Skip to main content

Abstract

The factors that influence the composition of the gut microbiome are diet, ethnicity, antibiotics, stress, psychological factors, maternal health during pregnancy, the method of birth (i.e., vaginal birth versus cesarean section), environmental factors, and exercise. The effect of sex hormones has recently been emphasized. Estrogen and androgens, the most widely known sex hormones, influence the gut microbiome, which in turn influences the metabolism of estrogen and androgens. As this relationship became understood, the term “microgenderome” was created, but this concept is not yet widely known. When β-glucuronidase in the gut microbiome converts conjugated estrogens to their deconjugated forms, they enter the enterohepatic circulation and act on estrogen receptors (ERs); this applies to non-ovarian estrogen, but not ovarian estrogen, in pre-menopausal women. Stress in pregnant women impairs vaginal immune activity and reduces the number of Lactobacillus, a component of the vaginal flora. While male children are intensely impacted by this reduction in Lactobacillus, which is accompanied by an increase in anaerobic bacteria such as Bacteroides and Clostridium, this phenomenon is not observed in female children. With age, the number of Enterococci spp. increases with age, that of Bacteroides spp. decreases, and the quantity of Lactobacilli and Bifidobacteria remains stable. Changes in bacteria by age are diverse, but extensive research on sex/gender differences in these changes has yet to be conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Osadchiy V, Martin CR, Mayer EA. The gut-brain axis and the microbiome: mechanisms and clinical implications. Clin Gastroenterol Hepatol. 2019;17:322–32.

    Article  CAS  PubMed  Google Scholar 

  2. Kim YS, Unno T, Kim BY, Park MS. Sex difference in gut microbiota. World J Men’s Health. 2020;38:48–60.

    Article  Google Scholar 

  3. Kwa M, Plottel CS, Blaser MJ, Adams S. The intestinal microbiome and estrogen receptor-positive female breast cancer. J Natl Cancer Inst. 2016;108:djw029.

    PubMed Central  Google Scholar 

  4. Seo AY, Kim N, Oh DH. Abdominal bloating: pathophysiology and treatment. J Neurogastroenterol Motil. 2013;19:433–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee SM, Kim N, Yoon H, Kim YS, Choi SI, Park JH, et al. Compositional and functional changes of gut microbiota in irritable bowel syndrome patients. Gut Liver. 2021;15:253–61.

    Article  PubMed  CAS  Google Scholar 

  6. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14:e1002533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Roger LC, Mccartney AL. Longitudinal investigation of the faecal microbiota of healthy full-term infants using fluorescence in situ hybridization and denaturing gradient gel electrophoresis. Microbiology. 2010:3317–28.

    Google Scholar 

  8. Vulevic J, Juric A, Tzortzis G, Gibson GR. A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J Nutr. 2013;143:324–31.

    Article  CAS  PubMed  Google Scholar 

  9. Davy KP, Seals DR. Total blood volume in healthy young and older men. Am Physiol Soc. 1994;76:2059–62.

    CAS  Google Scholar 

  10. Retzlaff JA, Tauxe WN, Kiel JM, Stroebel CF. Erythrocyte volume, plasma volume, and lean body mass in adult men and women. Blood. 1969;33:649–67.

    Article  CAS  PubMed  Google Scholar 

  11. Young JF, Luecke RH, Pearce BA, Lee T, Ahn H, Baek S, et al. Human organ/tissue growth algorithms that include obese individuals and black/white population organ weight similarities from autopsy data. J Toxicol Environ Health. 2009;72:527–40.

    Article  CAS  Google Scholar 

  12. Czerucka D, Piche T, Rampal P. Review article: yeast as probiotics–Saccharomyces boulardii. Aliment Pharmacol Ther. 2007;26:767–78.

    Article  CAS  PubMed  Google Scholar 

  13. Richard ML, Liguori G, Lamas B, Brandi G, da Costa G, Hoffmann TW, et al. Mucosa-associated microbiota dysbiosis in colitis associated cancer. Gut Microbes. 2018;9:131–42.

    Article  CAS  PubMed  Google Scholar 

  14. Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–9.

    Article  CAS  PubMed  Google Scholar 

  15. Yoon K, Kim N. The effect of microbiota on colon carcinogenesis. J Cancer Prev. 2018;23:117–25.

    Article  PubMed  PubMed Central  Google Scholar 

  16. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691–6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee SM, Kim N, Yoon H, Nam RH, Lee DH. Microbial changes and host response in F344 rat colon depending on sex and age following a high-fat diet. Front Microbiol. 2018;9:2236.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Foley KP, Soumaya Zlitni S, Denou E, Duggan BM, Chan RW, Stearns JC, et al. Long term but not short term exposure to obesity related microbiota promotes host insulin resistance. Nat Commun. 2018;9:468.

    Article  CAS  Google Scholar 

  19. Lee HS, Cho YH, Park J, Shin HR, Sung MK. Dietary intake of phytonutrients in relation to fruit and vegetable consumption in Korea. J Acad Nutr Diet. 2013;113:1194–7.

    Article  PubMed  Google Scholar 

  20. Regu GM, Kim H, Kim YJ, Paek JE, Lee G, Chang N, et al. Association between dietary carotenoid intake and bone mineral density in Korean adults aged 30–75 years using data from the fourth and fifth Korean national health and nutrition examination surveys (2008–2011). Nutrients. 2017;9:E1025.

    Article  PubMed  CAS  Google Scholar 

  21. Jasarevic E, Morrison KE, Bale TL. Sex differences in the gut microbiome-brain axis across the lifespan. Philos Trans R Soc Lond Ser B Biol Sci. 2016;371:20150122.

    Article  CAS  Google Scholar 

  22. Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Bäckhed HK, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012;150:470–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nugent BM, Bale TL. The omniscient placenta:metabolic and epigenetic regulation of fetal programming. Front Neuroendocrinol. 2015;39:28–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bronson SL, Bale TL. The placenta as a mediator of stress effects on neurodevelopmental reprogramming. Neuropsychopharmacology. 2015;41:207–18.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Macfabe DF. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb Ecol Health Dis. 2012;23:19260.

    Google Scholar 

  26. Nagai A, Takebe K, Nio-Kobayashi J, Takahashi-Iwanaga H, Iwanaga T. Cellular expression of the monocarboxylate transporter (MCT) family in the placenta of mice. Placenta. 2010;31:126–33.

    Article  CAS  PubMed  Google Scholar 

  27. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood–brain barrier permeability in mice. Sci Transl Med. 2014;6:263ra158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:852.

    Article  PubMed  CAS  Google Scholar 

  29. Elahi S, Ertelt JM, Kinder JM, Jiang TT, Zhang X, Xin L, et al. Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection. Nature. 2013;504:158–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deshmukh HS, Liu Y, Menkiti OR, Mei J, Dai N, O'Leary CE, et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat Med. 2014;20:524–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Quan N, Banks WA. Brain-immune communication pathways. Brain Behav Immun. 2007;21:727–35.

    Article  CAS  PubMed  Google Scholar 

  32. Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18:965–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107:11971–5.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Blustein J, Attina T, Liu M, Ryan AM, Cox LM, Blaser MJ, et al. Association of caesarean delivery with child adiposity from age 6 weeks to 15 years. Int J Obes. 2013;37:900–6.

    Article  CAS  Google Scholar 

  35. Roduit C, Scholtens S, de Jongste JC, Wijga AH, Gerritsen J, Postma DS, et al. Asthma at 8 years of age in children born by caesarean section. Thorax. 2009;64:107–13.

    Article  CAS  PubMed  Google Scholar 

  36. Renz-Polster H, David MR, Buist AS, Vollmer WM, O'Connor EA, Frazier EA, et al. Caesarean section delivery and the risk of allergic disorders in childhood. Clin Exp Allergy. 2005;35:1466–72.

    Article  CAS  PubMed  Google Scholar 

  37. Curran EA, O'Neill SM, Cryan JF, Kenny LC, Dinan TG, Khashan AS, et al. Research review: birth by caesarean section and development of autism spectrum disorder and attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. J Child Psychol Psychiatry. 2015;56:500–8.

    Article  PubMed  Google Scholar 

  38. Curran EA, Cryan JF, Kenny LC, Dinan TG, Kearney PM, Khashan AS. Obstetrical mode of delivery and childhood behavior and psychological development in a British cohort. J Autism Dev Disord. 2016;46:603–14.

    Article  PubMed  Google Scholar 

  39. Bronson SL, Bale TL. Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal anti-inflammatory treatment. Endocrinology. 2014;155:2635–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Howerton CL, Morgan CP, Fischer DB, Bale TL. O-GlcNAc transferase (OGT) as a placental biomarker of maternal stress and reprogramming of CNS gene transcription in development. Proc Natl Acad Sci U S A. 2013;110:5169–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mueller BR, Bale TL. Impact of prenatal stress on long term body weight is dependent on timing and maternal sensitivity. Physiol Behav. 2006;88:605–14.

    Article  CAS  PubMed  Google Scholar 

  42. Mueller BR, Bale TL. Early prenatal stress impact on coping strategies and learning performance is sex dependent. Physiol Behav. 2007;91:55–65.

    Article  CAS  PubMed  Google Scholar 

  43. Mueller BR, Bale TL. Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci. 2008;28:9055–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pankevich DE, Mueller BR, Brockel B, Bale TL. Prenatal stress programming of offspring feeding behavior and energy balance begins early in pregnancy. Physiol Behav. 2009;98:94–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brunton PJ, Sullivan KM, Kerrigan D, Russell JA, Seckl JR, Drake AJ. Sex-specific effects of prenatal stress on glucose homoeostasis and peripheral metabolism in rats. J Endocrinol. 2013;217:161–73.

    Article  CAS  PubMed  Google Scholar 

  46. Maccari S, Darnaudery M, Morley-Fletcher S, Zuena AR, Cinque C, Van Reeth O. Prenatal stress and long-term consequences: implications of glucocorticoid hormones. Neurosci Biobehav Rev. 2003;27:119–27.

    Article  CAS  PubMed  Google Scholar 

  47. Jasarevic E, Howerton CL, Howard CD, Bale TL. Alterations in the vaginal microbiome by maternal stress are associated with metabolic reprogramming of the offspring gut and brain. Endocrinology. 2015;156:3265–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kunji ER, Mierau I, Hagting A, Poolman B, Konings WN. The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek. 1996;70:187–221.

    Article  CAS  PubMed  Google Scholar 

  49. Jiang T, Savaiano DA. In vitro lactose fermentation by human colonic bacteria is modified by Lactobacillus acidophilus supplementation. J Nutr. 1997;127:1489–95.

    Article  CAS  PubMed  Google Scholar 

  50. Soergel KH. Colonic fermentation: metabolic and clinical implications. Clin Invest. 1994;72:742–8.

    Article  CAS  Google Scholar 

  51. McDonald JW, Johnston MV. Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res Brain Res Rev. 1990;15:41–70.

    Article  PubMed  Google Scholar 

  52. McDonald JW, Johnston MV. Excitatory amino acid neurotoxicity in the developing brain. NIDA Res Monogr. 1993;133:185–205.

    CAS  PubMed  Google Scholar 

  53. Hollister EB, Riehle K, Luna RA, Weidler EM, Rubio-Gonzales M, Mistretta TA, et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome. 2015;3:36.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sisk CL, Foster DL. The neural basis of puberty and adolescence. Nat Neurosci. 2004;7:1040–7.

    Article  CAS  PubMed  Google Scholar 

  55. Yurkovetskiy L, Burrows M, Khan AA, Graham L, Volchkov P, Becker L, et al. Gender bias in autoimmunity is influenced by microbiota. Immunity. 2013;39:400–12.

    Article  CAS  PubMed  Google Scholar 

  56. Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013;339:1084–8.

    Article  CAS  PubMed  Google Scholar 

  57. Spor A, Koren O, Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol. 2011;9:279–90.

    Article  CAS  PubMed  Google Scholar 

  58. Mueller S, Saunier K, Hanisch C, Norin E, Alm L, Midtvedt T, et al. Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol. 2006;72:1027–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ober C, Loisel DA, Gilad Y. Sex-specific genetic architecture of human disease. Nat Rev Genet. 2008;9:911–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Viña J, Borrás C, Gambini J, Sastre J, Pallardó FV. Why females live longer than males: control of longevity by sex hormones. Sci Aging Knowl Environ. 2005;2005:pe17.

    Article  Google Scholar 

  61. Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4586–91.

    Article  CAS  PubMed  Google Scholar 

  62. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–84.

    Article  CAS  PubMed  Google Scholar 

  63. Rampelli S, Candela M, Turroni S, Biagi E, Collino S, Franceschi C, et al. Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging (Albany NY). 2013;5:902–12.

    Article  CAS  Google Scholar 

  64. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010;5:e10667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Bischoff SC. Microbiota and aging. Curr Opin Clin Nutr Metab Care. 2016;19:26–30.

    Article  CAS  PubMed  Google Scholar 

  66. Salles N. Basic mechanisms of the aging gastrointestinal tract. Dig Dis. 2007;25:112–7.

    Article  CAS  PubMed  Google Scholar 

  67. Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut. 2016;65:57–62.

    Article  CAS  PubMed  Google Scholar 

  68. Parthasarathy G, Chen J, Chen X, Chia N, O’Connor HM, Wolf PG, et al. Relationship between microbiota of the colonic mucosa vs feces and symptoms, colonic transit, and methane production in female patients with chronic constipation. Gastroenterology. 2016;150:367–79.e1.

    Article  PubMed  Google Scholar 

  69. Enck P, Zimmermann K, Rusch K, Schwiertz A, Klosterhalfen S, Frick JS. The effects of ageing on the colonic bacterial microflora in adults. Z Gastroenterol. 2009;47:653–8.

    Article  CAS  PubMed  Google Scholar 

  70. Choi SI, Son JH, Kim N, Kim YS, Nam RH, Park JH, et al. Changes in cecal microbiota and short-chain fatty acid during lifespan of the rat. J Neurogastroenterol Motil. 2021;27:134–46.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Santos-Marcos JA, Rangel-Zuñiga OA, Jimenez-Lucena R, Quintana-Navarro GM, Garcia-Carpintero S, Malagon MM, et al. Influence of gender and menopausal status on gut microbiota. Maturitas. 2018;116:43–53.

    Article  PubMed  Google Scholar 

  72. Sinha T, Vich Vila A, Garmaeva S, Jankipersadsing SA, Imhann F, Collij V, et al. Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles. Gut Microbes. 2019;10:358–66.

    Article  CAS  PubMed  Google Scholar 

  73. Yoon K, Kim N. Roles of sex hormones and gender in the gut microbiota. J Neurogastroenterol Motil. 2021;27:314–25.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Menon R, Watson SE, Thomas LN, Allred CD, Dabney A, Azcarate-Peril MA, et al. Diet complexity and estrogen receptor β status affect the composition of the murine intestinal microbiota. Appl Environ Microbiol. 2013;79:5763–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gomez A, Luckey D, Taneja V. The gut microbiome in autoimmunity: sex matters. Clin Immunol. 2015;159:154–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kaliannan K, Robertson RC, Murphy K, Stanton C, Kang C, Wang B, et al. Estrogen-mediated gut microbiome alterations influence sexual dimorphism in metabolic syndrome in mice. Microbiome. 2018;6:205.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Nie X, Xie R, Tuo B. Effects of estrogen on the gastrointestinal tract. Dig Dis Sci. 2018;63:583–96.

    Article  CAS  PubMed  Google Scholar 

  78. Flores R, Shi J, Fuhrman B, Xu X, Veenstra TD, Gail MH, et al. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med. 2012;10:253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Colldén H, Landin A, Wallenius V, Elebring E, Fändriks L, Nilsson ME, et al. The gut microbiota is a major regulator of androgen metabolism in intestinal contents. Am J Physiol Endocrinol Metab. 2019;317:E1182–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Shin JH, Park YH, Sim M, Kim SA, Joung H, Shin DM. Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Res Microbiol. 2019;170:192–201.

    Article  CAS  PubMed  Google Scholar 

  81. Zheng Y, Yu J, Liang C, Li S, Wen X, Li Y. Characterization on gut microbiome of PCOS rats and its further design by shifts in high-fat diet and dihydrotestosterone induction in PCOS rats. Bioprocess Biosyst Eng. 2021;44:953–64.

    Article  CAS  PubMed  Google Scholar 

  82. Liu R, Zhang C, Shi Y, Zhang F, Li L, Wang X, et al. Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome. Front Microbiol. 2017;8:324.

    PubMed  PubMed Central  Google Scholar 

  83. Liang Y, Ming Q, Liang J, Zhang Y, Zhang H, Shen T. Gut microbiota dysbiosis in polycystic ovary syndrome (PCOS): association with obesity - a preliminary report. Can J Physiol Pharmacol. 2020;98:803–9.

    Article  CAS  PubMed  Google Scholar 

  84. Chu W, Zhai J, Xu J, Li S, Li W, Chen ZJ, et al. Continuous light-induced PCOS-like changes in reproduction, metabolism, and gut microbiota in sprague-dawley rats. Front Microbiol. 2019;10:3145.

    Article  PubMed  Google Scholar 

  85. Jobira B, Frank DN, Pyle L, Silveira LJ, Kelsey MM, Garcia-Reyes Y, et al. Obese adolescents with PCOS have altered biodiversity and relative abundance in gastrointestinal microbiota. J Clin Endocrinol Metab. 2020;105:e2134–44.

    Article  PubMed Central  Google Scholar 

  86. Arroyo P, Ho BS, Sau L, Kelley ST, Thackray VG. Letrozole treatment of pubertal female mice results in activational effects on reproduction, metabolism and the gut microbiome. PLoS One. 2019;14:e0223274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayoung Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, N. (2022). Sex Difference of Gut Microbiota. In: Kim, N. (eds) Sex/Gender-Specific Medicine in the Gastrointestinal Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-19-0120-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0120-1_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0119-5

  • Online ISBN: 978-981-19-0120-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics