier A, Plum LA, DeLuca HF, Pike JW (2003) 2-Methylene-19-nor-(20S)-1,25-dihdyroxyvitamin D3 potently stimulates gene-specific DNA binding of the vitamin D receptor in osteoblasts. J Biol Chem 278:31756–31765

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a fund from the Wisconsin Alumni Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector F. DeLuca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plum, L.A., Fitzpatrick, L.A., Ma, X. et al. 2MD, a new anabolic agent for osteoporosis treatment. Osteoporos Int 17, 704–715 (2006). https://doi.org/10.1007/s00198-005-0036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-005-0036-3

Keywords

Navigation