Skip to main content
Log in

The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis

  • Review
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  • Acar, G., İdiman, F., İdiman, E., Kırkalı, G., Çakmakçı, H., & Özakbaş, S. (2003). Nitric oxide as an activity marker in multiple sclerosis. Journal of Neurology, 250(5), 588–592. https://doi.org/10.1007/s00415-003-1041-0

    Article  CAS  PubMed  Google Scholar 

  • Akhtar, M., Chen, Y., Ma, Z., Zhang, X., Shi, D., Khan, J. A., et al. (2022). Gut microbiota-derived short chain fatty acids are potential mediators in gut inflammation. Anim Nutr, 8, 350–360. https://doi.org/10.1016/j.aninu.2021.11.005

    Article  CAS  PubMed  Google Scholar 

  • Alexander, C., Swanson, K. S., Fahey, G. C., Jr., & Garleb, K. A. (2019). Perspective: Physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation. Advances in Nutrition, 10(4), 576–589.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alva-Murillo, N., Ochoa-Zarzosa, A., & López-Meza, J. E. (2012). Short chain fatty acids (propionic and hexanoic) decrease Staphylococcus aureus internalization into bovine mammary epithelial cells and modulate antimicrobial peptide expression. Veterinary Microbiology, 155(2), 324–331. https://doi.org/10.1016/j.vetmic.2011.08.025

    Article  CAS  PubMed  Google Scholar 

  • Amato, M., Hakiki, B., Goretti, B., Rossi, F., Stromillo, M. L., Giorgio, A., et al. (2012). Association of MRI metrics and cognitive impairment in radiologically isolated syndromes. Neurology, 78(5), 309–314.

    Article  CAS  PubMed  Google Scholar 

  • Amon, P., & Sanderson, I. (2017). What is the microbiome? Archives of Disease in Childhood-Education and Practice, 102(5), 257–260.

    Article  Google Scholar 

  • Antunes, K. H., Fachi, J. L., de Paula, R., da Silva, E. F., Pral, L. P., dos Santos, A. Á., et al. (2019). Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nature Communications, 10(1), 3273. https://doi.org/10.1038/s41467-019-11152-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoyama, M., Kotani, J., & Usami, M. (2010a). Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition, 26(6), 653–661. https://doi.org/10.1016/j.nut.2009.07.006

    Article  CAS  PubMed  Google Scholar 

  • Aoyama, M., Kotani, J., & Usami, M. (2010b). Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition, 26(6), 653–661.

    Article  CAS  PubMed  Google Scholar 

  • Arora, T., Sharma, R., & Frost, G. (2011). Propionate. Anti-obesity and satiety enhancing factor? Appetite, 56(2), 511–515.

    Article  PubMed  Google Scholar 

  • Arpaia, N., Campbell, C., Fan, X., Dikiy, S., Van Der Veeken, J., Deroos, P., et al. (2013a). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480), 451–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., deRoos, P., et al. (2013b). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480), 451–455. https://doi.org/10.1038/nature12726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artis, D., & Spits, H. (2015). The biology of innate lymphoid cells. Nature, 517(7534), 293–301. https://doi.org/10.1038/nature14189

    Article  CAS  PubMed  Google Scholar 

  • Baars, A., Oosting, A., Lohuis, M., Koehorst, M., El Aidy, S., Hugenholtz, F., et al. (2018). Sex differences in lipid metabolism are affected by presence of the gut microbiota. Scientific Reports, 8(1), 13426.

    Article  PubMed  PubMed Central  Google Scholar 

  • Backhed, F., Manchester, J., Semenkovich, C., & Gordon, J. I. (2007). Mechanisms underlying the resistance to diet induced obesity in germ-free mice. Proceedings of the National Academy of Sciences, 104, 979–984.

    Article  CAS  Google Scholar 

  • Baecher-Allan, C., Kaskow, B. J., & Weiner, H. L. (2018). Multiple sclerosis: Mechanisms and immunotherapy. Neuron, 97(4), 742–768.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, S. L., Schreiner, B., McMahon, E. J., & Miller, S. D. (2007). CNS myeloid DCs presenting endogenous myelin peptides “preferentially” polarize CD4+ T(H)-17 cells in relapsing EAE. Nature Immunology, 8(2), 172–180. https://doi.org/10.1038/ni1430

    Article  CAS  PubMed  Google Scholar 

  • Balashov, K. E., Comabella, M., Ohashi, T., Khoury, S. J., & Weiner, H. L. (2000). Defective regulation of IFNγ and IL-12 by endogenous IL-10 in progressive MS. Neurology, 55(2), 192–198.

    Article  CAS  PubMed  Google Scholar 

  • Beecham, A. H., Patsopoulos, N. A., Xifara, D. K., Davis, M. F., Kemppinen, A., Cotsapas, C., et al. (2013). Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature Genetics, 45(11), 1353–1360. https://doi.org/10.1038/ng.2770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedek, G., Zhang, J., Nguyen, H., Kent, G., Seifert, H. A., Davin, S., et al. (2017). Estrogen protection against EAE modulates the microbiota and mucosal-associated regulatory cells. Journal of Neuroimmunology, 310, 51–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berndt, B. E., Zhang, M., Owyang, S. Y., Cole, T. S., Wang, T. W., Luther, J., et al. (2012). Butyrate increases IL-23 production by stimulated dendritic cells. American Journal of Physiology. Gastrointestinal and Liver Physiology, 303(12), G1384-1392. https://doi.org/10.1152/ajpgi.00540.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernink, J. H., Peters, C. P., Munneke, M., Te Velde, A. A., Meijer, S. L., Weijer, K., et al. (2013). Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nature Immunology, 14(3), 221–229.

    Article  CAS  PubMed  Google Scholar 

  • Bert, S., Nadkarni, S., & Perretti, M. (2023). Neutrophil-T cell crosstalk and the control of the host inflammatory response. Immunological Reviews, 314(1), 36–49.

    Article  CAS  PubMed  Google Scholar 

  • Bolnick, D. I., Snowberg, L. K., Hirsch, P. E., Lauber, C. L., Org, E., Parks, B., et al. (2014). Individual diet has sex-dependent effects on vertebrate gut microbiota. Nature Communications, 5(1), 4500.

    Article  CAS  PubMed  Google Scholar 

  • Bourassa, M. W., Alim, I., Bultman, S. J., & Ratan, R. R. (2016). Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neuroscience Letters, 625, 56–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, E. M., Allsopp, P. J., Magee, P. J., Gill, C. I., Nitecki, S., Strain, C. R., et al. (2014). Seaweed and human health. Nutrition Reviews, 72(3), 205–216.

    Article  PubMed  Google Scholar 

  • Browne, P., Chandraratna, D., Angood, C., Tremlett, H., Baker, C., Taylor, B. V., et al. (2014). Atlas of Multiple Sclerosis 2013: A growing global problem with widespread inequity. Neurology, 83(11), 1022–1024. https://doi.org/10.1212/wnl.0000000000000768

    Article  PubMed  PubMed Central  Google Scholar 

  • Burokas, A., Arboleya, S., Moloney, R. D., Peterson, V. L., Murphy, K., Clarke, G., et al. (2017). Targeting the microbiota-gut-brain axis: Prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biological Psychiatry, 82(7), 472–487.

    Article  CAS  PubMed  Google Scholar 

  • Calvo-Barreiro, L., Eixarch, H., Cornejo, T., Costa, C., Castillo, M., Mestre, L., et al. (2021). Selected clostridia strains from the human microbiota and their metabolite, butyrate improve experimental autoimmune encephalomyelitis. Neurotherapeutics, 18(2), 920–937. https://doi.org/10.1007/s13311-021-01016-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camara-Lemarroy, C. R., Silva, C., Greenfield, J., Liu, W.-Q., Metz, L. M., & Yong, V. W. (2020). Biomarkers of intestinal barrier function in multiple sclerosis are associated with disease activity. Multiple Sclerosis Journal, 26(11), 1340–1350.

    Article  CAS  PubMed  Google Scholar 

  • Cantarel, B. L., Waubant, E., Chehoud, C., Kuczynski, J., DeSantis, T. Z., Warrington, J., et al. (2015). Gut microbiota in multiple sclerosis: Possible influence of immunomodulators. Journal of Investigative Medicine, 63(5), 729–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantoni, C., Lin, Q., Dorsett, Y., Ghezzi, L., Liu, Z., Pan, Y., et al. (2022). Alterations of host-gut microbiome interactions in multiple sclerosis. eBioMedicine. https://doi.org/10.1016/j.ebiom.2021.103798

    Article  PubMed  PubMed Central  Google Scholar 

  • Cassatella, M. A. (1995). The production of cytokines by polymorphonuclear neutrophils. Immunology Today, 16(1), 21–26. https://doi.org/10.1016/0167-5699(95)80066-2

    Article  CAS  PubMed  Google Scholar 

  • Casserly, C. S., Nantes, J. C., Whittaker Hawkins, R. F., & Vallières, L. (2017). Neutrophil perversion in demyelinating autoimmune diseases: Mechanisms to medicine. Autoimmunity Reviews, 16(3), 294–307. https://doi.org/10.1016/j.autrev.2017.01.013

    Article  CAS  PubMed  Google Scholar 

  • Castillo-Alvarez, F., Perez-Matute, P., Oteo, J., & Marzo-Sola, M. (2021). The influence of interferon β-1b on gut microbiota composition in patients with multiple sclerosis. Neurología (english Edition), 36(7), 495–503.

    Article  CAS  Google Scholar 

  • Chang, P. V., Hao, L., Offermanns, S., & Medzhitov, R. (2014). The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proceedings of the National Academy of Sciences, 111(6), 2247–2252.

    Article  CAS  Google Scholar 

  • Chastain, E. M., & Miller, S. D. (2012). Molecular mimicry as an inducing trigger for CNS autoimmune demyelinating disease. Immunological Reviews, 245(1), 227–238.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Chia, N., Kalari, K. R., Yao, J. Z., Novotna, M., Paz Soldan, M. M., et al. (2016a). Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Scientific Reports, 6(1), 28484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Chia, N., Kalari, K. R., Yao, J. Z., Novotna, M., Paz Soldan, M. M., et al. (2016b). Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Science and Reports, 6, 28484. https://doi.org/10.1038/srep28484

    Article  CAS  Google Scholar 

  • Chen, L., Sun, M., Wu, W., Yang, W., Huang, X., Xiao, Y., et al. (2019a). Microbiota metabolite butyrate differentially regulates Th1 and Th17 cells’ differentiation and function in induction of colitis. Inflammatory Bowel Diseases, 25(9), 1450–1461. https://doi.org/10.1093/ibd/izz046

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, M. L., & Sundrud, M. S. (2016). Cytokine networks and T-cell subsets in inflammatory bowel diseases. Inflammatory Bowel Diseases, 22(5), 1157–1167.

    Article  PubMed  Google Scholar 

  • Chen, T., Noto, D., Hoshino, Y., Mizuno, M., & Miyake, S. (2019b). Butyrate suppresses demyelination and enhances remyelination. Journal of Neuroinflammation, 16(1), 1–13.

    Article  Google Scholar 

  • Cheng, Y., Liu, J., & Ling, Z. (2022). Short-chain fatty acids-producing probiotics: A novel source of psychobiotics. Critical Reviews in Food Science and Nutrition, 62(28), 7929–7959.

    Article  CAS  PubMed  Google Scholar 

  • Choi, I.-Y., Lee, S., Denney, D. R., & Lynch, S. G. (2011). Lower levels of glutathione in the brains of secondary progressive multiple sclerosis patients measured by 1H magnetic resonance chemical shift imaging at 3 T. Multiple Sclerosis Journal, 17(3), 289–296.

    Article  CAS  PubMed  Google Scholar 

  • Chun, E., Lavoie, S., Fonseca-Pereira, D., Bae, S., Michaud, M., Hoveyda, H. R., et al. (2019). Metabolite-sensing receptor Ffar2 regulates colonic group 3 innate lymphoid cells and gut immunity. Immunity, 51(5), 871-884.e876. https://doi.org/10.1016/j.immuni.2019.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claflin, S. B., Broadley, S., & Taylor, B. V. (2018). The effect of disease modifying therapies on disability progression in multiple sclerosis: a systematic overview of meta-analyses. Frontiers in Neurology, 9, 1150. https://doi.org/10.3389/fneur.2018.01150

    Article  PubMed  Google Scholar 

  • Clarkson, B. D., Walker, A., Harris, M. G., Rayasam, A., Hsu, M., Sandor, M., et al. (2017). CCR7 deficient inflammatory Dendritic Cells are retained in the Central Nervous System. Science and Reports, 7, 42856. https://doi.org/10.1038/srep42856

    Article  CAS  Google Scholar 

  • Clarkson, B. D., Walker, A., Harris, M., Rayasam, A., Sandor, M., & Fabry, Z. (2014). Mapping the accumulation of co-infiltrating CNS dendritic cells and encephalitogenic T cells during EAE. Journal of Neuroimmunology, 277(1–2), 39–49. https://doi.org/10.1016/j.jneuroim.2014.09.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colonna, M. (2018). Innate lymphoid cells: Diversity, plasticity, and unique functions in immunity. Immunity, 48(6), 1104–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colpitts, S. L., & Kasper, L. H. (2017). Influence of the gut microbiome on autoimmunity in the central nervous system. The Journal of Immunology, 198(2), 596–604. https://doi.org/10.4049/jimmunol.1601438

    Article  CAS  PubMed  Google Scholar 

  • Confavreux, C., Vukusic, S., & Adeleine, P. (2003). Early clinical predictors and progression of irreversible disability in multiple sclerosis: An amnesic process. Brain, 126(Pt 4), 770–782. https://doi.org/10.1093/brain/awg081

    Article  PubMed  Google Scholar 

  • Consolandi, C., Turroni, S., Emmi, G., Severgnini, M., Fiori, J., Peano, C., et al. (2015). Behçet’s syndrome patients exhibit specific microbiome signature. Autoimmunity Reviews, 14(4), 269–276.

    Article  PubMed  Google Scholar 

  • Constantinescu, C. S., Farooqi, N., O’Brien, K., & Gran, B. (2011). Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). British Journal of Pharmacology, 164(4), 1079–1106. https://doi.org/10.1111/j.1476-5381.2011.01302.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constantinides, M. G. (2017). Interactions between the microbiota and innate and innate-like lymphocytes. Journal of Leukocyte Biology, 103(3), 409–419. https://doi.org/10.1002/jlb.3ri0917-378r

    Article  PubMed  Google Scholar 

  • Corrêa, R. O., Vieira, A., Sernaglia, E., Lancellotti, M., Vieira, A., Avila-Campos, M. J., et al. (2017). Bacterial short-chain fatty acid metabolites modulate the inflammatory response against infectious bacteria. Cellular Microbiology, 19(7), e12720.

    Article  Google Scholar 

  • Cosgrove, K. P., Mazure, C. M., & Staley, J. K. (2007). Evolving knowledge of sex differences in brain structure, function, and chemistry. Biological Psychiatry, 62(8), 847–855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosorich, I., Dalla-Costa, G., Sorini, C., Ferrarese, R., Messina, M. J., Dolpady, J., et al. (2017). High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Science Advances, 3(7), e1700492.

    Article  PubMed  PubMed Central  Google Scholar 

  • Covarrubias, A. J., Aksoylar, H. I., Yu, J., Snyder, N. W., Worth, A. J., Iyer, S. S., et al. (2016). Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. eLife. https://doi.org/10.7554/eLife.11612

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox, M. A., Jackson, J., Stanton, M., Rojas-Triana, A., Bober, L., Laverty, M., et al. (2009). Short-chain fatty acids act as antiinflammatory mediators by regulating prostaglandin E2 and cytokines. World Journal of Gastroenterology: WJG, 15(44), 5549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cree, B. A. C., Arnold, D. L., Chataway, J., Chitnis, T., Fox, R. J., Ramajo, A. P., et al. (2021). Secondary progressive multiple sclerosis. New Insights, 97(8), 378–388. https://doi.org/10.1212/wnl.0000000000012323

    Article  Google Scholar 

  • Cristofori, F., Dargenio, V. N., Dargenio, C., Miniello, V. L., Barone, M., & Francavilla, R. (2021). Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: A door to the body. Frontiers in Immunology, 12, 578386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croxford, A. L., Lanzinger, M., Hartmann, F. J., Schreiner, B., Mair, F., Pelczar, P., et al. (2015). The cytokine GM-CSF drives the inflammatory signature of CCR2+ monocytes and licenses autoimmunity. Immunity, 43(3), 502–514.

    Article  CAS  PubMed  Google Scholar 

  • Cua, D. J., Sherlock, J., Chen, Y., Murphy, C. A., Joyce, B., Seymour, B., et al. (2003). Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature, 421(6924), 744–748. https://doi.org/10.1038/nature01355

    Article  CAS  PubMed  Google Scholar 

  • d’Hennezel, E., Abubucker, S., Murphy, L. O., & Cullen, T. W. (2017). Total lipopolysaccharide from the human gut microbiome silences toll-like receptor signaling. Msystems, 2(6), e00046-e117.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dapa, T., Wong, D. P., Vasquez, K. S., Xavier, K. B., Huang, K. C., & Good, B. H. (2023). Within-host evolution of the gut microbiome. Current Opinion in Microbiology, 71, 102258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davenport, E. R., Sanders, J. G., Song, S. J., Amato, K. R., Clark, A. G., & Knight, R. (2017). The human microbiome in evolution. BMC Biology, 15(1), 1–12.

    Article  Google Scholar 

  • Dewulf, E. M., Cani, P. D., Neyrinck, A. M., Possemiers, S., Van Holle, A., Muccioli, G. G., et al. (2011). Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARγ-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. The Journal of Nutritional Biochemistry, 22(8), 712–722.

    Article  CAS  PubMed  Google Scholar 

  • Dobson, R., & Giovannoni, G. (2019). Multiple sclerosis—a review. European Journal of Neurology, 26(1), 27–40. https://doi.org/10.1111/ene.13819

    Article  CAS  PubMed  Google Scholar 

  • Druet, P., Sheela, R., & Pelletier, L. (1995). Th1 and Th2 cells in autoimmunity. Clinical and Experimental Immunology, 101(Suppl 1), 9.

    PubMed  PubMed Central  Google Scholar 

  • Du, H.-X., Yue, S.-Y., Niu, D., Liu, C., Zhang, L.-G., Chen, J., et al. (2022). Gut microflora modulates Th17/Treg cell differentiation in experimental autoimmune prostatitis via the short-chain fatty acid propionate. Frontiers in Immunology, 13, 915218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan, H., Wang, L., Huangfu, M., & Li, H. (2023). The impact of microbiota-derived short-chain fatty acids on macrophage activities in disease: Mechanisms and therapeutic potentials. Biomedicine & Pharmacotherapy, 165, 115276. https://doi.org/10.1016/j.biopha.2023.115276

    Article  CAS  Google Scholar 

  • Duffield, J. S. (2003). The inflammatory macrophage: A story of Jekyll and Hyde. Clinical Science (london, England), 104(1), 27–38.

    Article  CAS  Google Scholar 

  • Duscha, A., Gisevius, B., Hirschberg, S., Yissachar, N., Stangl, G. I., Dawin, E., et al. (2020a). Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell, 180(6), 1067-1080.e1016. https://doi.org/10.1016/j.cell.2020.02.035

    Article  CAS  PubMed  Google Scholar 

  • Duscha, A., Gisevius, B., Hirschberg, S., Yissachar, N., Stangl, G. I., Eilers, E., et al. (2020b). Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell. https://doi.org/10.1016/j.cell.2020.02.035

    Article  PubMed  Google Scholar 

  • Duscha, A., Hegelmaier, T., Dürholz, K., Desel, C., Gold, R., Zaiss, M. M., et al. (2022). Propionic acid beneficially modifies osteoporosis biomarkers in patients with multiple sclerosis. Therapeutic Advances in Neurological Disorders, 15, 17562864221103936. https://doi.org/10.1177/17562864221103935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dziedzic, A., & Saluk, J. (2022). Probiotics and commensal gut microbiota as the effective alternative therapy for multiple sclerosis patients treatment. International Journal of Molecular Sciences, 23(22), 14478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Aidy, S., Dinan, T. G., & Cryan, J. F. (2015). Gut microbiota: the conductor in the orchestra of immune-neuroendocrine communication. Clinical Therapeutics, 37(5), 954–967. https://doi.org/10.1016/j.clinthera.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  • Engen, S. A., Valen Rukke, H., Becattini, S., Jarrossay, D., Blix, I. J., Petersen, F. C., et al. (2014). The oral commensal Streptococcus mitis shows a mixed memory Th cell signature that is similar to and cross-reactive with Streptococcus pneumoniae. PLoS ONE, 9(8), e104306. https://doi.org/10.1371/journal.pone.0104306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira-Halder, C. V., de Sousa Faria, A. V., & Andrade, S. S. (2017). Action and function of Faecalibacterium prausnitzii in health and disease. Best Practice & Research Clinical Gastroenterology, 31(6), 643–648.

    Article  CAS  Google Scholar 

  • Fettig, N. M., & Osborne, L. C. (2021). Direct and indirect effects of microbiota-derived metabolites on neuroinflammation in multiple sclerosis. Microbes and Infection, 23(6), 104814. https://doi.org/10.1016/j.micinf.2021.104814

    Article  CAS  PubMed  Google Scholar 

  • Fleck, A. K., Schuppan, D., Wiendl, H., & Klotz, L. (2017). Gut-CNS-Axis as possibility to modulate inflammatory disease activity-implications for multiple sclerosis. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms18071526

    Article  PubMed  PubMed Central  Google Scholar 

  • Fransen, F., van Beek, A. A., Borghuis, T., Meijer, B., Hugenholtz, F., van der Gaast-de Jongh, C., et al. (2017). The impact of gut microbiota on gender-specific differences in immunity. Frontiers in Immunology, 8, 754.

    Article  PubMed  PubMed Central  Google Scholar 

  • Freedman, K. E., Hill, J. L., Wei, Y., Vazquez, A. R., Grubb, D. S., Trotter, R. E., et al. (2021). Examining the gastrointestinal and immunomodulatory effects of the novel probiotic Bacillus subtilis DE111. International Journal of Molecular Sciences, 22(5), 2453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, X., Liu, H., Huang, G., & Dai, S.-S. (2021). The emerging role of neutrophils in autoimmune-associated disorders: Effector, predictor, and therapeutic targets. MedComm, 2(3), 402–413. https://doi.org/10.1002/mco2.69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs, A., Vermi, W., Lee, J. S., Lonardi, S., Gilfillan, S., Newberry, R. D., et al. (2013). Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity, 38(4), 769–781. https://doi.org/10.1016/j.immuni.2013.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fung, T. C., Olson, C. A., & Hsiao, E. Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nature Neuroscience, 20(2), 145–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furusawa, Y., Obata, Y., Fukuda, S., Endo, T. A., Nakato, G., Takahashi, D., et al. (2013). Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 504(7480), 446–450. https://doi.org/10.1038/nature12721

    Article  CAS  PubMed  Google Scholar 

  • Galvão, I., Tavares, L. P., Corrêa, R. O., Fachi, J. L., Rocha, V. M., Rungue, M., et al. (2018). The metabolic sensor GPR43 receptor plays a role in the control of Klebsiella pneumoniae infection in the lung. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2018.00142

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, H., Shu, Q., Chen, J., Fan, K., Xu, P., Zhou, Q., et al. (2019). Antibiotic exposure has sex-dependent effects on the gut microbiota and metabolism of short-chain fatty acids and amino acids in mice. Msystems. https://doi.org/10.1128/msystems

    Article  PubMed  PubMed Central  Google Scholar 

  • Gelfand, J. M. (2014). Chapter 12 - Multiple sclerosis: diagnosis, differential diagnosis, and clinical presentation. In D. S. Goodin (Ed.), Handbook of clinical neurology (Vol. 122, pp. 269–290): Elsevier.

  • Gerwien, H., Hermann, S., Zhang, X., Korpos, E., Song, J., Kopka, K., et al. (2016). Imaging matrix metalloproteinase activity in multiple sclerosis as a specific marker of leukocyte penetration of the blood-brain barrier. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.aaf8020

    Article  PubMed  Google Scholar 

  • Ghezzi, L., Cantoni, C., Pinget, G. V., Zhou, Y., & Piccio, L. (2021). Targeting the gut to treat multiple sclerosis. The Journal of Clinical Investigation. https://doi.org/10.1172/JCI143774

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghorbani, P., Santhakumar, P., Hu, Q., Djiadeu, P., Wolever, T. M., Palaniyar, N., et al. (2015). Short-chain fatty acids affect cystic fibrosis airway inflammation and bacterial growth. European Respiratory Journal, 46(4), 1033–1045.

    Article  CAS  PubMed  Google Scholar 

  • Gilgun-Sherki, Y., Melamed, E., & Offen, D. (2004). The role of oxidative stress in thepathogenesis of multiple sclerosis: The need for effectiveantioxidant therapy. Journal of Neurology, 251(3), 261–268. https://doi.org/10.1007/s00415-004-0348-9

    Article  CAS  PubMed  Google Scholar 

  • Gill, P. A., van Zelm, M. C., Ffrench, R. A., Muir, J. G., & Gibson, P. R. (2020). Successful elevation of circulating acetate and propionate by dietary modulation does not alter T-regulatory cell or cytokine profiles in healthy humans: A pilot study. European Journal of Nutrition, 59, 2651–2661.

    Article  PubMed  Google Scholar 

  • Gill, P., Van Zelm, M., Muir, J., & Gibson, P. (2018). Short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Alimentary Pharmacology & Therapeutics, 48(1), 15–34.

    Article  CAS  Google Scholar 

  • Gillard, G. O., Saenz, S. A., Huss, D. J., & Fontenot, J. D. (2016). Circulating innate lymphoid cells are unchanged in response to DAC HYP therapy. Journal of Neuroimmunology, 294, 41–45. https://doi.org/10.1016/j.jneuroim.2016.03.008

    Article  CAS  PubMed  Google Scholar 

  • Goerdt, S., Politz, O., Schledzewski, K., Birk, R., Gratchev, A., Guillot, P., et al. (1999). Alternative versus classical activation of macrophages. Pathobiology, 67(5–6), 222–226. https://doi.org/10.1159/000028096

    Article  CAS  PubMed  Google Scholar 

  • Gold, R., Linington, C., & Lassmann, H. (2006). Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain, 129(Pt 8), 1953–1971. https://doi.org/10.1093/brain/awl075

    Article  PubMed  Google Scholar 

  • Golden, L. C., & Voskuhl, R. (2017). The importance of studying sex differences in disease: The example of multiple sclerosis. Journal of Neuroscience Research, 95(1–2), 633–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory, A. P., Dendrou, C. A., Attfield, K. E., Haghikia, A., Xifara, D. K., Butter, F., et al. (2012). TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis. Nature, 488(7412), 508–511. https://doi.org/10.1038/nature11307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin, W. S. (2006). Inflammation and neurodegenerative diseases. American Journal of Clinical Nutrition, 83(2), 470s–474s. https://doi.org/10.1093/ajcn/83.2.470S

    Article  CAS  PubMed  Google Scholar 

  • Gross, C. C., Ahmetspahic, D., Ruck, T., Schulte-Mecklenbeck, A., Schwarte, K., Jörgens, S., et al. (2016). Alemtuzumab treatment alters circulating innate immune cells in multiple sclerosis. Neurology-Neuroimmunology Neuroinflammation. https://doi.org/10.1212/NXI.0000000000000289

    Article  Google Scholar 

  • Gross, C. C., Schulte-Mecklenbeck, A., Hanning, U., Posevitz-Fejfár, A., Korsukewitz, C., Schwab, N., et al. (2017). Distinct pattern of lesion distribution in multiple sclerosis is associated with different circulating T-helper and helper-like innate lymphoid cell subsets. Multiple Sclerosis, 23(7), 1025–1030. https://doi.org/10.1177/1352458516662726

    Article  CAS  PubMed  Google Scholar 

  • Guerrero, B. L., & Sicotte, N. L. (2020). Microglia in multiple sclerosis: Friend or Foe? Frontiers in Immunology, 11, 374. https://doi.org/10.3389/fimmu.2020.00374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, Y., Xiao, Z., Wang, Y., Yao, W., Liao, S., Yu, B., et al. (2018). Sodium butyrate ameliorates streptozotocin-induced type 1 diabetes in mice by inhibiting the HMGB1 expression. Frontiers in Endocrinology, 9, 630.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gury-BenAri, M., Thaiss, C. A., Serafini, N., Winter, D. R., Giladi, A., Lara-Astiaso, D., et al. (2016). The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell. https://doi.org/10.1016/j.cell.2016.07.043

    Article  PubMed  Google Scholar 

  • Haghikia, A., Jörg, S., Duscha, A., Berg, J., Manzel, A., Waschbisch, A., et al. (2015a). Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity, 43(4), 817–829.

    Article  CAS  PubMed  Google Scholar 

  • Haghikia, A., Jörg, S., Duscha, A., Berg, J., Manzel, A., Waschbisch, A., et al. (2015b). Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity, 43(4), 817–829. https://doi.org/10.1016/j.immuni.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  • He, M., & Shi, B. (2017). Gut microbiota as a potential target of metabolic syndrome: The role of probiotics and prebiotics. Cell & Bioscience, 7, 54. https://doi.org/10.1186/s13578-017-0183-1

    Article  CAS  Google Scholar 

  • He, Y., Wu, W., Zheng, H. M., Li, P., McDonald, D., Sheng, H. F., et al. (2018). Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nature Medicine, 24(10), 1532–1535. https://doi.org/10.1038/s41591-018-0164-x

    Article  CAS  PubMed  Google Scholar 

  • Hoban, A. E., Stilling, R. M., Ryan, F. J., Shanahan, F., Dinan, T. G., Claesson, M. J., et al. (2016). Regulation of prefrontal cortex myelination by the microbiota. Translational Psychiatry, 6(4), e774–e774. https://doi.org/10.1038/tp.2016.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hobbs, L., Allen, L., Bias, M., Johnson, S., DeRespiris, H., Diallo, C., et al. (2021). The opposing role of propionate in modulating listeria monocytogenes intracellular infections. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2021.721801

    Article  PubMed  PubMed Central  Google Scholar 

  • Hur, K. Y., & Lee, M. S. (2015). Gut microbiota and metabolic disorders. Diabetes and Metabolism Journal, 39(3), 198–203. https://doi.org/10.4093/dmj.2015.39.3.198

    Article  PubMed  PubMed Central  Google Scholar 

  • Illés, Z., Kondo, T., Newcombe, J., Oka, N., Tabira, T., & Yamamura, T. (2000). Differential expression of NK T Cell Vα24JαQ invariant TCR chain in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy1. The Journal of Immunology, 164(8), 4375–4381. https://doi.org/10.4049/jimmunol.164.8.4375

    Article  PubMed  Google Scholar 

  • Jadidi-Niaragh, F., & Mirshafiey, A. (2011). Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scandinavian Journal of Immunology, 74(1), 1–13. https://doi.org/10.1111/j.1365-3083.2011.02536.x

    Article  CAS  PubMed  Google Scholar 

  • Jäger, A., Dardalhon, V., & r., Sobel, R. A., Bettelli, E., & Kuchroo, V. K. (2009). Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes1. The Journal of Immunology, 183(11), 7169–7177. https://doi.org/10.4049/jimmunol.0901906

    Article  CAS  PubMed  Google Scholar 

  • Jaggar, M., Rea, K., Spichak, S., Dinan, T. G., & Cryan, J. F. (2020). You’ve got male: Sex and the microbiota-gut-brain axis across the lifespan. Frontiers in Neuroendocrinology, 56, 100815.

    Article  PubMed  Google Scholar 

  • Jain, P., Coisne, C., Enzmann, G., Rottapel, R., & Engelhardt, B. (2010). Alpha4beta1 integrin mediates the recruitment of immature dendritic cells across the blood-brain barrier during experimental autoimmune encephalomyelitis. The Journal of Immunology, 184(12), 7196–7206. https://doi.org/10.4049/jimmunol.0901404

    Article  CAS  PubMed  Google Scholar 

  • Jakobsdottir, G., Bjerregaard, J. H., Skovbjerg, H., & Nyman, M. (2013). Fasting serum concentration of short-chain fatty acids in subjects with microscopic colitis and celiac disease: No difference compared with controls, but between genders. Scandinavian Journal of Gastroenterology, 48(6), 696–701. https://doi.org/10.3109/00365521.2013.786128

    Article  CAS  PubMed  Google Scholar 

  • Jangi, S., Gandhi, R., Cox, L. M., Li, N., Von Glehn, F., Yan, R., et al. (2016a). Alterations of the human gut microbiome in multiple sclerosis. Nature Communications, 7(1), 12015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jangi, S., Gandhi, R., Cox, L. M., Li, N., von Glehn, F., Yan, R., et al. (2016b). Alterations of the human gut microbiome in multiple sclerosis. Nature Communications, 7, 12015. https://doi.org/10.1038/ncomms12015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jantaratnotai, N., Utaisincharoen, P., Sanvarinda, P., Thampithak, A., & Sanvarinda, Y. (2013). Phytoestrogens mediated anti-inflammatory effect through suppression of IRF-1 and pSTAT1 expressions in lipopolysaccharide-activated microglia. International Immunopharmacology, 17(2), 483–488.

    Article  CAS  PubMed  Google Scholar 

  • Ji, J.-J., Sun, Q.-M., Nie, D.-Y., Wang, Q., Zhang, H., Qin, F.-F., et al. (2021). Probiotics protect against RSV infection by modulating the microbiota-alveolar-macrophage axis. Acta Pharmacologica Sinica, 42(10), 1630–1641. https://doi.org/10.1038/s41401-020-00573-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaczmarczyk, M. M., Miller, M. J., & Freund, G. G. (2012). The health benefits of dietary fiber: Beyond the usual suspects of type 2 diabetes mellitus, cardiovascular disease and colon cancer. Metabolism, 61(8), 1058–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaliannan, K., Robertson, R. C., Murphy, K., Stanton, C., Kang, C., Wang, B., et al. (2018). Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice. Microbiome, 6, 1–22.

    Article  Google Scholar 

  • Karunasena, E., McMahon, K. W., Chang, D., & Brashears, M. M. (2014). Host responses to the pathogen Mycobacterium avium subsp. paratuberculosis and beneficial microbes exhibit host sex specificity. Applied and Environmental Microbiology, 80(15), 4481–4490.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawachi, I., & Lassmann, H. (2017). Neurodegeneration in multiple sclerosis and neuromyelitis optica. Journal of Neurology, Neurosurgery & Psychiatry, 88(2), 137–145.

    Article  Google Scholar 

  • Kernbauer, E., Ding, Y., & Cadwell, K. (2014). An enteric virus can replace the beneficial function of commensal bacteria. Nature, 516(7529), 94–98. https://doi.org/10.1038/nature13960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kespohl, M., Vachharajani, N., Luu, M., Harb, H., Pautz, S., Wolff, S., et al. (2017). The microbial metabolite butyrate induces expression of Th1-associated factors in CD4(+) T cells. Frontiers in Immunology, 8, 1036. https://doi.org/10.3389/fimmu.2017.01036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, C. H., Hashimoto-Hill, S., & Kim, M. (2016). Migration and tissue tropism of innate lymphoid cells. Trends in Immunology, 37(1), 68–79. https://doi.org/10.1016/j.it.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  • Kim, N. (2022). Sex difference of gut microbiota. In N. Kim (Ed.), Sex/gender-specific medicine in the gastrointestinal diseases (pp. 363–377). Singapore: Springer Nature Singapore.

    Chapter  Google Scholar 

  • Kim, S. H., Cho, B. H., Kiyono, H., & Jang, Y. S. (2017). Microbiota-derived butyrate suppresses group 3 innate lymphoid cells in terminal ileal Peyer’s patches. Science and Reports, 7(1), 3980. https://doi.org/10.1038/s41598-017-02729-6

    Article  CAS  Google Scholar 

  • Kirby, T. O., & Ochoa-Repáraz, J. (2018). The gut microbiome in multiple sclerosis: a potential therapeutic avenue. Medical Science. https://doi.org/10.3390/medsci6030069

    Article  Google Scholar 

  • Klein Geltink, R. I., Kyle, R. L., & Pearce, E. L. (2018). Unraveling the complex interplay between T cell metabolism and function. Annual Review of Immunology, 36, 461–488.

    Article  PubMed Central  Google Scholar 

  • Klein, S. L., & Flanagan, K. L. (2016). Sex differences in immune responses. Nature Reviews Immunology, 16(10), 626–638.

    Article  CAS  PubMed  Google Scholar 

  • Kleinewietfeld, M., & Hafler, D. A. (2014). Regulatory T cells in autoimmune neuroinflammation. Immunological Reviews, 259(1), 231–244. https://doi.org/10.1111/imr.12169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klose, C. S., Kiss, E. A., Schwierzeck, V., Ebert, K., Hoyler, T., d’Hargues, Y., et al. (2013). A T-bet gradient controls the fate and function of CCR6− RORγt+ innate lymphoid cells. Nature, 494(7436), 261–265.

    Article  CAS  PubMed  Google Scholar 

  • Knowles, S. E., Jarrett, I. G., Filsell, O. H., & Ballard, F. J. (1974). Production and utilization of acetate in mammals. Biochemical Journal, 142(2), 401–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, T., Voisin, B., Kennedy, E. A., Jo, J.-H., Shih, H.-Y., Truong, A., et al. (2019). Homeostatic control of sebaceous glands by innate lymphoid cells regulates commensal bacteria equilibrium. Cell. https://doi.org/10.1016/j.cell.2018.12.031

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobelt, G., Thompson, A., Berg, J., Gannedahl, M., & Eriksson, J. (2017). New insights into the burden and costs of multiple sclerosis in Europe. Multiple Sclerosis, 23(8), 1123–1136. https://doi.org/10.1177/1352458517694432

    Article  PubMed  Google Scholar 

  • Koch-Henriksen, N., & Sørensen, P. S. (2010). The changing demographic pattern of multiple sclerosis epidemiology. The Lancet Neurology, 9(5), 520–532.

    Article  PubMed  Google Scholar 

  • Koliada, A., Moseiko, V., Romanenko, M., Lushchak, O., Kryzhanovska, N., Guryanov, V., et al. (2021). Sex differences in the phylum-level human gut microbiota composition. BMC Microbiology, 21(1), 1–9.

    Article  Google Scholar 

  • Komiyama, Y., Nakae, S., Matsuki, T., Nambu, A., Ishigame, H., Kakuta, S., et al. (2006). IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis1. The Journal of Immunology, 177(1), 566–573. https://doi.org/10.4049/jimmunol.177.1.566

    Article  CAS  PubMed  Google Scholar 

  • Kotas, M. E., & Locksley, R. M. (2018). Why innate lymphoid cells? Immunity, 48(6), 1081–1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotter, M. R., Zhao, C., van Rooijen, N., & Franklin, R. J. (2005). Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiology of Diseases, 18(1), 166–175. https://doi.org/10.1016/j.nbd.2004.09.019

    Article  CAS  Google Scholar 

  • Kouchaki, E., Tamtaji, O. R., Salami, M., Bahmani, F., Kakhaki, R. D., Akbari, E., et al. (2017). Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: A randomized, double-blind, placebo-controlled trial. Clinical Nutrition, 36(5), 1245–1249.

    Article  CAS  PubMed  Google Scholar 

  • Kozhieva, M., Naumova, N., Alikina, T., Boyko, A., Vlassov, V., & Kabilov, M. R. (2019). Primary progressive multiple sclerosis in a Russian cohort: Relationship with gut bacterial diversity. BMC Microbiology, 19(1), 1–9.

    Article  Google Scholar 

  • Kremenchutzky, M., Rice, G., Baskerville, J., Wingerchuk, D., & Ebers, G. (2006). The natural history of multiple sclerosis: A geographically based study 9: Observations on the progressive phase of the disease. Brain, 129(3), 584–594.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, H.-K., Kim, G.-C., Kim, Y., Hwang, W., Jash, A., Sahoo, A., et al. (2013). Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in T helper cell immune response. Clinical Immunology, 146(3), 217–227. https://doi.org/10.1016/j.clim.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  • Larsen, N., Vogensen, F. K., Gøbel, R. J., Michaelsen, K. F., Forssten, S. D., Lahtinen, S. J., et al. (2013). Effect of Lactobacillus salivarius Ls-33 on fecal microbiota in obese adolescents. Clinical Nutrition, 32(6), 935–940.

    Article  CAS  PubMed  Google Scholar 

  • Lavasani, S., Dzhambazov, B., Nouri, M., Fåk, F., Buske, S., Molin, G., et al. (2010). A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PLoS ONE, 5(2), e9009. https://doi.org/10.1371/journal.pone.0009009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawley, T. D., & Walker, A. W. (2013). Intestinal colonization resistance. Immunology, 138(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Le Poul, E., Loison, C., Struyf, S., Springael, J. Y., Lannoy, V., Decobecq, M. E., et al. (2003). Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. Journal of Biological Chemistry, 278(28), 25481–25489. https://doi.org/10.1074/jbc.M301403200

    Article  CAS  PubMed  Google Scholar 

  • Leffler, J., Trend, S., Hart, P. H., & French, M. A. (2022). Epstein-Barr virus infection, B-cell dysfunction and other risk factors converge in gut-associated lymphoid tissue to drive the immunopathogenesis of multiple sclerosis: A hypothesis. Clin Transl Immunology, 11(11), e1418. https://doi.org/10.1002/cti2.1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legroux, L., & Arbour, N. (2015). Multiple sclerosis and T lymphocytes: an entangled story. Journal of Neuroimmune Pharmacology, 10(4), 528–546. https://doi.org/10.1007/s11481-015-9614-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Leppert, D., Ford, J., Stabler, G., Grygar, C., Lienert, C., Huber, S., et al. (1998). Matrix metalloproteinase-9 (gelatinase B) is selectively elevated in CSF during relapses and stable phases of multiple sclerosis. Brain: A Journal of Neurology, 121(12), 2327–2334.

    Article  PubMed  Google Scholar 

  • Lévesque, S. A., Paré, A., Mailhot, B., Bellver-Landete, V., Kébir, H., Lécuyer, M.-A., et al. (2016). Myeloid cell transmigration across the CNS vasculature triggers IL-1β–driven neuroinflammation during autoimmune encephalomyelitis in mice. Journal of Experimental Medicine, 213(6), 929–949.

    Article  PubMed  PubMed Central  Google Scholar 

  • Levi, I., Gurevich, M., Perlman, G., Magalashvili, D., Menascu, S., Bar, N., et al. (2021a). Potential role of indolelactate and butyrate in multiple sclerosis revealed by integrated microbiome-metabolome analysis. Cell Reports Medicine. https://doi.org/10.1016/j.xcrm.2021.100246

    Article  PubMed  PubMed Central  Google Scholar 

  • Levi, I., Gurevich, M., Perlman, G., Magalashvili, D., Menascu, S., Bar, N., et al. (2021b). Potential role of indolelactate and butyrate in multiple sclerosis revealed by integrated microbiome-metabolome analysis. Cell Rep Med, 2(4), 100246. https://doi.org/10.1016/j.xcrm.2021.100246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., et al. (2008). Evolution of mammals and their gut microbes. Science, 320(5883), 1647–1651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Wang, P., Huang, L., Li, P., & Zhang, D. (2019). Effects of regulating gut microbiota on the serotonin metabolism in the chronic unpredictable mild stress rat model. Neurogastroenterology & Motility, 31(10), e13677.

    Article  Google Scholar 

  • Li, J., Doty, A. L., Iqbal, A., & Glover, S. C. (2016). The differential frequency of Lineage− CRTH2− CD45+ NKp44− CD117− CD127+ ILC subset in the inflamed terminal ileum of patients with Crohn’s disease. Cellular Immunology, 304, 63–68.

    Article  PubMed  Google Scholar 

  • Li, Y., Zhang, B., Zhou, Y., Wang, D., Liu, X., Li, L., et al. (2020). Gut microbiota changes and their relationship with inflammation in patients with acute and chronic insomnia. Nature and Science of Sleep, 12, 895–905. https://doi.org/10.2147/nss.S271927

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, L., Li, L., Min, J., Wang, J., Wu, H., Zeng, Y., et al. (2012a). Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. Cellular Immunology, 277(1), 66–73. https://doi.org/10.1016/j.cellimm.2012.05.011

    Article  CAS  PubMed  Google Scholar 

  • Liu, L., Li, L., Min, J., Wang, J., Wu, H., Zeng, Y., et al. (2012b). Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. Cellular Immunology, 277(1–2), 66–73. https://doi.org/10.1016/j.cellimm.2012.05.011

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Li, X., Xia, B., Jin, X., Zou, Q., Zeng, Z., et al. (2021). High-fiber diet mitigates maternal obesity-induced cognitive and social dysfunction in the offspring via gut-brain axis. Cell Metabolism. https://doi.org/10.1016/j.cmet.2021.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu, J., Zhang, L., Zhang, H., Chen, Y., Zhao, J., Chen, W., et al. (2023). Population-level variation in gut bifidobacterial composition and association with geography, age, ethnicity, and staple food. Npj Biofilms and Microbiomes, 9(1), 98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luczynski, P., Whelan, S. O., O’Sullivan, C., Clarke, G., Shanahan, F., Dinan, T. G., et al. (2016). Adult microbiota-deficient mice have distinct dendritic morphological changes: Differential effects in the amygdala and hippocampus. European Journal of Neuroscience, 44(9), 2654–2666. https://doi.org/10.1111/ejn.13291

    Article  PubMed  Google Scholar 

  • Luethy, P. M., Huynh, S., Ribardo, D. A., Winter, S. E., Parker, C. T., & Hendrixson, D. R. (2017). Microbiota-derived short-chain fatty acids modulate expression of Campylobacter jejuni determinants required for commensalism and virulence. Mbio. https://doi.org/10.1128/mbio

    Article  PubMed  PubMed Central  Google Scholar 

  • Lundmark, F., Duvefelt, K., Iacobaeus, E., Kockum, I., Wallström, E., Khademi, M., et al. (2007). Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis. Nature Genetics, 39(9), 1108–1113. https://doi.org/10.1038/ng2106

    Article  CAS  PubMed  Google Scholar 

  • Luu, M., Pautz, S., Kohl, V., Singh, R., Romero, R., Lucas, S., et al. (2019). The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nature Communications, 10(1), 760. https://doi.org/10.1038/s41467-019-08711-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maa, M.-C., Chang, M. Y., Hsieh, M.-Y., Chen, Y.-J., Yang, C.-J., Chen, Z.-C., et al. (2010). Butyrate reduced lipopolysaccharide-mediated macrophage migration by suppression of Src enhancement and focal adhesion kinase activity. The Journal of Nutritional Biochemistry, 21(12), 1186–1192.

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane, S., & Macfarlane, G. T. (2003a). Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society, 62(1), 67–72.

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane, S., & Macfarlane, G. T. (2003b). Regulation of short-chain fatty acid production. The Proceedings of the Nutrition Society, 62(1), 67–72. https://doi.org/10.1079/pns2002207

    Article  CAS  PubMed  Google Scholar 

  • Mackley, E. C., Houston, S., Marriott, C. L., Halford, E. E., Lucas, B., Cerovic, V., et al. (2015). CCR7-dependent trafficking of RORγ+ ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nature Communications, 6(1), 5862. https://doi.org/10.1038/ncomms6862

    Article  CAS  PubMed  Google Scholar 

  • Maier, L. M., Lowe, C. E., Cooper, J., Downes, K., Anderson, D. E., Severson, C., et al. (2009). IL2RA genetic heterogeneity in multiple sclerosis and type 1 diabetes susceptibility and soluble interleukin-2 receptor production. PLoS Genetics, 5(1), e1000322. https://doi.org/10.1371/journal.pgen.1000322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manousaki, D., Dudding, T., Haworth, S., Hsu, Y.-H., Liu, C.-T., Medina-Gómez, C., et al. (2017). Low-frequency synonymous coding variation in CYP2R1 has large effects on vitamin D levels and risk of multiple sclerosis. The American Journal of Human Genetics, 101(2), 227–238.

    Article  CAS  PubMed  Google Scholar 

  • Mariño, E., Richards, J. L., McLeod, K. H., Stanley, D., Yap, Y. A., Knight, J., et al. (2017). Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nature Immunology, 18(5), 552–562.

    Article  PubMed  Google Scholar 

  • Markle, J. G., Frank, D. N., Mortin-Toth, S., Robertson, C. E., Feazel, L. M., Rolle-Kampczyk, U., et al. (2013). Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science, 339(6123), 1084–1088.

    Article  CAS  PubMed  Google Scholar 

  • Martin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P., & Lapaque, N. (2021). SCFA: Mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, 80(1), 37–49.

    Article  CAS  PubMed  Google Scholar 

  • Maslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Di, Y., et al. (2009a). Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature, 461(7268), 1282–1286. https://doi.org/10.1038/nature08530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Yu, D., et al. (2009b). Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature, 461(7268), 1282–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Yu, D., et al. (2009c). Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature, 461(7268), 1282–1286. https://doi.org/10.1038/nature08530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy, M. M., Pickett, L. A., VanRyzin, J. W., & Kight, K. E. (2015). Surprising origins of sex differences in the brain. Hormones and Behavior, 76, 3–10.

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonald, D., Hyde, E., Debelius, J. W., Morton, J. T., Gonzalez, A., Ackermann, G., et al. (2018). American gut: an open platform for citizen science microbiome research. mSystems. https://doi.org/10.1128/mSystems.00031-18

    Article  PubMed  PubMed Central  Google Scholar 

  • McGinley, A. M., Sutton, C. E., Edwards, S. C., Leane, C. M., DeCourcey, J., Teijeiro, A., et al. (2020). Interleukin-17A serves a priming role in autoimmunity by recruiting IL-1β-producing myeloid cells that promote pathogenic T cells. Immunity. https://doi.org/10.1016/j.immuni.2020.01.002

    Article  PubMed  Google Scholar 

  • Mekky, J., Wani, R., Said, S. M., Ashry, M., Ibrahim, A. E., & Ahmed, S. M. (2022). Molecular characterization of the gut microbiome in egyptian patients with remitting relapsing multiple sclerosis. Mult Scler Relat Disord, 57, 103354. https://doi.org/10.1016/j.msard.2021.103354

    Article  CAS  PubMed  Google Scholar 

  • Melbye, P., Olsson, A., Hansen, T. H., Søndergaard, H. B., & Bang Oturai, A. (2019a). Short-chain fatty acids and gut microbiota in multiple sclerosis. Acta Neurologica Scandinavica, 139(3), 208–219. https://doi.org/10.1111/ane.13045

    Article  PubMed  Google Scholar 

  • Melbye, P., Olsson, A., Hansen, T. H., Søndergaard, H. B., & Bang Oturai, A. (2019b). Short-chain fatty acids and gut microbiota in multiple sclerosis. Acta Neurologica Scandinavica, 139(3), 208–219.

    Article  PubMed  Google Scholar 

  • Minohara, M., Matsuoka, T., Li, W., Osoegawa, M., Ishizu, T., Ohyagi, Y., et al. (2006). Upregulation of myeloperoxidase in patients with opticospinal multiple sclerosis: Positive correlation with disease severity. Journal of Neuroimmunology, 178(1–2), 156–160.

    Article  CAS  PubMed  Google Scholar 

  • Mirmonsef, P., Zariffard, M. R., Gilbert, D., Makinde, H., Landay, A. L., & Spear, G. T. (2012). Short-chain fatty acids induce pro-inflammatory cytokine production alone and in combination with toll-like receptor ligands. American Journal of Reproductive Immunology, 67(5), 391–400.

    Article  CAS  PubMed  Google Scholar 

  • Miyake, S., Kim, S., Suda, W., Oshima, K., Nakamura, M., Matsuoka, T., et al. (2015). Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS ONE, 10(9), e0137429.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizuno, M., Noto, D., Kaga, N., Chiba, A., & Miyake, S. (2017). The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models. PLoS ONE, 12(2), e0173032.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammadi, A. A., Jazayeri, S., Khosravi-Darani, K., Solati, Z., Mohammadpour, N., Asemi, Z., et al. (2016). The effects of probiotics on mental health and hypothalamic–pituitary–adrenal axis: A randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutritional Neuroscience, 19(9), 387–395.

    Article  CAS  PubMed  Google Scholar 

  • Monney, L., Sabatos, C. A., Gaglia, J. L., Ryu, A., Waldner, H., Chernova, T., et al. (2002). Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature, 415(6871), 536–541. https://doi.org/10.1038/415536a

    Article  CAS  PubMed  Google Scholar 

  • Moore, S. (2013). Major depression and multiple sclerosis—a case report. Journal of Medicine and Life, 6(3), 290–291.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morante-Palacios, O., Fondelli, F., Ballestar, E., & Martínez-Cáceres, E. M. (2021). Tolerogenic dendritic cells in autoimmunity and inflammatory diseases. Trends in Immunology, 42(1), 59–75. https://doi.org/10.1016/j.it.2020.11.001

    Article  CAS  PubMed  Google Scholar 

  • Mu, Q., Zhang, H., Liao, X., Lin, K., Liu, H., Edwards, M. R., et al. (2017). Control of lupus nephritis by changes of gut microbiota. Microbiome, 5(1), 1–12.

    Article  Google Scholar 

  • Mueller, S., Saunier, K., Hanisch, C., Norin, E., Alm, L., Midtvedt, T., et al. (2006). Differences in fecal microbiota in different European study populations in relation to age, gender, and country: A cross-sectional study. Applied and Environmental Microbiology, 72(2), 1027–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller-Ladner, U., Jones, J. L., Wetsel, R. A., Gay, S., Raine, C. S., & Barnum, S. R. (1996). Enhanced expression of chemotactic receptors in multiple sclerosis lesions. Journal of the Neurological Sciences, 144(1–2), 135–141. https://doi.org/10.1016/s0022-510x(96)00217-1

    Article  PubMed  Google Scholar 

  • Murphy, J. M., Ngai, L., Mortha, A., & Crome, S. Q. (2022). Tissue-dependent adaptations and functions of innate lymphoid cells. Frontiers in Immunology, 13, 836999. https://doi.org/10.3389/fimmu.2022.836999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naegele, M., Tillack, K., Reinhardt, S., Schippling, S., Martin, R., & Sospedra, M. (2012). Neutrophils in multiple sclerosis are characterized by a primed phenotype. Journal of Neuroimmunology, 242(1–2), 60–71.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi, N., Tashiro, K., Kuhara, S., Hayashi, T., Sugimoto, N., & Tobe, T. (2009). Regulation of virulence by butyrate sensing in enterohaemorrhagic Escherichia coli. Microbiology, 155(2), 521–530.

    Article  CAS  PubMed  Google Scholar 

  • Nastasi, C., Candela, M., Bonefeld, C. M., Geisler, C., Hansen, M., Krejsgaard, T., et al. (2015). The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Scientific Reports, 5(1), 16148. https://doi.org/10.1038/srep16148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nastasi, C., Fredholm, S., Willerslev-Olsen, A., Hansen, M., Bonefeld, C. M., Geisler, C., et al. (2017). Butyrate and propionate inhibit antigen-specific CD8(+) T cell activation by suppressing IL-12 production by antigen-presenting cells. Science and Reports, 7(1), 14516. https://doi.org/10.1038/s41598-017-15099-w

    Article  CAS  Google Scholar 

  • Nouri, M., Bredberg, A., Weström, B., & Lavasani, S. (2014). Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells. PLoS ONE, 9(9), e106335.

    Article  PubMed  PubMed Central  Google Scholar 

  • Obradovic, D., Andjelic, T., Ninkovic, M., Dejanovic, B., & Kotur-Stevuljevic, J. (2021). Superoxide dismutase (SOD), advanced oxidation protein products (AOPP), and disease-modifying treatment are related to better relapse recovery after corticosteroid treatment in multiple sclerosis. Neurological Sciences, 42, 3241–3247.

    Article  PubMed  Google Scholar 

  • Ochel, A., Tiegs, G., & Neumann, K. (2019). Type 2 innate lymphoid cells in liver and gut: from current knowledge to future perspectives. International Journal of Molecular Sciences, 20(8), 1896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochoa-Repáraz, J., Mielcarz, D. W., Ditrio, L. E., Burroughs, A. R., Foureau, D. M., Haque-Begum, S., et al. (2009). Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis1. The Journal of Immunology, 183(10), 6041–6050. https://doi.org/10.4049/jimmunol.0900747

    Article  CAS  PubMed  Google Scholar 

  • Ogbonnaya, E. S., Clarke, G., Shanahan, F., Dinan, T. G., Cryan, J. F., & O’Leary, O. F. (2015). Adult hippocampal neurogenesis is regulated by the microbiome. Biological Psychiatry, 78(4), e7-9. https://doi.org/10.1016/j.biopsych.2014.12.023

    Article  PubMed  Google Scholar 

  • Ohnmacht, C., Pullner, A., King, S. B., Drexler, I., Meier, S., Brocker, T., et al. (2009). Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. Journal of Experimental Medicine, 206(3), 549–559. https://doi.org/10.1084/jem.20082394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuda, D. T., Siva, A., Kantarci, O., Inglese, M., Katz, I., Tutuncu, M., et al. (2014). Radiologically isolated syndrome: 5-year risk for an initial clinical event. PLoS ONE, 9(3), e90509. https://doi.org/10.1371/journal.pone.0090509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ordoñez-Rodriguez, A., Roman, P., Rueda-Ruzafa, L., Campos-Rios, A., & Cardona, D. (2023). Changes in gut microbiota and multiple sclerosis: a systematic review. International Journal of Environmental Research and Public Health, 20(5), 4624.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Riordan, K. J., Collins, M. K., Moloney, G. M., Knox, E. G., Aburto, M. R., Fülling, C., et al. (2022). Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Molecular and Cellular Endocrinology, 546, 111572. https://doi.org/10.1016/j.mce.2022.111572

    Article  CAS  PubMed  Google Scholar 

  • Pakpoor, J., Handel, A. E., Giovannoni, G., Dobson, R., & Ramagopalan, S. V. (2012). Meta-analysis of the relationship between multiple sclerosis and migraine. PLoS ONE. https://doi.org/10.1371/journal.pone.0045295

    Article  PubMed  PubMed Central  Google Scholar 

  • Panda, S. K., & Colonna, M. (2019a). Innate lymphoid cells in mucosal immunity. Frontiers in Immunology, 10, 861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda, S. K., & Colonna, M. (2019b). Innate lymphoid cells in mucosal immunity. Frontiers in Immunology. https://doi.org/10.3389/fimmu.2019.00861

    Article  PubMed  PubMed Central  Google Scholar 

  • Paré, A., Mailhot, B., Lévesque, S. A., & Lacroix, S. (2017). Involvement of the IL-1 system in experimental autoimmune encephalomyelitis and multiple sclerosis: Breaking the vicious cycle between IL-1β and GM-CSF. Brain, Behavior, and Immunity, 62, 1–8.

    Article  PubMed  Google Scholar 

  • Park, J., & Kim, C. H. (2021). Regulation of common neurological disorders by gut microbial metabolites. Experimental & Molecular Medicine, 53(12), 1821–1833. https://doi.org/10.1038/s12276-021-00703-x

    Article  CAS  Google Scholar 

  • Park, J., Wang, Q., Wu, Q., Mao-Draayer, Y., & Kim, C. H. (2019). Bidirectional regulatory potentials of short-chain fatty acids and their G-protein-coupled receptors in autoimmune neuroinflammation. Scientific Reports, 9(1), 8837.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel, P. G., Patel, A. C., Chakraborty, P., & Gosai, H. B. (2023). Impact of Dietary Habits, Ethnicity, and Geographical Provenance in Shaping Human Gut Microbiome Diversity. In Probiotics, Prebiotics, Synbiotics, and Postbiotics: Human Microbiome and Human Health (pp. 3–27): Springer.

  • Paterka, M., Siffrin, V., Voss, J. O., Werr, J., Hoppmann, N., Gollan, R., et al. (2016). Gatekeeper role of brain antigen-presenting CD11c+ cells in neuroinflammation. EMBO Journal, 35(1), 89–101. https://doi.org/10.15252/embj.201591488

    Article  CAS  PubMed  Google Scholar 

  • Pelletier, M., Maggi, L., Micheletti, A., Lazzeri, E., Tamassia, N., Costantini, C., et al. (2010). Evidence for a cross-talk between human neutrophils and Th17 cells. Blood, 115(2), 335–343. https://doi.org/10.1182/blood-2009-04-216085

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Pérez, S., Domínguez-Mozo, M. I., Alonso-Gómez, A., Medina, S., Villarrubia, N., Fernández-Velasco, J. I., et al. (2020). Acetate correlates with disability and immune response in multiple sclerosis. PeerJ, 8, e10220.

    Article  PubMed  PubMed Central  Google Scholar 

  • Piekarska, J., Miśta, D., Houszka, M., Kroliczewska, B., Zawadzki, W., & Gorczykowski, M. (2011). Trichinella spiralis: The influence of short chain fatty acids on the proliferation of lymphocytes, the goblet cell count and apoptosis in the mouse intestine. Experimental Parasitology, 128(4), 419–426.

    Article  CAS  PubMed  Google Scholar 

  • Plichta, D. R., Graham, D. B., Subramanian, S., & Xavier, R. J. (2019). Therapeutic opportunities in inflammatory bowel disease: Mechanistic dissection of host-microbiome relationships. Cell, 178(5), 1041–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell, N., Walker, A. W., Stolarczyk, E., Canavan, J. B., Gökmen, M. R., Marks, E., et al. (2012). The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity, 37(4), 674–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prosberg, M., Bendtsen, F., Vind, I., Petersen, A. M., & Gluud, L. L. (2016). The association between the gut microbiota and the inflammatory bowel disease activity: A systematic review and meta-analysis. Scandinavian Journal of Gastroenterology, 51(12), 1407–1415. https://doi.org/10.1080/00365521.2016.1216587

    Article  CAS  PubMed  Google Scholar 

  • Rahimlou, M., Hosseini, S. A., Majdinasab, N., Haghighizadeh, M. H., & Husain, D. (2022). Effects of long-term administration of Multi-Strain Probiotic on circulating levels of BDNF, NGF, IL-6 and mental health in patients with multiple sclerosis: A randomized, double-blind, placebo-controlled trial. Nutritional Neuroscience, 25(2), 411–422.

    Article  CAS  PubMed  Google Scholar 

  • Rajilić-Stojanović, M., Biagi, E., Heilig, H. G., Kajander, K., Kekkonen, R. A., Tims, S., et al. (2011). Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology, 141(5), 1792–1801. https://doi.org/10.1053/j.gastro.2011.07.043

    Article  CAS  PubMed  Google Scholar 

  • Raqib, R., Sarker, P., Bergman, P., Ara, G., Lindh, M., Sack, D. A., et al. (2006). Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proceedings of the National Academy of Sciences, 103(24), 9178–9183.

    Article  CAS  Google Scholar 

  • Rauf, A., Khalil, A. A., Rahman, U.-u.-., Khalid, A., Naz, S., Shariati, M. A., et al. (2022). Recent advances in the therapeutic application of short-chain fatty acids (SCFAs): An updated review. Critical Reviews in Food Science and Nutrition, 62(22), 6034–6054.

    Article  CAS  PubMed  Google Scholar 

  • Rawji, K. S., & Yong, V. W. (2013). The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clinical and Developmental Immunology, 2013, 948976. https://doi.org/10.1155/2013/948976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rekha, K., Venkidasamy, B., Samynathan, R., Nagella, P., Rebezov, M., Khayrullin, M., et al. (2022). Short-chain fatty acid: An updated review on signaling, metabolism, and therapeutic effects. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2022.2124231

    Article  PubMed  Google Scholar 

  • Rennick, D., Berg, D., & Holland, G. (1992). Interleukin 10: An overview. Progress in Growth Factor Research, 4(3), 207–227.

    Article  CAS  PubMed  Google Scholar 

  • Reynders, A., Yessaad, N., Vu Manh, T.-P., Dalod, M., Fenis, A., Aubry, C., et al. (2011). Identity, regulation and in vivo function of gut NKp46+RORγt+ and NKp46+RORγt− lymphoid cells. The EMBO Journal, 30(14), 2934–2947. https://doi.org/10.1038/emboj.2011.201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynders, T., Devolder, L., Valles-Colomer, M., Van Remoortel, A., Joossens, M., De Keyser, J., et al. (2020). Gut microbiome variation is associated to Multiple Sclerosis phenotypic subtypes. Annals of Clinical Translational Neurology, 7(4), 406–419. https://doi.org/10.1002/acn3.51004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ríos-Covián, D., Ruas-Madiedo, P., Margolles, A., Gueimonde, M., de Los Reyes-Gavilán, C. G., & Salazar, N. (2016). Intestinal short chain fatty acids and their link with diet and human health. Frontiers in Microbiology, 7, 185. https://doi.org/10.3389/fmicb.2016.00185

    Article  PubMed  PubMed Central  Google Scholar 

  • Roger, T., Lugrin, J., Le Roy, D., Goy, G., Mombelli, M., Koessler, T., et al. (2011). Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection. Blood, the Journal of the American Society of Hematology, 117(4), 1205–1217.

    CAS  Google Scholar 

  • Rogers, G., Keating, D. J., Young, R. L., Wong, M.-L., Licinio, J., & Wesselingh, S. (2016). From gut dysbiosis to altered brain function and mental illness: Mechanisms and pathways. Molecular Psychiatry, 21(6), 738–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross, E. A., Devitt, A., & Johnson, J. R. (2021). Macrophages: The good, the bad, and the gluttony. Frontiers in Immunology, 12, 708186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi, O., Van Berkel, L. A., Chain, F., Tanweer Khan, M., Taverne, N., Sokol, H., et al. (2016). Faecalibacterium prausnitzii A2–165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. Scientific Reports, 6(1), 18507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggieri, S., Petracca, M., De Giglio, L., De Luca, F., Giannì, C., Gurreri, F., et al. (2021). A matter of atrophy: Differential impact of brain and spine damage on disability worsening in multiple sclerosis. Journal of Neurology, 268(12), 4698–4706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salami, M., Kouchaki, E., Asemi, Z., & Tamtaji, O. R. (2019). How probiotic bacteria influence the motor and mental behaviors as well as immunological and oxidative biomarkers in multiple sclerosis? A double blind clinical trial. Journal of Functional Foods, 52, 8–13.

    Article  CAS  Google Scholar 

  • Salehipour, Z., Haghmorad, D., Sankian, M., Rastin, M., Nosratabadi, R., Dallal, M. M. S., et al. (2017). Bifidobacterium animalis in combination with human origin of Lactobacillus plantarum ameliorate neuroinflammation in experimental model of multiple sclerosis by altering CD4+ T cell subset balance. Biomedicine & Pharmacotherapy, 95, 1535–1548.

    Article  CAS  Google Scholar 

  • Sánchez, B., Delgado, S., Blanco-Míguez, A., Lourenço, A., Gueimonde, M., & Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition & Food Research, 61(1), 1600240.

    Article  Google Scholar 

  • Sandoval, A., Triviños, F., Sanhueza, A., Carretta, D., Hidalgo, M. A., Hancke, J. L., et al. (2007). Propionate induces pH(i) changes through calcium flux, ERK1/2, p38, and PKC in bovine neutrophils. Veterinary Immunology and Immunopathology, 115(3–4), 286–298. https://doi.org/10.1016/j.vetimm.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  • Sanna, S., van Zuydam, N. R., Mahajan, A., Kurilshikov, A., Vich Vila, A., Võsa, U., et al. (2019). Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nature Genetics, 51(4), 600–605. https://doi.org/10.1038/s41588-019-0350-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos-Marcos, J. A., Rangel-Zuñiga, O. A., Jimenez-Lucena, R., Quintana-Navarro, G. M., Garcia-Carpintero, S., Malagon, M. M., et al. (2018). Influence of gender and menopausal status on gut microbiota. Maturitas, 116, 43–53.

    Article  PubMed  Google Scholar 

  • Saresella, M., Marventano, I., Barone, M., La Rosa, F., Piancone, F., Mendozzi, L., et al. (2020). Alterations in circulating fatty acid are associated with gut microbiota dysbiosis and inflammation in multiple sclerosis. Frontiers in Immunology, 11, 1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkola, T., Iles, M. R., Kohlenberg-Mueller, K., & Eriksson, C. P. (2002). Ethanol, acetaldehyde, acetate, and lactate levels after alcohol intake in white men and women: effect of 4-methylpyrazole. Alcoholism: Clinical and Experimental Research, 26(2), 239–245.

    Article  CAS  PubMed  Google Scholar 

  • Satoh-Takayama, N., Vosshenrich, C. A., Lesjean-Pottier, S., Sawa, S., Lochner, M., Rattis, F., et al. (2008). Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity, 29(6), 958–970.

    Article  CAS  PubMed  Google Scholar 

  • Sawa, S., Lochner, M., Satoh-Takayama, N., Dulauroy, S., Bérard, M., Kleinschek, M., et al. (2011). RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nature Immunology, 12(4), 320–326. https://doi.org/10.1038/ni.2002

    Article  CAS  PubMed  Google Scholar 

  • Scheppach, W. (1994). Effects of short chain fatty acids on gut morphology and function. Gut, 35(1 Suppl), S35–S38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scher, J. U., Ubeda, C., Artacho, A., Attur, M., Isaac, S., Reddy, S. M., et al. (2015). Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis & Rhematology, 67(1), 128–139. https://doi.org/10.1002/art.38892

    Article  CAS  Google Scholar 

  • Schoeps, V. A., Zhou, X., Horton, M. K., Zhu, F., McCauley, K. E., Nasr, Z., et al. (2024). Short-chain fatty acid producers in the gut are associated with pediatric multiple sclerosis onset. Annals of Clinical and Translational Neurology, 11(1), 169–184. https://doi.org/10.1002/acn3.51944

    Article  CAS  PubMed  Google Scholar 

  • Schreibelt, G., van Horssen, J., van Rossum, S., Dijkstra, C. D., Drukarch, B., & de Vries, H. E. (2007). Therapeutic potential and biological role of endogenous antioxidant enzymes in multiple sclerosis pathology. Brain Research Reviews, 56(2), 322–330. https://doi.org/10.1016/j.brainresrev.2007.07.005

    Article  CAS  PubMed  Google Scholar 

  • Schulthess, J., Pandey, S., Capitani, M., Rue-Albrecht, K., Arnold, I., Franchini, F., et al. (2019a). The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity. https://doi.org/10.1016/j.immuni.2018.12.018

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwiertz, A., Taras, D., Schäfer, K., Beijer, S., Bos, N. A., Donus, C., et al. (2010). Microbiota and SCFA in lean and overweight healthy subjects. Obesity (silver Spring), 18(1), 190–195. https://doi.org/10.1038/oby.2009.167

    Article  PubMed  Google Scholar 

  • Secher, T., Kassem, S., Benamar, M., Bernard, I., Boury, M., Barreau, F., et al. (2017). Oral administration of the probiotic strain Escherichia coli Nissle 1917 reduces susceptibility to neuroinflammation and repairs experimental autoimmune encephalomyelitis-induced intestinal barrier dysfunction. Frontiers in Immunology, 8, 1096.

    Article  PubMed  PubMed Central  Google Scholar 

  • Seehus, C. R., Kadavallore, A., Torre, B., d. l., Yeckes, A. R., Wang, Y., Tang, J., et al. (2017). Alternative activation generates IL-10 producing type 2 innate lymphoid cells. Nature Communications, 8(1), 1900.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sencio, V., Barthelemy, A., Tavares, L. P., Machado, M. G., Soulard, D., Cuinat, C., et al. (2020). Gut dysbiosis during influenza contributes to pulmonary pneumococcal superinfection through altered short-chain fatty acid production. Cell Reports, 30(9), 2934-2947.e2936. https://doi.org/10.1016/j.celrep.2020.02.013

    Article  CAS  PubMed  Google Scholar 

  • Sepahi, A., Liu, Q., Friesen, L., & Kim, C. H. (2021). Dietary fiber metabolites regulate innate lymphoid cell responses. Mucosal Immunology, 14(2), 317–330. https://doi.org/10.1038/s41385-020-0312-8

    Article  CAS  PubMed  Google Scholar 

  • Shahi, S. K., Freedman, S. N., & Mangalam, A. K. (2017). Gut microbiome in multiple sclerosis: The players involved and the roles they play. Gut Microbes, 8(6), 607–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahinas, D., Silverman, M., Sittler, T., Chiu, C., Kim, P., Allen-Vercoe, E., et al. (2012). Toward an understanding of changes in diversity associated with fecal microbiome transplantation based on 16S rRNA gene deep sequencing. MBio, 3(5), https://doi.org/10.1128/mbio. 00338–00312.

  • Shastri, P., McCarville, J., Kalmokoff, M., Brooks, S. P., & Green-Johnson, J. M. (2015). Sex differences in gut fermentation and immune parameters in rats fed an oligofructose-supplemented diet. Biology of Sex Differences, 6, 1–12.

    Article  Google Scholar 

  • Shen, G., Wu, J., Ye, B.-C., & Qi, N. (2021). Gut microbiota-derived metabolites in the development of diseases. Canadian Journal of Infectious Diseases and Medical Microbiology, 2021, 6658674. https://doi.org/10.1155/2021/6658674

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherman, S. B., Sarsour, N., Salehi, M., Schroering, A., Mell, B., Joe, B., et al. (2018). Prenatal androgen exposure causes hypertension and gut microbiota dysbiosis. Gut Microbes, 9(5), 400–421.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, T. T., Xin, Z., Hua, L., Zhao, R. X., Yang, Y. L., Wang, H., et al. (2019). Alterations in the intestinal microbiota of patients with severe and active Graves’ orbitopathy: A cross-sectional study. Journal of Endocrinological Investigation, 42(8), 967–978. https://doi.org/10.1007/s40618-019-1010-9

    Article  CAS  PubMed  Google Scholar 

  • Shibata, F., Konishi, K., Kato, H., Komorita, N., al-Mokdad, M., Fujioka, M., et al. (1995). Recombinant production and biological properties of rat cytokine-induced neutrophil chemoattractants, GRO/CINC-2 alpha, CINC-2 beta and CINC-3. European Journal of Biochemistry, 231(2), 306–311. https://doi.org/10.1111/j.1432-1033.1995.tb20701.x

    Article  CAS  PubMed  Google Scholar 

  • Silva, Y. P., Bernardi, A., & Frozza, R. L. (2020). The role of short-chain fatty acids from gut microbiota in gut-brain communication. Frontiers in Endocrinology (lausanne), 11, 25. https://doi.org/10.3389/fendo.2020.00025

    Article  Google Scholar 

  • Silveira, C., Guedes, R., Maia, D., Curral, R., & Coelho, R. (2019). Neuropsychiatric symptoms of multiple sclerosis: State of the art. Psychiatry Investigation, 16(12), 877.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, N., Thangaraju, M., Prasad, P. D., Martin, P. M., Lambert, N. A., Boettger, T., et al. (2010). Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases. Journal of Biological Chemistry, 285(36), 27601–27608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, R. K., Chang, H.-W., Yan, D., Lee, K. M., Ucmak, D., Wong, K., et al. (2017). Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 15(1), 1–17.

    Article  Google Scholar 

  • Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly, Y. M., et al. (2013b). The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 341(6145), 569–573. https://doi.org/10.1126/science.1241165

    Article  CAS  PubMed  Google Scholar 

  • Smith, P. M., Howitt, M. R., Panikov, N., Michaud, M., Gallini, C. A., Bohlooly-y, M., et al. (2013a). The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 341(6145), 569–573.

    Article  CAS  PubMed  Google Scholar 

  • Steri, M., Orrù, V., Idda, M. L., Pitzalis, M., Pala, M., Zara, I., et al. (2017). Overexpression of the cytokine BAFF and autoimmunity risk. New England Journal of Medicine, 376(17), 1615–1626. https://doi.org/10.1056/NEJMoa1610528

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., Wilkinson, B. J., Standiford, T. J., Akinbi, H. T., & O’Riordan, M. X. (2012). Fatty acids regulate stress resistance and virulence factor production for Listeria monocytogenes. Journal of Bacteriology, 194(19), 5274–5284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabas, I. (2005). Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: The importance of lesion stage and phagocytic efficiency. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(11), 2255–2264. https://doi.org/10.1161/01.ATV.0000184783.04864.9f

    Article  CAS  PubMed  Google Scholar 

  • Taggart, A. K., Kero, J., Gan, X., Cai, T. Q., Cheng, K., Ippolito, M., et al. (2005). (D)-beta-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. Journal of Biological Chemistry, 280(29), 26649–26652. https://doi.org/10.1074/jbc.C500213200

    Article  CAS  PubMed  Google Scholar 

  • Takagi, T., Naito, Y., Inoue, R., Kashiwagi, S., Uchiyama, K., Mizushima, K., et al. (2019). Differences in gut microbiota associated with age, sex, and stool consistency in healthy Japanese subjects. Journal of Gastroenterology, 54, 53–63.

    Article  PubMed  Google Scholar 

  • Tamtaji, O. R., Kouchaki, E., Salami, M., Aghadavod, E., Akbari, E., Tajabadi-Ebrahimi, M., et al. (2017). The effects of probiotic supplementation on gene expression related to inflammation, insulin, and lipids in patients with multiple sclerosis: A randomized, double-blind, placebo-controlled trial. Journal of the American College of Nutrition, 36(8), 660–665.

    Article  CAS  PubMed  Google Scholar 

  • Tan, J., McKenzie, C., Potamitis, M., Thorburn, A. N., Mackay, C. R., & Macia, L. (2014a). The role of short-chain fatty acids in health and disease. Advances in Immunology, 121, 91–119. https://doi.org/10.1016/b978-0-12-800100-4.00003-9

    Article  CAS  PubMed  Google Scholar 

  • Tan, J., McKenzie, C., Potamitis, M., Thorburn, A. N., Mackay, C. R., & Macia, L. (2014b). The role of short-chain fatty acids in health and disease. Advances in Immunology, 121, 91–119.

    Article  CAS  PubMed  Google Scholar 

  • Tankou, S. K., Regev, K., Healy, B. C., Cox, L. M., Tjon, E., Kivisakk, P., et al. (2018a). Investigation of probiotics in multiple sclerosis. Multiple Sclerosis Journal, 24(1), 58–63.

    Article  CAS  PubMed  Google Scholar 

  • Tankou, S. K., Regev, K., Healy, B. C., Tjon, E., Laghi, L., Cox, L. M., et al. (2018b). A probiotic modulates the microbiome and immunity in multiple sclerosis. Annals of Neurology, 83(6), 1147–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao, R., De Zoeten, E. F., Özkaynak, E., Chen, C., Wang, L., Porrett, P. M., et al. (2007). Deacetylase inhibition promotes the generation and function of regulatory T cells. Nature Medicine, 13(11), 1299–1307.

    Article  CAS  PubMed  Google Scholar 

  • Tedelind, S., Westberg, F., Kjerrulf, M., & Vidal, A. (2007a). Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease. World Journal of Gastroenterology, 13(20), 2826–2832. https://doi.org/10.3748/wjg.v13.i20.2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tedelind, S., Westberg, F., Kjerrulf, M., & Vidal, A. (2007b). Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: A study with relevance to inflammatory bowel disease. World Journal of Gastroenterology: WJG, 13(20), 2826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tejesvi, M. V., Arvonen, M., Kangas, S. M., Keskitalo, P. L., Pirttilä, A. M., Karttunen, T. J., et al. (2016). Faecal microbiome in new-onset juvenile idiopathic arthritis. European Journal of Clinical Microbiology and Infectious Diseases, 35(3), 363–370. https://doi.org/10.1007/s10096-015-2548-x

    Article  CAS  PubMed  Google Scholar 

  • Thio, C.L.-P., Chi, P.-Y., Lai, A.C.-Y., & Chang, Y.-J. (2018a). Regulation of type 2 innate lymphoid cell–dependent airway hyperreactivity by butyrate. Journal of Allergy and Clinical Immunology, 142(6), 1867-1883.e1812. https://doi.org/10.1016/j.jaci.2018.02.032

    Article  CAS  PubMed  Google Scholar 

  • Thio, C.L.-P., Chi, P.-Y., Lai, A.C.-Y., & Chang, Y.-J. (2018b). Regulation of type 2 innate lymphoid cell–dependent airway hyperreactivity by butyrate. Journal of Allergy and Clinical Immunology. https://doi.org/10.1016/j.jaci.2018.02.032

    Article  PubMed  Google Scholar 

  • Thion, M. S., Low, D., Silvin, A., Chen, J., Grisel, P., Schulte-Schrepping, J., et al. (2018). Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell. https://doi.org/10.1016/j.cell.2017.11.042

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson, A. J., Banwell, B. L., Barkhof, F., Carroll, W. M., Coetzee, T., Comi, G., et al. (2018). Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology, 17(2), 162–173.

    Article  PubMed  Google Scholar 

  • Tian, X., Hellman, J., Horswill, A. R., Crosby, H. A., Francis, K. P., & Prakash, A. (2019). Elevated gut microbiome-derived propionate levels are associated with reduced sterile lung inflammation and bacterial immunity in mice. Frontiers in Microbiology, 10, 159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trapecar, M., Communal, C., Velazquez, J., Maass, C. A., Huang, Y.-J., Schneider, K., et al. (2020). Gut-liver physiomimetics reveal paradoxical modulation of IBD-related inflammation by short-chain fatty acids. Cell Systems. https://doi.org/10.1016/j.cels.2020.02.008

    Article  PubMed  PubMed Central  Google Scholar 

  • Tremlett, H., Fadrosh, D. W., Faruqi, A. A., Hart, J., Roalstad, S., Graves, J., et al. (2016a). Gut microbiota composition and relapse risk in pediatric MS: A pilot study. Journal of the Neurological Sciences, 363, 153–157. https://doi.org/10.1016/j.jns.2016.02.042

    Article  PubMed  PubMed Central  Google Scholar 

  • Tremlett, H., Fadrosh, D. W., Faruqi, A. A., Hart, J., Roalstad, S., Graves, J., et al. (2016b). Gut microbiota composition and relapse risk in pediatric MS: A pilot study. Journal of the Neurological Sciences, 363, 153–157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Trompette, A., Gollwitzer, E. S., Yadava, K., Sichelstiel, A. K., Sprenger, N., Ngom-Bru, C., et al. (2014). Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nature Medicine, 20(2), 159–166. https://doi.org/10.1038/nm.3444

    Article  CAS  PubMed  Google Scholar 

  • Valdearcos, M., Esquinas, E., Meana, C., Peña, L., Gil-de-Gómez, L., Balsinde, J., et al. (2012). Lipin-2 reduces proinflammatory signaling induced by saturated fatty acids in macrophages. Journal of Biological Chemistry, 287(14), 10894–10904. https://doi.org/10.1074/jbc.M112.342915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Hee, B., & Wells, J. M. (2021). Microbial regulation of host physiology by short-chain fatty acids. Trends in Microbiology, 29(8), 700–712.

    Article  PubMed  Google Scholar 

  • Van Kaer, L., Postoak, J. L., Wang, C., Yang, G., & Wu, L. (2019). Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE. Cellular & Molecular Immunology, 16(6), 531–539. https://doi.org/10.1038/s41423-019-0221-5

    Article  CAS  Google Scholar 

  • Vanderhaeghen, S., Lacroix, C., & Schwab, C. (2015). Methanogen communities in stools of humans of different age and health status and co-occurrence with bacteria. FEMS Microbiology Letters. https://doi.org/10.1093/femsle/fnv092

    Article  PubMed  Google Scholar 

  • Ventura, R., Iizumi, T., Battaglia, T., Liu, M., Perez-Perez, G., Herbert, J., et al. (2019). Gut microbiome of treatment-naïve MS patients of different ethnicities early in disease course. Scientific Reports, 9(1), 16396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhaar, B. J. H., Hendriksen, H. M. A., de Leeuw, F. A., Doorduijn, A. S., van Leeuwenstijn, M., Teunissen, C. E., et al. (2021). Gut microbiota composition is related to AD pathology. Frontiers in Immunology, 12, 794519. https://doi.org/10.3389/fimmu.2021.794519

    Article  CAS  PubMed  Google Scholar 

  • Vinolo, M. A., Hatanaka, E., Lambertucci, R. H., Newsholme, P., & Curi, R. (2009). Effects of short chain fatty acids on effector mechanisms of neutrophils. Cell Biochemistry and Function, 27(1), 48–55. https://doi.org/10.1002/cbf.1533

    Article  CAS  PubMed  Google Scholar 

  • Vinolo, M. A., Rodrigues, H. G., Hatanaka, E., Sato, F. T., Sampaio, S. C., & Curi, R. (2011). Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. Journal of Nutritional Biochemistry, 22(9), 849–855. https://doi.org/10.1016/j.jnutbio.2010.07.009

    Article  CAS  PubMed  Google Scholar 

  • Vivier, E., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J. P., Eberl, G., et al. (2018). Innate lymphoid cells: 10 years on. Cell, 174(5), 1054–1066.

    Article  CAS  PubMed  Google Scholar 

  • Von Moltke, J., Ji, M., Liang, H.-E., & Locksley, R. M. (2016). Tuft-cell-derived IL-25 regulates an intestinal ILC2–epithelial response circuit. Nature, 529(7585), 221–225.

    Article  Google Scholar 

  • Walton, C., King, R., Rechtman, L., Kaye, W., Leray, E., Marrie, R. A., et al. (2020). Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Multiple Sclerosis Journal, 26(14), 1816–1821.

    Article  PubMed  Google Scholar 

  • Wanders, D., Graff, E. C., & Judd, R. L. (2012). Effects of high fat diet on GPR109A and GPR81 gene expression. Biochemical and Biophysical Research Communications, 425(2), 278–283. https://doi.org/10.1016/j.bbrc.2012.07.082

    Article  CAS  PubMed  Google Scholar 

  • Wang, C., Yang, J., Xie, L., Saimaier, K., Zhuang, W., Han, M., et al. (2022). Methyl butyrate alleviates experimental autoimmune encephalomyelitis and regulates the balance of effector T cells and regulatory T cells. Inflammation, 45(3), 977–991. https://doi.org/10.1007/s10753-021-01596-8

    Article  CAS  PubMed  Google Scholar 

  • Weinshenker, B. G., Bass, B., Rice, G. P. A., Noseworthy, J., Carriere, W., Baskerville, J., et al. (1989). The natural history of multiple sclerosis: a geographically based study: I clinical course and disability. Brain, 112(1), 133–146. https://doi.org/10.1093/brain/112.1.133

    Article  PubMed  Google Scholar 

  • Wexler, A. G., & Goodman, A. L. (2017). An insider’s perspective: Bacteroides as a window into the microbiome. Nature Microbiology, 2(5), 1–11.

    Article  Google Scholar 

  • Wright, E. K., Kamm, M. A., Teo, S. M., Inouye, M., Wagner, J., & Kirkwood, C. D. (2015). Recent advances in characterizing the gastrointestinal microbiome in Crohn’s disease: A systematic review. Inflammatory Bowel Diseases, 21(6), 1219–1228. https://doi.org/10.1097/mib.0000000000000382

    Article  PubMed  Google Scholar 

  • Wunsch, M., Jabari, S., Voussen, B., Enders, M., Srinivasan, S., Cossais, F., et al. (2017). The enteric nervous system is a potential autoimmune target in multiple sclerosis. Acta Neuropathologica, 134, 281–295.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, T., & Turner, J. E. (2018). Innate lymphoid cells in autoimmunity and chronic inflammatory diseases. Semin Immunopathol, 40(4), 393–406. https://doi.org/10.1007/s00281-018-0670-4

    Article  CAS  PubMed  Google Scholar 

  • Xiu, W., Chen, Q., Wang, Z., Wang, J., & Zhou, Z. (2020). Microbiota-derived short chain fatty acid promotion of Amphiregulin expression by dendritic cells is regulated by GPR43 and Blimp-1. Biochemical and Biophysical Research Communications, 533(3), 282–288.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita, M., Ukibe, K., Matsubara, Y., Hosoya, T., Sakai, F., Kon, S., et al. (2018). Lactobacillus helveticus SBT2171 attenuates experimental autoimmune encephalomyelitis in mice. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2017.02596

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao, C., Muir, J., & Gibson, P. (2016). Insights into colonic protein fermentation, its modulation and potential health implications. Alimentary Pharmacology & Therapeutics, 43(2), 181–196.

    Article  CAS  Google Scholar 

  • Yokote, H., Miyake, S., Croxford, J. L., Oki, S., Mizusawa, H., & Yamamura, T. (2008). NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. The American Journal of Pathology, 173(6), 1714–1723. https://doi.org/10.2353/ajpath.2008.080622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, L., Zhong, X., He, Y., & Shi, Y. (2020). Butyrate, but not propionate, reverses maternal diet-induced neurocognitive deficits in offspring. Pharmacological Research, 160, 105082.

    Article  CAS  PubMed  Google Scholar 

  • Yurkovetskiy, L., Burrows, M., Khan, A. A., Graham, L., Volchkov, P., Becker, L., et al. (2013). Gender bias in autoimmunity is influenced by microbiota. Immunity, 39(2), 400–412.

    Article  CAS  PubMed  Google Scholar 

  • Zapolska-Downar, D., Siennicka, A., Kaczmarczyk, M., Kołodziej, B., & Naruszewicz, M. (2004). Butyrate inhibits cytokine-induced VCAM-1 and ICAM-1 expression in cultured endothelial cells: The role of NF-kappaB and PPARalpha. Journal of Nutritional Biochemistry, 15(4), 220–228. https://doi.org/10.1016/j.jnutbio.2003.11.008

    Article  CAS  PubMed  Google Scholar 

  • Zeevi, D., Korem, T., Zmora, N., Israeli, D., Rothschild, D., Weinberger, A., et al. (2015). Personalized nutrition by prediction of glycemic responses. Cell, 163(5), 1079–1094. https://doi.org/10.1016/j.cell.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  • Zeng, B., Shi, S., Ashworth, G., Dong, C., Liu, J., & Xing, F. (2019). ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell Death & Disease, 10(4), 315. https://doi.org/10.1038/s41419-019-1540-2

    Article  Google Scholar 

  • Zhao, L., Zhang, F., Ding, X., Wu, G., Lam, Y. Y., Wang, X., et al. (2018). Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 359(6380), 1151–1156. https://doi.org/10.1126/science.aao5774

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Z., Packialakshmi, B., Makkar, S., Dridi, S., & Rath, N. (2014). Effect of butyrate on immune response of a chicken macrophage cell line. Veterinary Immunology and Immunopathology, 162(1–2), 24–32.

    Article  CAS  PubMed  Google Scholar 

  • Zozulya, A. L., & Wiendl, H. (2008). The role of regulatory T cells in multiple sclerosis. Nature Clinical Practice Neurology, 4(7), 384–398. https://doi.org/10.1038/ncpneuro0832

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Researchers Supporting Project Number (RSPD2024R603) King Saud University, Riyadh, Saudi Arabia

Author information

Authors and Affiliations

Authors

Contributions

A. B. C. D. E. F. G. H wrote the main manuscript text and A. B. C. editing text. A. B prepared figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hijaz Ahmad.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadh, M.J., Ahmed, H.M., Alani, Z.K. et al. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromol Med 26, 14 (2024). https://doi.org/10.1007/s12017-024-08783-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12017-024-08783-4

Keywords

Navigation