Skip to main content

Advertisement

Log in

Multiple Sclerosis and T Lymphocytes: An Entangled Story

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is the prototypic inflammatory disease of the central nervous system (CNS) characterized by multifocal areas of demyelination, axonal damage, activation of glial cells, and immune cell infiltration. Despite intensive years of research, the etiology of this neurological disorder remains elusive. Nevertheless, the abundance of immune cells such as T lymphocytes and their products in CNS lesions of MS patients supports the notion that MS is an immune-mediated disorder. An important body of evidence gathered from MS animal models such as experimental autoimmune encephalomyelitis (EAE), points to the central contribution of CD4 T lymphocytes in disease pathogenesis. Both Th1 (producing interferon-γ) and Th17 (producing interleukin 17) CD4 T lymphocytes targeting CNS self-antigens have been implicated in MS and EAE pathobiology. Moreover, several publications suggest that CD8 T lymphocytes also participate in the development of MS lesions. The migration of activated T lymphocytes from the periphery into the CNS has been identified as a crucial step in the formation of MS lesions. Several factors promote such T cell extravasation including: molecules (e.g., cell adhesion molecules) implicated in the T cell-blood brain barrier interaction, and chemokines produced by neural cells. Finally, once in the CNS, T lymphocytes need to be reactivated by local antigen presenting cells prior to enter the parenchyma where they can initiate damage. Further investigations will be necessary to elucidate the impact of environmental factors (e.g., gut microbiota) and CNS intrinsic properties (e.g., microglial activation) on this inflammatory neurological disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abrahamsson SV, Angelini DF, Dubinsky AN, Morel E, Oh U, Jones JL, Carassiti D, Reynolds R, Salvetti M, Calabresi PA, Coles AJ, Battistini L, Martin R, Burt RK, Muraro PA (2013) Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis. Brain 136:2888–2903

    Article  PubMed Central  PubMed  Google Scholar 

  • Allegretta M, Nicklas JA, Sriram S, Albertini RJ (1990) T cells responsive to myelin basic protein in patients with multiple sclerosis. Science 247:718–721

    Article  CAS  PubMed  Google Scholar 

  • Almolda B, Gonzalez B, Castellano B (2010) Activated microglial cells acquire an immature dendritic cell phenotype and may terminate the immune response in an acute model of EAE. J Neuroimmunol 223:39–54

    Article  CAS  PubMed  Google Scholar 

  • Almolda B, Gonzalez B, Castellano B (2011) Antigen presentation in EAE: role of microglia, macrophages and dendritic cells. Front Biosci (Landmark Ed) 16:1157–1171

    Article  CAS  Google Scholar 

  • Aloisi F, Penna G, Polazzi E, Minghetti L, Adorini L (1999) CD40-CD154 interaction and IFN-gamma are required for IL-12 but not prostaglandin E2 secretion by microglia during antigen presentation to Th1 cells. J Immunol 162:1384–1391

    CAS  PubMed  Google Scholar 

  • Anderton SM, Kissler S, Lamont AG, Wraith DC (1999) Therapeutic potential of TCR antagonists is determined by their ability to modulate a diverse repertoire of autoreactive T cells. Eur J Immunol 29:1850–1857

    Article  CAS  PubMed  Google Scholar 

  • Annibali V, Ristori G, Angelini DF, Serafini B, Mechelli R, Cannoni S, Romano S, Paolillo A, Abderrahim H, Diamantini A, Borsellino G, Aloisi F, Battistini L, Salvetti M (2011) CD161(high)CD8 + T cells bear pathogenetic potential in multiple sclerosis. Brain 134:542–554

    Article  PubMed  Google Scholar 

  • Antel JP, Bania MB, Reder A, Cashman N (1986) Activated suppressor cell dysfunction in progressive multiple sclerosis. J Immunol 137:137–141

    CAS  PubMed  Google Scholar 

  • Antel J, Brown M, Nicholas MK, Blain M, Noronha A, Reder A (1988) Activated suppressor cell function in multiple sclerosis–clinical correlations. J Neuroimmunol 17:323–330

    Article  CAS  PubMed  Google Scholar 

  • Astier AL, Meiffren G, Freeman S, Hafler DA (2006) Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis. J Clin Invest 116:3252–3257

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, Honda K (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331:337–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Atarashi K et al (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500:232–236

    Article  CAS  PubMed  Google Scholar 

  • Awasthi A, Carrier Y, Peron JP, Bettelli E, Kamanaka M, Flavell RA, Kuchroo VK, Oukka M, Weiner HL (2007) A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol 8:1380–1389

    Article  CAS  PubMed  Google Scholar 

  • Axtell RC, de Jong BA, Boniface K, van der Voort LF, Bhat R, De Sarno P, Naves R, Han M, Zhong F, Castellanos JG, Mair R, Christakos A, Kolkowitz I, Katz L, Killestein J, Polman CH, de Waal MR, Steinman L, Raman C (2010) T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med 16:406–412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Axtell RC, Raman C, Steinman L (2013) Type I interferons: beneficial in Th1 and detrimental in Th17 autoimmunity. Clin Rev Allergy Immunol 44:114–120

    Article  CAS  PubMed  Google Scholar 

  • Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R, Friese M, Schroder R, Deckert M, Schmidt S, Ravid R, Rajewsky K (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192:393–404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baecher-Allan CM, Costantino CM, Cvetanovich GL, Ashley CW, Beriou G, Dominguez-Villar M, Hafler DA (2011) CD2 costimulation reveals defective activity by human CD4 + CD25(hi) regulatory cells in patients with multiple sclerosis. J Immunol 186:3317–3326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barrat FJ, Cua DJ, Boonstra A, Richards DF, Crain C, Savelkoul HF, de Waal-Malefyt R, Coffman RL, Hawrylowicz CM, O’Garra A (2002) In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J Exp Med 195:603–616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartholomaus I, Kawakami N, Odoardi F, Schlager C, Miljkovic D, Ellwart JW, Klinkert WE, Flugel-Koch C, Issekutz TB, Wekerle H, Flugel A (2009) Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462:94–98

    Article  PubMed  CAS  Google Scholar 

  • Baughman EJ, Mendoza JP, Ortega SB, Ayers CL, Greenberg BM, Frohman EM, Karandikar NJ (2011) Neuroantigen-specific CD8+ regulatory T-cell function is deficient during acute exacerbation of multiple sclerosis. J Autoimmun 36:115–124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baxter AG (2007) The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 7:904–912

    Article  CAS  PubMed  Google Scholar 

  • Behrens F, Tak PP, Ostergaard M, Stoilov R, Wiland P, Huizinga TW, Berenfus VY, Vladeva S, Rech J, Rubbert-Roth A, Korkosz M, Rekalov D, Zupanets IA, Ejbjerg BJ, Geiseler J, Fresenius J, Korolkiewicz RP, Schottelius AJ, Burkhardt H (2014) MOR103, a human monoclonal antibody to granulocyte-macrophage colony-stimulating factor, in the treatment of patients with moderate rheumatoid arthritis: results of a phase Ib/IIa randomised, double-blind, placebo-controlled, dose-escalation trial. Ann Rheum Dis. doi:10.1136/annrheumdis-2013-204816

    PubMed Central  PubMed  Google Scholar 

  • Berer K, Krishnamoorthy G (2014) Microbial view of central nervous system autoimmunity. FEBS Lett 588:4207–4213

    Article  CAS  PubMed  Google Scholar 

  • Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C, Wekerle H, Krishnamoorthy G (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479:538–541

    Article  CAS  PubMed  Google Scholar 

  • Berthelot L, Laplaud DA, Pettre S, Ballet C, Michel L, Hillion S, Braudeau C, Connan F, Lefrere F, Wiertlewski S, Guillet JG, Brouard S, Choppin J, Soulillou JP (2008) Blood CD8+ T cell responses against myelin determinants in multiple sclerosis and healthy individuals. Eur J Immunol 38:1889–1899

    Article  CAS  PubMed  Google Scholar 

  • Bhargava P, Mowry EM (2014) Gut microbiome and multiple sclerosis. Curr Neurol Neurosci Rep 14:492

    Article  PubMed  CAS  Google Scholar 

  • Bielekova B, Goodwin B, Richert N, Cortese I, Kondo T, Afshar G, Gran B, Eaton J, Antel J, Frank JA, McFarland HF, Martin R (2000) Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 6:1167–1175

    Article  CAS  PubMed  Google Scholar 

  • Bielekova B, Sung MH, Kadom N, Simon R, McFarland H, Martin R (2004) Expansion and functional relevance of high-avidity myelin-specific CD4+ T cells in multiple sclerosis. J Immunol 172:3893–3904

    Article  CAS  PubMed  Google Scholar 

  • Bin Dhuban K, d’Hennezel E, Nashi E, Bar-Or A, Rieder S, Shevach EM, Nagata S, Piccirillo CA (2015) Coexpression of TIGIT and FCRL3 Identifies Helios + Human Memory Regulatory T Cells. J Immunol 194:3687–3696

    Article  CAS  PubMed  Google Scholar 

  • Bitsch A, Schuchardt J, Bunkowski S, Kuhlmann T, Bruck W (2000) Acute axonal injury in multiple sclerosis. correlation with demyelination and inflammation. Brain 123:1174–1183

    Article  PubMed  Google Scholar 

  • Bokori-Brown M, Savva CG, Fernandes da Costa SP, Naylor CE, Basak AK, Titball RW (2011) Molecular basis of toxicity of Clostridium perfringens epsilon toxin. FEBS J 278:4589–4601

    Article  CAS  PubMed  Google Scholar 

  • Brynedal B, Duvefelt K, Jonasdottir G, Roos IM, Akesson E, Palmgren J, Hillert J (2007) HLA-A confers an HLA-DRB1 independent influence on the risk of multiple sclerosis. PLoS ONE 2:e664

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Calzascia T, Masson F, Di Berardino-Besson W, Contassot E, Wilmotte R, Aurrand-Lions M, Ruegg C, Dietrich PY, Walker PR (2005) Homing phenotypes of tumor-specific CD8 T cells are predetermined at the tumor site by crosspresenting APCs. Immunity 22:175–184

    Article  CAS  PubMed  Google Scholar 

  • Carrieri PB, Provitera V, De Rosa T, Tartaglia G, Gorga F, Perrella O (1998) Profile of cerebrospinal fluid and serum cytokines in patients with relapsing-remitting multiple sclerosis: a correlation with clinical activity. Immunopharmacol Immunotoxicol 20:373–382

    Article  CAS  PubMed  Google Scholar 

  • Carson MJ, Sutcliffe JG, Campbell IL (1999) Microglia stimulate naive T-cell differentiation without stimulating T-cell proliferation. J Neurosci Res 55:127–134

    Article  CAS  PubMed  Google Scholar 

  • Cayrol R, Wosik K, Berard JL, Dodelet-Devillers A, Ifergan I, Kebir H, Haqqani AS, Kreymborg K, Krug S, Moumdjian R, Bouthillier A, Becher B, Arbour N, David S, Stanimirovic D, Prat A (2008) Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol 9:137–145

    Article  CAS  PubMed  Google Scholar 

  • Chastain EM, Miller SD (2012) Molecular mimicry as an inducing trigger for CNS autoimmune demyelinating disease. Immunol Rev 245:227–238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Y, Langrish CL, McKenzie B, Joyce-Shaikh B, Stumhofer JS, McClanahan T, Blumenschein W, Churakovsa T, Low J, Presta L, Hunter CA, Kastelein RA, Cua DJ (2006) Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 116:1317–1326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng W, Chen G (2014) Chemokines and chemokine receptors in multiple sclerosis. Mediators Inflamm 2014:659206

    PubMed Central  PubMed  Google Scholar 

  • Chiarini M, Serana F, Zanotti C, Capra R, Rasia S, Rottoli M, Rovaris M, Caputo D, Cavaletti G, Frigo M, Frigeni B, Clerici R, Rezzonico M, Caimi L, Imberti L (2012) Modulation of the central memory and Tr1-like regulatory T cells in multiple sclerosis patients responsive to interferon-beta therapy. Mult Scler 18:788–798

    Article  CAS  PubMed  Google Scholar 

  • Chou YK, Bourdette DN, Offner H, Whitham R, Wang RY, Hashim GA, Vandenbark AA (1992) Frequency of T cells specific for myelin basic protein and myelin proteolipid protein in blood and cerebrospinal fluid in multiple sclerosis. J Neuroimmunol 38:105–113

    Article  CAS  PubMed  Google Scholar 

  • Codarri L, Gyulveszi G, Tosevski V, Hesske L, Fontana A, Magnenat L, Suter T, Becher B (2011) RORgammat drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 12:560–567

    Article  CAS  PubMed  Google Scholar 

  • Codarri L, Greter M, Becher B (2013) Communication between pathogenic T cells and myeloid cells in neuroinflammatory disease. Trends Immunol 34:114–119

    Article  CAS  PubMed  Google Scholar 

  • Correale J, Farez M (2007) Association between parasite infection and immune responses in multiple sclerosis. Ann Neurol 61:97–108

    Article  CAS  PubMed  Google Scholar 

  • Correale J, Farez MF (2011) The impact of parasite infections on the course of multiple sclerosis. J Neuroimmunol 233:6–11

    Article  CAS  PubMed  Google Scholar 

  • Correale J, Villa A (2008) Isolation and characterization of CD8+ regulatory T cells in multiple sclerosis. J Neuroimmunol 195:121–134

    Article  CAS  PubMed  Google Scholar 

  • Crawford MP, Yan SX, Ortega SB, Mehta RS, Hewitt RE, Price DA, Stastny P, Douek DC, Koup RA, Racke MK, Karandikar NJ (2004) High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in multiple sclerosis revealed by novel flow cytometric assay. Blood 103:4222–4231

    Article  CAS  PubMed  Google Scholar 

  • Cross AH, Naismith RT (2014) Established and novel disease-modifying treatments in multiple sclerosis. J Intern Med 275:350–363

    Article  CAS  PubMed  Google Scholar 

  • Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T, Zurawski S, Wiekowski M, Lira SA, Gorman D, Kastelein RA, Sedgwick JD (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748

    Article  CAS  PubMed  Google Scholar 

  • Davalos D, Ryu JK, Merlini M, Baeten KM, Le Moan N, Petersen MA, Deerinck TJ, Smirnoff DS, Bedard C, Hakozaki H, Gonias Murray S, Ling JB, Lassmann H, Degen JL, Ellisman MH, Akassoglou K (2012) Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat Commun 3:1227

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Andres C, Aristimuno C, de Las HV, Martinez-Gines ML, Bartolome M, Arroyo R, Navarro J, Gimenez-Roldan S, Fernandez-Cruz E, Sanchez-Ramon S (2007) Interferon beta-1a therapy enhances CD4+ regulatory T-cell function: an ex vivo and in vitro longitudinal study in relapsing-remitting multiple sclerosis. J Neuroimmunol 182:204–211

    Article  PubMed  CAS  Google Scholar 

  • de Vos AF, van Meurs M, Brok HP, Boven LA, Hintzen RQ, van der Valk P, Ravid R, Rensing S, Boon L, t Hart BA, Laman JD (2002) Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol 169:5415–5423

    Article  PubMed  Google Scholar 

  • Ding Q, Lu L, Wang B, Zhou Y, Jiang Y, Zhou X, Xin L, Jiao Z, Chou KY (2006) B7H1-Ig fusion protein activates the CD4+ IFN-gamma receptor + type 1 T regulatory subset through IFN-gamma-secreting Th1 cells. J Immunol 177:3606–3614

    Article  CAS  PubMed  Google Scholar 

  • Duan H, Xing S, Luo Y, Feng L, Gramaglia I, Zhang Y, Lu D, Zeng Q, Fan K, Feng J, Yang D, Qin Z, Couraud PO, Romero IA, Weksler B, Yan X (2013) Targeting endothelial CD146 attenuates neuroinflammation by limiting lymphocyte extravasation to the CNS. Sci Rep 3:1687

    PubMed Central  PubMed  Google Scholar 

  • Durafourt BA, Moore CS, Zammit DA, Johnson TA, Zaguia F, Guiot MC, Bar-Or A, Antel JP (2012) Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60:717–727

    Article  PubMed  Google Scholar 

  • Dusseaux M, Martin E, Serriari N, Peguillet I, Premel V, Louis D, Milder M, Le Bourhis L, Soudais C, Treiner E, Lantz O (2011) Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117:1250–1259

    Article  CAS  PubMed  Google Scholar 

  • Ebner F, Brandt C, Thiele P, Richter D, Schliesser U, Siffrin V, Schueler J, Stubbe T, Ellinghaus A, Meisel C, Sawitzki B, Nitsch R (2013) Microglial activation milieu controls regulatory T cell responses. J Immunol 191:5594–5602

    Article  CAS  PubMed  Google Scholar 

  • El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, Zhang GX, Dittel BN, Rostami A (2011) The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol 12:568–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elhofy A, Depaolo RW, Lira SA, Lukacs NW, Karpus WJ (2009) Mice deficient for CCR6 fail to control chronic experimental autoimmune encephalomyelitis. J Neuroimmunol 213:91–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elong Ngono A, Pettre S, Salou M, Bahbouhi B, Soulillou JP, Brouard S, Laplaud DA (2012) Frequency of circulating autoreactive T cells committed to myelin determinants in relapsing-remitting multiple sclerosis patients. Clin Immunol 144:117–126

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt B, Ransohoff RM (2012) Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol 33:579–589

    Article  CAS  PubMed  Google Scholar 

  • Ferber IA, Brocke S, Taylor-Edwards C, Ridgway W, Dinisco C, Steinman L, Dalton D, Fathman CG (1996) Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol 156:5–7

    CAS  PubMed  Google Scholar 

  • Fitzgerald DC, Zhang GX, El-Behi M, Fonseca-Kelly Z, Li H, Yu S, Saris CJ, Gran B, Ciric B, Rostami A (2007) Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. Nat Immunol 8:1372–1379

    Article  CAS  PubMed  Google Scholar 

  • Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH (2010) T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 162:1–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fogdell-Hahn A, Ligers A, Gronning M, Hillert J, Olerup O (2000) Multiple sclerosis: a modifying influence of HLA class I genes in an HLA class II associated autoimmune disease. Tissue Antigens 55:140–148

    Article  CAS  PubMed  Google Scholar 

  • Friese MA, Fugger L (2005) Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 128:1747–1763

    Article  PubMed  Google Scholar 

  • Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, Laursen H, Sorensen PS, Lassmann H (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132:1175–1189

    Article  PubMed Central  PubMed  Google Scholar 

  • Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis–the plaque and its pathogenesis. N Engl J Med 354:942–955

    Article  CAS  PubMed  Google Scholar 

  • Fugger L, Friese MA, Bell JI (2009) From genes to function: the next challenge to understanding multiple sclerosis. Nat Rev Immunol 9:408–417

    Article  CAS  PubMed  Google Scholar 

  • Fujinami RS, Oldstone MB (1985) Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 230:1043–1045

    Article  CAS  PubMed  Google Scholar 

  • Gapin L (2014) Check MAIT. J Immunol 192:4475–4480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gartner D, Hoff H, Gimsa U, Burmester GR, Brunner-Weinzierl MC (2006) CD25 regulatory T cells determine secondary but not primary remission in EAE: impact on long-term disease progression. J Neuroimmunol 172:73–84

    Article  PubMed  CAS  Google Scholar 

  • Gaur A, Boehme SA, Chalmers D, Crowe PD, Pahuja A, Ling N, Brocke S, Steinman L, Conlon PJ (1997) Amelioration of relapsing experimental autoimmune encephalomyelitis with altered myelin basic protein peptides involves different cellular mechanisms. J Neuroimmunol 74:149–158

    Article  CAS  PubMed  Google Scholar 

  • Gay FW, Drye TJ, Dick GW, Esiri MM (1997) The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis. identification and characterization of the primary demyelinating lesion. Brain 120:1461–1483

    Article  PubMed  Google Scholar 

  • Geginat J, Paroni M, Maglie S, Alfen JS, Kastirr I, Gruarin P, De Simone M, Pagani M, Abrignani S (2014) Plasticity of human CD4 T cell subsets. Front Immunol 5:630

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Genain CP, Zamvil SS (2000) Specific immunotherapy: one size does not fit all. Nat Med 6:1098–1100

    Article  CAS  PubMed  Google Scholar 

  • Giannetti P, Politis M, Su P, Turkheimer FE, Malik O, Keihaninejad S, Wu K, Waldman A, Reynolds R, Nicholas R, Piccini P (2015) Increased PK11195-PET binding in normal-appearing white matter in clinically isolated syndrome. Brain 138:110–119

    Article  PubMed  PubMed Central  Google Scholar 

  • Giunti D, Parodi B, Cordano C, Uccelli A, Kerlero de Rosbo N (2014) Can we switch microglia’s phenotype to foster neuroprotection? Focus on multiple sclerosis. Immunology 141:328–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gobin SJ, Montagne L, Van Zutphen M, Van Der Valk P, Van Den Elsen PJ, De Groot CJ (2001) Upregulation of transcription factors controlling MHC expression in multiple sclerosis lesions. Glia 36:68–77

    Article  CAS  PubMed  Google Scholar 

  • Goldmann T, Prinz M (2013) Role of microglia in CNS autoimmunity. Clin Dev Immunol 2013:208093

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9:393–407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, Noelle RJ, Becher B (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11:328–334

    Article  CAS  PubMed  Google Scholar 

  • Griffith JW, Sokol CL, Luster AD (2014) Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol 32:659–702

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Chang EY, Cheng G (2008) The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J Clin Invest 118:1680–1690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haak S, Croxford AL, Kreymborg K, Heppner FL, Pouly S, Becher B, Waisman A (2009) IL-17A and IL-17 F do not contribute vitally to autoimmune neuro-inflammation in mice. J Clin Invest 119:61–69

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haas J, Korporal M, Balint B, Fritzsching B, Schwarz A, Wildemann B (2009) Glatiramer acetate improves regulatory T-cell function by expansion of naive CD4(+)CD25(+)FOXP3(+)CD31(+) T-cells in patients with multiple sclerosis. J Neuroimmunol 216:113–117

    Article  CAS  PubMed  Google Scholar 

  • Harbo HF et al (2004) Genes in the HLA class I region may contribute to the HLA class II-associated genetic susceptibility to multiple sclerosis. Tissue Antigens 63:237–247

    Article  CAS  PubMed  Google Scholar 

  • Harris MG, Hulseberg P, Ling C, Karman J, Clarkson BD, Harding JS, Zhang M, Sandor A, Christensen K, Nagy A, Sandor M, Fabry Z (2014) Immune privilege of the CNS is not the consequence of limited antigen sampling. Sci Rep 4:4422

    PubMed Central  PubMed  Google Scholar 

  • Hauser SL, Bhan AK, Gilles F, Kemp M, Kerr C, Weiner HL (1986) Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann Neurol 19:578–587

    Article  CAS  PubMed  Google Scholar 

  • Hemmer B, Fleckenstein BT, Vergelli M, Jung G, McFarland H, Martin R, Wiesmuller KH (1997) Identification of high potency microbial and self ligands for a human autoreactive class II-restricted T cell clone. J Exp Med 185:1651–1659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hirota K, Duarte JH, Veldhoen M, Hornsby E, Li Y, Cua DJ, Ahlfors H, Wilhelm C, Tolaini M, Menzel U, Garefalaki A, Potocnik AJ, Stockinger B (2011) Fate mapping of IL-17-producing T cells in inflammatory responses. Nat Immunol 12:255–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoftberger R, Aboul-Enein F, Brueck W, Lucchinetti C, Rodriguez M, Schmidbauer M, Jellinger K, Lassmann H (2004) Expression of major histocompatibility complex class I molecules on the different cell types in multiple sclerosis lesions. Brain Pathol 14:43–50

    Article  CAS  PubMed  Google Scholar 

  • Howe CL, Ure D, Adelson JD, LaFrance-Corey R, Johnson A, Rodriguez M (2007) CD8+ T cells directed against a viral peptide contribute to loss of motor function by disrupting axonal transport in a viral model of fulminant demyelination. J Neuroimmunol 188:13–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu D, Weiner HL, Ritz J (2013) Identification of cytolytic CD161–CD56+ regulatory CD8 T cells in human peripheral blood. PLoS One 8:e59545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huber M, Heink S, Pagenstecher A, Reinhard K, Ritter J, Visekruna A, Guralnik A, Bollig N, Jeltsch K, Heinemann C, Wittmann E, Buch T, Prazeres da Costa O, Brustle A, Brenner D, Mak TW, Mittrucker HW, Tackenberg B, Kamradt T, Lohoff M (2013) IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis. J Clin Invest 123:247–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hucke S, Flossdorf J, Grutzke B, Dunay IR, Frenzel K, Jungverdorben J, Linnartz B, Mack M, Peitz M, Brustle O, Kurts C, Klockgether T, Neumann H, Prinz M, Wiendl H, Knolle P, Klotz L (2012) Licensing of myeloid cells promotes central nervous system autoimmunity and is controlled by peroxisome proliferator-activated receptor gamma. Brain 135:1586–1605

    Article  PubMed  Google Scholar 

  • Huizinga R, Hintzen RQ, Assink K, van Meurs M, Amor S (2009) T-cell responses to neurofilament light protein are part of the normal immune repertoire. Int Immunol 21:433–441

    Article  CAS  PubMed  Google Scholar 

  • Huseby ES, Liggitt D, Brabb T, Schnabel B, Ohlen C, Goverman J (2001) A pathogenic role for myelin-specific cd8(+) t cells in a model for multiple sclerosis. J Exp Med 194:669–676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ifergan I, Kebir H, Alvarez JI, Marceau G, Bernard M, Bourbonniere L, Poirier J, Duquette P, Talbot PJ, Arbour N, Prat A (2011) Central nervous system recruitment of effector memory CD8+ T lymphocytes during neuroinflammation is dependent on alpha4 integrin. Brain 134:3560–3577

    Article  PubMed  Google Scholar 

  • Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175:4320–4330

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen M, Cepok S, Quak E, Happel M, Gaber R, Ziegler A, Schock S, Oertel WH, Sommer N, Hemmer B (2002) Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain 125:538–550

    Article  PubMed  Google Scholar 

  • Jadidi-Niaragh F, Mirshafiey A (2011) Regulatory T-cell as orchestra leader in immunosuppression process of multiple sclerosis. Immunopharmacol Immunotoxicol 33:545–567

    Article  CAS  PubMed  Google Scholar 

  • Jager A, Dardalhon V, Sobel RA, Bettelli E, Kuchroo VK (2009) Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J Immunol 183:7169–7177

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jarry U, Jeannin P, Pineau L, Donnou S, Delneste Y, Couez D (2013) Efficiently stimulated adult microglia cross-prime naive CD8(+) T cells injected in the brain. Eur J Immunol 43:1173–1184

    Article  CAS  PubMed  Google Scholar 

  • Ji Q, Perchellet A, Goverman JM (2010) Viral infection triggers central nervous system autoimmunity via activation of CD8+ T cells expressing dual TCRs. Nat Immunol 11:628–634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ji Q, Castelli L, Goverman JM (2013) MHC class I-restricted myelin epitopes are cross-presented by Tip-DCs that promote determinant spreading to CD8(+) T cells. Nat Immunol 14:254–261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang H, Chess L (2004) An integrated view of suppressor T cell subsets in immunoregulation. J Clin Invest 114:1198–1208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang H, Ware R, Stall A, Flaherty L, Chess L, Pernis B (1995) Murine CD8+ T cells that specifically delete autologous CD4+ T cells expressing V beta 8 TCR: a role of the Qa-1 molecule. Immunity 2:185–194

    Article  CAS  PubMed  Google Scholar 

  • Jilek S, Schluep M, Rossetti AO, Guignard L, Le Goff G, Pantaleo G, Du Pasquier RA (2007) CSF enrichment of highly differentiated CD8+ T cells in early multiple sclerosis. Clin Immunol 123:105–113

    Article  CAS  PubMed  Google Scholar 

  • Jones JL, Anderson JM, Phuah CL, Fox EJ, Selmaj K, Margolin D, Lake SL, Palmer J, Thompson SJ, Wilkins A, Webber DJ, Compston DA, Coles AJ (2010) Improvement in disability after alemtuzumab treatment of multiple sclerosis is associated with neuroprotective autoimmunity. Brain 133:2232–2247

    Article  PubMed  Google Scholar 

  • Junker A, Ivanidze J, Malotka J, Eiglmeier I, Lassmann H, Wekerle H, Meinl E, Hohlfeld R, Dornmair K (2007) Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain 130:2789–2799

    Article  PubMed  Google Scholar 

  • Jurewicz A, Biddison WE, Antel JP (1998) MHC class I-restricted lysis of human oligodendrocytes by myelin basic protein peptide-specific CD8 T lymphocytes. J Immunol 160:3056–3059

    CAS  PubMed  Google Scholar 

  • Kabat EA, Wolf A, Bezer AE, Murray JP (1951) Studies on acute disseminated encephalomyelitis produced experimentally in rhesus monkeys. J Exp Med 93:615–633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawamoto S, Maruya M, Kato LM, Suda W, Atarashi K, Doi Y, Tsutsui Y, Qin H, Honda K, Okada T, Hattori M, Fagarasan S (2014) Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41:152–165

    Article  CAS  PubMed  Google Scholar 

  • Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nat Med 13:1173–1175

    Article  CAS  PubMed  Google Scholar 

  • Kebir H, Ifergan I, Alvarez JI, Bernard M, Poirier J, Arbour N, Duquette P, Prat A (2009) Preferential recruitment of interferon-gamma-expressing TH17 cells in multiple sclerosis. Ann Neurol 66:390–402

    Article  CAS  PubMed  Google Scholar 

  • Kivisakk P, Mahad DJ, Callahan MK, Sikora K, Trebst C, Tucky B, Wujek J, Ravid R, Staugaitis SM, Lassmann H, Ransohoff RM (2004) Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann Neurol 55:627–638

    Article  CAS  PubMed  Google Scholar 

  • Kleinewietfeld M, Hafler DA (2014) Regulatory T cells in autoimmune neuroinflammation. Immunol Rev 259:231–244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, Muller DN, Hafler DA (2013) Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496:518–522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koch MW, Metz LM, Agrawal SM, Yong VW (2013) Environmental factors and their regulation of immunity in multiple sclerosis. J Neurol Sci 324:10–16

    Article  PubMed  Google Scholar 

  • Kohm AP, Carpentier PA, Anger HA, Miller SD (2002) Cutting edge: CD4 + CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol 169:4712–4716

    Article  CAS  PubMed  Google Scholar 

  • Kooi EJ, van Horssen J, Witte ME, Amor S, Bo L, Dijkstra CD, van der Valk P, Geurts JJ (2009) Abundant extracellular myelin in the meninges of patients with multiple sclerosis. Neuropathol Appl Neurobiol 35:283–295

    Article  CAS  PubMed  Google Scholar 

  • Korporal M, Haas J, Balint B, Fritzsching B, Schwarz A, Moeller S, Fritz B, Suri-Payer E, Wildemann B (2008) Interferon beta-induced restoration of regulatory T-cell function in multiple sclerosis is prompted by an increase in newly generated naive regulatory T cells. Arch Neurol 65:1434–1439

    Article  PubMed  Google Scholar 

  • Kreymborg K, Etzensperger R, Dumoutier L, Haak S, Rebollo A, Buch T, Heppner FL, Renauld JC, Becher B (2007) IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J Immunol 179:8098–8104

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy G, Saxena A, Mars LT, Domingues HS, Mentele R, Ben-Nun A, Lassmann H, Dornmair K, Kurschus FC, Liblau RS, Wekerle H (2009) Myelin-specific T cells also recognize neuronal autoantigen in a transgenic mouse model of multiple sclerosis. Nat Med 15:626–632

    Article  CAS  PubMed  Google Scholar 

  • Kroenke MA, Carlson TJ, Andjelkovic AV, Segal BM (2008) IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med 205:1535–1541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krumbholz M, Derfuss T, Hohlfeld R, Meinl E (2012) B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat Rev Neurol 8:613–623

    Article  CAS  PubMed  Google Scholar 

  • Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Bruck W (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202–2212

    Article  PubMed  Google Scholar 

  • Kumar N, Narang K, Cressey BD, Gottlieb AB (2013) Long-term safety of ustekinumab for psoriasis. Expert Opin Drug Saf 12:757–765

    Article  CAS  PubMed  Google Scholar 

  • Laman JD, Weller RO (2013) Drainage of cells and soluble antigen from the CNS to regional lymph nodes. J Neuroimmune Pharmacol 8:840–856

    Article  PubMed  Google Scholar 

  • Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA, Cua DJ (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Larochelle C, Alvarez JI, Prat A (2011) How do immune cells overcome the blood–brain barrier in multiple sclerosis? FEBS Lett 585:3770–3780

    Article  CAS  PubMed  Google Scholar 

  • Larochelle C, Cayrol R, Kebir H, Alvarez JI, Lecuyer MA, Ifergan I, Viel E, Bourbonniere L, Beauseigle D, Terouz S, Hachehouche L, Gendron S, Poirier J, Jobin C, Duquette P, Flanagan K, Yednock T, Arbour N, Prat A (2012) Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system. Brain 135:2906–2924

    Article  PubMed  Google Scholar 

  • Larochelle C, Lecuyer MA, Alvarez JI, Charabati M, Saint-Laurent O, Ghannam S, Kebir H, Flanagan K, Yednock T, Duquette P, Arbour N, Prat A (2015) MCAM CD8 T lymphocytes mediate CNS inflammation. Ann Neurol. doi:10.1002/ana.24415

    PubMed  Google Scholar 

  • Lassmann H (2004) Recent neuropathological findings in MS–implications for diagnosis and therapy. J Neurol 251(Suppl 4):IV2–IV5

    PubMed  Google Scholar 

  • Lassmann H (2014) Mechanisms of white matter damage in multiple sclerosis. Glia 62:1816–1830

    Article  PubMed  Google Scholar 

  • Le Bourhis L, Guerri L, Dusseaux M, Martin E, Soudais C, Lantz O (2011) Mucosal-associated invariant T cells: unconventional development and function. Trends Immunol 32:212–218

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Ishida Y, Rifa’i M, Shi Z, Isobe K, Suzuki H (2008) Essential role of CD8 + CD122+ regulatory T cells in the recovery from experimental autoimmune encephalomyelitis. J Immunol 180:825–832

    Article  CAS  PubMed  Google Scholar 

  • Lee YK, Menezes JS, Umesaki Y, Mazmanian SK (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 108(Suppl 1):4615–4622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Y, Chu N, Hu A, Gran B, Rostami A, Zhang GX (2007) Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia. Brain 130:490–501

    Article  PubMed  Google Scholar 

  • Liblau R, Tournier-Lasserve E, Maciazek J, Dumas G, Siffert O, Hashim G, Bach MA (1991) T cell response to myelin basic protein epitopes in multiple sclerosis patients and healthy subjects. Eur J Immunol 21:1391–1395

    Article  CAS  PubMed  Google Scholar 

  • Lindsey JW, Hodgkinson S, Mehta R, Mitchell D, Enzmann D, Steinman L (1994) Repeated treatment with chimeric anti-CD4 antibody in multiple sclerosis. Ann Neurol 36:183–189

    Article  CAS  PubMed  Google Scholar 

  • Link H (1998) The cytokine storm in multiple sclerosis. Mult Scler 4:12–15

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, de St F, Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203:1701–1711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Llewellyn-Smith N, Lai M, Miller DH, Rudge P, Thompson AJ, Cuzner ML (1997) Effects of anti-CD4 antibody treatment on lymphocyte subsets and stimulated tumor necrosis factor alpha production: a study of 29 multiple sclerosis patients entered into a clinical trial of cM-T412. Neurology 48:810–816

    Article  CAS  PubMed  Google Scholar 

  • Lovett-Racke AE, Yang Y, Racke MK (2011) Th1 versus Th17: are T cell cytokines relevant in multiple sclerosis? Biochim Biophys Acta 1812:246–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lowther DE, Hafler DA (2012) Regulatory T cells in the central nervous system. Immunol Rev 248:156–169

    Article  PubMed  Google Scholar 

  • Lu L, Kim HJ, Werneck MB, Cantor H (2008) Regulation of CD8+ regulatory T cells: Interruption of the NKG2A-Qa-1 interaction allows robust suppressive activity and resolution of autoimmune disease. Proc Natl Acad Sci U S A 105:19420–19425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lublin FD, Knobler RL, Kalman B, Goldhaber M, Marini J, Perrault M, D’Imperio C, Joseph J, Alkan SS, Korngold R (1993) Monoclonal anti-gamma interferon antibodies enhance experimental allergic encephalomyelitis. Autoimmunity 16:267–274

    Article  CAS  PubMed  Google Scholar 

  • Lucca LE, Desbois S, Ramadan A, Ben-Nun A, Eisenstein M, Carrie N, Guery JC, Sette A, Nguyen P, Geiger TL, Mars LT, Liblau RS (2014) Bispecificity for myelin and neuronal self-antigens is a common feature of CD4 T cells in C57BL/6 mice. J Immunol 193:3267–3277

    Article  CAS  PubMed  Google Scholar 

  • Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF, Lassmann H, Bruck W, Parisi JE, Scheithauer BW, Giannini C, Weigand SD, Mandrekar J, Ransohoff RM (2011) Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 365:2188–2197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lutterotti A, Martin R (2014) Antigen-specific tolerization approaches in multiple sclerosis. Expert Opin Investig Drugs 23:9–20

    Article  CAS  PubMed  Google Scholar 

  • Major EO (2010) Progressive multifocal leukoencephalopathy in patients on immunomodulatory therapies. Annu Rev Med 61:35–47

    Article  CAS  PubMed  Google Scholar 

  • Mars LT, Saikali P, Liblau RS, Arbour N (2011) Contribution of CD8 T lymphocytes to the immuno-pathogenesis of multiple sclerosis and its animal models. Biochim Biophys Acta 1812:151–161

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Forero I, Garcia-Munoz R, Martinez-Pasamar S, Inoges S, Lopez-Diaz de Cerio A, Palacios R, Sepulcre J, Moreno B, Gonzalez Z, Fernandez-Diez B, Melero I, Bendandi M, Villoslada P (2008) IL-10 suppressor activity and ex vivo Tr1 cell function are impaired in multiple sclerosis. Eur J Immunol 38:576–586

    Article  CAS  PubMed  Google Scholar 

  • Masson F, Calzascia T, Di Berardino-Besson W, de Tribolet N, Dietrich PY, Walker PR (2007) Brain microenvironment promotes the final functional maturation of tumor-specific effector CD8+ T cells. J Immunol 179:845–853

    Article  CAS  PubMed  Google Scholar 

  • Matyszak MK, Denis-Donini S, Citterio S, Longhi R, Granucci F, Ricciardi-Castagnoli P (1999) Microglia induce myelin basic protein-specific T cell anergy or T cell activation, according to their state of activation. Eur J Immunol 29:3063–3076

    Article  CAS  PubMed  Google Scholar 

  • Mayo L, Quintana FJ, Weiner HL (2012) The innate immune system in demyelinating disease. Immunol Rev 248:170–187

    Article  PubMed Central  PubMed  Google Scholar 

  • McGeachy MJ, Stephens LA, Anderton SM (2005) Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4 + CD25+ regulatory cells within the central nervous system. J Immunol 175:3025–3032

    Article  CAS  PubMed  Google Scholar 

  • McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD (2005) Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 11:335–339

    Article  CAS  PubMed  Google Scholar 

  • McQualter JL, Darwiche R, Ewing C, Onuki M, Kay TW, Hamilton JA, Reid HH, Bernard CC (2001) Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J Exp Med 194:873–882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McRae BL, Vanderlugt CL, Dal Canto MC, Miller SD (1995) Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med 182:75–85

    Article  CAS  PubMed  Google Scholar 

  • Mellergard J, Edstrom M, Vrethem M, Ernerudh J, Dahle C (2010) Natalizumab treatment in multiple sclerosis: marked decline of chemokines and cytokines in cerebrospinal fluid. Mult Scler 16:208–217

    Article  CAS  PubMed  Google Scholar 

  • Michel L, Berthelot L, Pettre S, Wiertlewski S, Lefrere F, Braudeau C, Brouard S, Soulillou JP, Laplaud DA (2008) Patients with relapsing-remitting multiple sclerosis have normal Treg function when cells expressing IL-7 receptor alpha-chain are excluded from the analysis. J Clin Invest 118:3411–3419

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mikita J, Dubourdieu-Cassagno N, Deloire MS, Vekris A, Biran M, Raffard G, Brochet B, Canron MH, Franconi JM, Boiziau C, Petry KG (2011) Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler 17:2–15

    Article  CAS  PubMed  Google Scholar 

  • Mittrucker HW, Visekruna A, Huber M (2014) Heterogeneity in the differentiation and function of CD8(+) T cells. Arch Immunol Ther Exp (Warsz) 62:449–458

    Article  CAS  Google Scholar 

  • Miyazaki Y, Miyake S, Chiba A, Lantz O, Yamamura T (2011) Mucosal-associated invariant T cells regulate Th1 response in multiple sclerosis. Int Immunol 23:529–535

    Article  CAS  PubMed  Google Scholar 

  • Mohammad MG, Tsai VW, Ruitenberg MJ, Hassanpour M, Li H, Hart PH, Breit SN, Sawchenko PE, Brown DA (2014) Immune cell trafficking from the brain maintains CNS immune tolerance. J Clin Invest 124:1228–1241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Monteyne P, Van Antwerpen MP, Sindic CJ (1999) Expression of costimulatory molecules and cytokines in CSF and peripheral blood mononuclear cells from multiple sclerosis patients. Acta Neurol Belg 99:11–20

    CAS  PubMed  Google Scholar 

  • Moreno M, Bannerman P, Ma J, Guo F, Miers L, Soulika AM, Pleasure D (2014) Conditional ablation of astroglial CCL2 suppresses CNS accumulation of M1 macrophages and preserves axons in mice with MOG peptide EAE. J Neurosci 34:8175–8185

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Multiple Sclerosis International Federation (2013) Atlas of MS 2013. In, http://www.msif.org/includes/documents/cm_docs/2013/m/msif-atlas-of-ms-2013-report.pdf?f=1 Edition (Federation MSI, ed). http://www.msif.org/includes/documents/cm_docs/2013/m/msif-atlas-of-ms-2013-report.pdf?f=1

  • Murphy AC, Lalor SJ, Lynch MA, Mills KH (2010) Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav Immun 24:641–651

    Article  CAS  PubMed  Google Scholar 

  • Murray PD, Pavelko KD, Leibowitz J, Lin X, Rodriguez M (1998) CD4(+) and CD8(+) T cells make discrete contributions to demyelination and neurologic disease in a viral model of multiple sclerosis. J Virol 72:7320–7329

    PubMed Central  CAS  PubMed  Google Scholar 

  • Najafian N, Chitnis T, Salama AD, Zhu B, Benou C, Yuan X, Clarkson MR, Sayegh MH, Khoury SJ (2003) Regulatory functions of CD8 + CD28- T cells in an autoimmune disease model. J Clin Invest 112:1037–1048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakagawa Y, Chiba K (2014) Role of microglial m1/m2 polarization in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals 7:1028–1048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neumann H, Medana IM, Bauer J, Lassmann H (2002) Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci 25:313–319

    Article  CAS  PubMed  Google Scholar 

  • Nicholson LB, Greer JM, Sobel RA, Lees MB, Kuchroo VK (1995) An altered peptide ligand mediates immune deviation and prevents autoimmune encephalomyelitis. Immunity 3:397–405

    Article  CAS  PubMed  Google Scholar 

  • Ochoa-Reparaz J, Mielcarz DW, Ditrio LE, Burroughs AR, Foureau DM, Haque-Begum S, Kasper LH (2009) Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol 183:6041–6050

    Article  CAS  PubMed  Google Scholar 

  • Ochoa-Reparaz J, Mielcarz DW, Wang Y, Begum-Haque S, Dasgupta S, Kasper DL, Kasper LH (2010) A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol 3:487–495

    Article  CAS  PubMed  Google Scholar 

  • Olivares-Villagomez D, Wang Y, Lafaille JJ (1998) Regulatory CD4(+) T cells expressing endogenous T cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J Exp Med 188:1883–1894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olson JK, Croxford JL, Calenoff MA, Dal Canto MC, Miller SD (2001) A virus-induced molecular mimicry model of multiple sclerosis. J Clin Invest 108:311–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA (1990) T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346:183–187

    Article  CAS  PubMed  Google Scholar 

  • Panitch HS, Hirsch RL, Haley AS, Johnson KP (1987a) Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 1:893–895

    Article  CAS  PubMed  Google Scholar 

  • Panitch HS, Hirsch RL, Schindler J, Johnson KP (1987b) Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 37:1097–1102

    Article  CAS  PubMed  Google Scholar 

  • Pierson E, Simmons SB, Castelli L, Goverman JM (2012) Mechanisms regulating regional localization of inflammation during CNS autoimmunity. Immunol Rev 248:205–215

    Article  PubMed Central  PubMed  Google Scholar 

  • Pierson ER, Stromnes IM, Goverman JM (2014) B cells promote induction of experimental autoimmune encephalomyelitis by facilitating reactivation of T cells in the central nervous system. J Immunol 192:929–939

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pittet CL, Newcombe J, Antel JP, Arbour N (2011) The majority of infiltrating CD8 T lymphocytes in multiple sclerosis lesions is insensitive to enhanced PD-L1 levels on CNS cells. Glia 59:841–856

    Article  PubMed  Google Scholar 

  • Politis M, Giannetti P, Su P, Turkheimer F, Keihaninejad S, Wu K, Waldman A, Malik O, Matthews PM, Reynolds R, Nicholas R, Piccini P (2012) Increased PK11195 PET binding in the cortex of patients with MS correlates with disability. Neurology 79:523–530

    Article  PubMed Central  PubMed  Google Scholar 

  • Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, Phillips JT, Lublin FD, Giovannoni G, Wajgt A, Toal M, Lynn F, Panzara MA, Sandrock AW, Investigators A (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354:899–910

    Article  CAS  PubMed  Google Scholar 

  • Ponomarev ED, Shriver LP, Maresz K, Dittel BN (2005) Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res 81:374–389

    Article  CAS  PubMed  Google Scholar 

  • Raivich G, Banati R (2004) Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res Brain Res Rev 46:261–281

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM, Estes ML (1991) Astrocyte expression of major histocompatibility complex gene products in multiple sclerosis brain tissue obtained by stereotactic biopsy. Arch Neurol 48:1244–1246

    Article  CAS  PubMed  Google Scholar 

  • Raphael I, Nalawade S, Eagar TN, Forsthuber TG (2014) T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine S1043–4666(14):00539

    Google Scholar 

  • Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, Uccelli A, Lanzavecchia A, Engelhardt B, Sallusto F (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10:514–523

    Article  CAS  PubMed  Google Scholar 

  • Reddy J, Illes Z, Zhang X, Encinas J, Pyrdol J, Nicholson L, Sobel RA, Wucherpfennig KW, Kuchroo VK (2004) Myelin proteolipid protein-specific CD4 + CD25+ regulatory cells mediate genetic resistance to experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 101:15434–15439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rep MH, van Oosten BW, Roos MT, Ader HJ, Polman CH, van Lier RA (1997) Treatment with depleting CD4 monoclonal antibody results in a preferential loss of circulating naive T cells but does not affect IFN-gamma secreting TH1 cells in humans. J Clin Invest 99:2225–2231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rivers TM, Sprunt DH, Berry GP (1933) Observations on attempts to produce acute disseminated encephalomyelitis in monkeys. J Exp Med 58:39–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roy A, Liu X, Pahan K (2007) Myelin basic protein-primed T cells induce neurotrophins in glial cells via alphavbeta3 [corrected] integrin. J Biol Chem 282:32222–32232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rubio JP, Bahlo M, Stankovich J, Burfoot RK, Johnson LJ, Huxtable S, Butzkueven H, Lin L, Taylor BV, Speed TP, Kilpatrick TJ, Mignot E, Foote SJ (2007) Analysis of extended HLA haplotypes in multiple sclerosis and narcolepsy families confirms a predisposing effect for the class I region in Tasmanian MS patients. Immunogenetics 59:177–186

    Article  CAS  PubMed  Google Scholar 

  • Rumah KR, Linden J, Fischetti VA, Vartanian T (2013) Isolation of Clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease. PLoS One 8:e76359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saikali P, Antel JP, Newcombe J, Chen Z, Freedman M, Blain M, Cayrol R, Prat A, Hall JA, Arbour N (2007) NKG2D-mediated cytotoxicity toward oligodendrocytes suggests a mechanism for tissue injury in multiple sclerosis. J Neurosci 27:1220–1228

    Article  CAS  PubMed  Google Scholar 

  • Saikali P, Antel JP, Pittet CL, Newcombe J, Arbour N (2010) Contribution of astrocyte-derived IL-15 to CD8 T cell effector functions in multiple sclerosis. J Immunol 185:5693–5703

    Article  CAS  PubMed  Google Scholar 

  • Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763

    Article  CAS  PubMed  Google Scholar 

  • Sauer BM, Schmalstieg WF, Howe CL (2013) Axons are injured by antigen-specific CD8(+) T cells through a MHC class I- and granzyme B-dependent mechanism. Neurobiol Dis 59:194–205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sawcer S, Franklin RJ, Ban M (2014) Multiple sclerosis genetics. Lancet Neurol 13:700–709

    Article  CAS  PubMed  Google Scholar 

  • Schneider-Hohendorf T, Stenner MP, Weidenfeller C, Zozulya AL, Simon OJ, Schwab N, Wiendl H (2010) Regulatory T cells exhibit enhanced migratory characteristics, a feature impaired in patients with multiple sclerosis. Eur J Immunol 40:3581–3590

    Article  CAS  PubMed  Google Scholar 

  • Schneider-Hohendorf T, Rossaint J, Mohan H, Boning D, Breuer J, Kuhlmann T, Gross CC, Flanagan K, Sorokin L, Vestweber D, Zarbock A, Schwab N, Wiendl H (2014) VLA-4 blockade promotes differential routes into human CNS involving PSGL-1 rolling of T cells and MCAM-adhesion of TH17 cells. J Exp Med 211:1833–1846

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, Solomon M, Selby W, Alexander SI, Nanan R, Kelleher A, de St F, Groth B (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 203:1693–1700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Segal BM, Constantinescu CS, Raychaudhuri A, Kim L, Fidelus-Gort R, Kasper LH, Ustekinumab MSI (2008) Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol 7:796–804

    Article  CAS  PubMed  Google Scholar 

  • Sharief MK, Thompson EJ (1993) Correlation of interleukin-2 and soluble interleukin-2 receptor with clinical activity of multiple sclerosis. J Neurol Neurosurg Psychiatry 56:169–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shevach EM, Thornton AM (2014) tTregs, pTregs, and iTregs: similarities and differences. Immunol Rev 259:88–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shinohara ML, Kim JH, Garcia VA, Cantor H (2008) Engagement of the type I interferon receptor on dendritic cells inhibits T helper 17 cell development: role of intracellular osteopontin. Immunity 29:68–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sinha S, Itani FR, Karandikar NJ (2014) Immune regulation of multiple sclerosis by CD8+ T cells. Immunol Res 59:254–265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Skulina C, Schmidt S, Dornmair K, Babbe H, Roers A, Rajewsky K, Wekerle H, Hohlfeld R, Goebels N (2004) Multiple sclerosis: brain-infiltrating CD8+ T cells persist as clonal expansions in the cerebrospinal fluid and blood. Proc Natl Acad Sci U S A 101:2428–2433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sonderegger I, Kisielow J, Meier R, King C, Kopf M (2008) IL-21 and IL-21R are not required for development of Th17 cells and autoimmunity in vivo. Eur J Immunol 38:1833–1838

    Article  CAS  PubMed  Google Scholar 

  • Stoolman JS, Duncker PC, Huber AK, Segal BM (2014) Site-specific chemokine expression regulates central nervous system inflammation and determines clinical phenotype in autoimmune encephalomyelitis. J Immunol 193:564–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strachan-Whaley M, Rivest S, Yong VW (2014) Interactions between microglia and T cells in multiple sclerosis pathobiology. J Interferon Cytokine Res 34:615–622

    Article  CAS  PubMed  Google Scholar 

  • Stromnes IM, Goverman JM (2006a) Passive induction of experimental allergic encephalomyelitis. Nat Protoc 1:1952–1960

    Article  CAS  PubMed  Google Scholar 

  • Stromnes IM, Goverman JM (2006b) Active induction of experimental allergic encephalomyelitis. Nat Protoc 1:1810–1819

    Article  CAS  PubMed  Google Scholar 

  • Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM (2008) Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med 14:337–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Strunk T, Bubel S, Mascher B, Schlenke P, Kirchner H, Wandinger KP (2000) Increased numbers of CCR5+ interferon-gamma- and tumor necrosis factor-alpha-secreting T lymphocytes in multiple sclerosis patients. Ann Neurol 47:269–273

    Article  CAS  PubMed  Google Scholar 

  • Stumhofer JS, Silver JS, Laurence A, Porrett PM, Harris TH, Turka LA, Ernst M, Saris CJ, O’Shea JJ, Hunter CA (2007) Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol 8:1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Sun JB, Olsson T, Wang WZ, Xiao BG, Kostulas V, Fredrikson S, Ekre HP, Link H (1991) Autoreactive T and B cells responding to myelin proteolipid protein in multiple sclerosis and controls. Eur J Immunol 21:1461–1468

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Whitaker JN, Huang Z, Liu D, Coleclough C, Wekerle H, Raine CS (2001) Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J Immunol 166:7579–7587

    Article  CAS  PubMed  Google Scholar 

  • Sweeney CM, Lonergan R, Basdeo SA, Kinsella K, Dungan LS, Higgins SC, Kelly PJ, Costelloe L, Tubridy N, Mills KH, Fletcher JM (2011) IL-27 mediates the response to IFN-beta therapy in multiple sclerosis patients by inhibiting Th17 cells. Brain Behav Immun 25:1170–1181

    Article  CAS  PubMed  Google Scholar 

  • Takata K, Kinoshita M, Okuno T, Moriya M, Kohda T, Honorat JA, Sugimoto T, Kumanogoh A, Kayama H, Takeda K, Sakoda S, Nakatsuji Y (2011) The lactic acid bacterium Pediococcus acidilactici suppresses autoimmune encephalomyelitis by inducing IL-10-producing regulatory T cells. PLoS One 6:e27644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Talbot PJ, Paquette JS, Ciurli C, Antel JP, Ouellet F (1996) Myelin basic protein and human coronavirus 229E cross-reactive T cells in multiple sclerosis. Ann Neurol 39:233–240

    Article  CAS  PubMed  Google Scholar 

  • Tennakoon DK, Mehta RS, Ortega SB, Bhoj V, Racke MK, Karandikar NJ (2006) Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis. J Immunol 176:7119–7129

    Article  CAS  PubMed  Google Scholar 

  • Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O (2003) Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422:164–169

    Article  CAS  PubMed  Google Scholar 

  • Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, Fugger L (2008) Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 172:146–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Noort JM, van den Elsen PJ, van Horssen J, Geurts JJ, van der Valk P, Amor S (2011) Preactive multiple sclerosis lesions offer novel clues for neuroprotective therapeutic strategies. CNS Neurol Disord Drug Targets 10:68–81

    Article  PubMed  Google Scholar 

  • van Oosten BW, Lai M, Hodgkinson S, Barkhof F, Miller DH, Moseley IF, Thompson AJ, Rudge P, McDougall A, McLeod JG, Ader HJ, Polman CH (1997) Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial. Neurology 49:351–357

    Article  PubMed  Google Scholar 

  • van Zwam M, Huizinga R, Heijmans N, van Meurs M, Wierenga-Wolf AF, Melief MJ, Hintzen RQ, t Hart BA, Amor S, Boven LA, Laman JD (2009a) Surgical excision of CNS-draining lymph nodes reduces relapse severity in chronic-relapsing experimental autoimmune encephalomyelitis. J Pathol 217:543–551

    Article  PubMed  Google Scholar 

  • van Zwam M, Huizinga R, Melief MJ, Wierenga-Wolf AF, van Meurs M, Voerman JS, Biber KP, Boddeke HW, Hopken UE, Meisel C, Meisel A, Bechmann I, Hintzen RQ, t Hart BA, Amor S, Laman JD, Boven LA (2009b) Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE. J Mol Med (Berl) 87:273–286

    Article  CAS  Google Scholar 

  • Vanderlugt CL, Neville KL, Nikcevich KM, Eagar TN, Bluestone JA, Miller SD (2000) Pathologic role and temporal appearance of newly emerging autoepitopes in relapsing experimental autoimmune encephalomyelitis. J Immunol 164:670–678

    Article  CAS  PubMed  Google Scholar 

  • Vandevyver C, Mertens N, van den Elsen P, Medaer R, Raus J, Zhang J (1995) Clonal expansion of myelin basic protein-reactive T cells in patients with multiple sclerosis: restricted T cell receptor V gene rearrangements and CDR3 sequence. Eur J Immunol 25:958–968

    Article  CAS  PubMed  Google Scholar 

  • Vasanthakumar A, Kallies A (2013) IL-27 paves different roads to Tr1. Eur J Immunol 43:882–885

    Article  CAS  PubMed  Google Scholar 

  • Venken K, Hellings N, Broekmans T, Hensen K, Rummens JL, Stinissen P (2008) Natural naive CD4 + CD25 + CD127low regulatory T cell (Treg) development and function are disturbed in multiple sclerosis patients: recovery of memory Treg homeostasis during disease progression. J Immunol 180:6411–6420

    Article  CAS  PubMed  Google Scholar 

  • Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA (2004) Loss of functional suppression by CD4 + CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 199:971–979

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Villares R, Cadenas V, Lozano M, Almonacid L, Zaballos A, Martinez AC, Varona R (2009) CCR6 regulates EAE pathogenesis by controlling regulatory CD4+ T-cell recruitment to target tissues. Eur J Immunol 39:1671–1681

    Article  CAS  PubMed  Google Scholar 

  • Vollmer TL, Wynn DR, Alam MS, Valdes J (2011) A phase 2, 24-week, randomized, placebo-controlled, double-blind study examining the efficacy and safety of an anti-interleukin-12 and −23 monoclonal antibody in patients with relapsing-remitting or secondary progressive multiple sclerosis. Mult Scler 17:181–191

    Article  CAS  PubMed  Google Scholar 

  • Walker LS, Abbas AK (2002) The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol 2:11–19

    Article  CAS  PubMed  Google Scholar 

  • Willenborg DO, Fordham S, Bernard CC, Cowden WB, Ramshaw IA (1996) IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis. J Immunol 157:3223–3227

    CAS  PubMed  Google Scholar 

  • Williams K, Ulvestad E, Antel JP (1994) B7/BB-1 antigen expression on adult human microglia studied in vitro and in situ. Eur J Immunol 24:3031–3037

    Article  CAS  PubMed  Google Scholar 

  • Willing A, Friese MA (2012) CD8-mediated inflammatory central nervous system disorders. Curr Opin Neurol 25:316–321

    Article  CAS  PubMed  Google Scholar 

  • Willing A, Leach OA, Ufer F, Attfield KE, Steinbach K, Kursawe N, Piedavent M, Friese MA (2014) CD8(+) MAIT cells infiltrate into the CNS and alterations in their blood frequencies correlate with IL-18 serum levels in multiple sclerosis. Eur J Immunol 44:3119–3128

    Article  CAS  PubMed  Google Scholar 

  • Wlodarczyk A, Lobner M, Cedile O, Owens T (2014) Comparison of microglia and infiltrating CD11c(+) cells as antigen presenting cells for T cell proliferation and cytokine response. J Neuroinflammation 11:57

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wong D, Dorovini-Zis K (1992) Upregulation of intercellular adhesion molecule-1 (ICAM-1) expression in primary cultures of human brain microvessel endothelial cells by cytokines and lipopolysaccharide. J Neuroimmunol 39:11–21

    Article  CAS  PubMed  Google Scholar 

  • Wong D, Dorovini-Zis K (1995) Expression of vascular cell adhesion molecule-1 (VCAM-1) by human brain microvessel endothelial cells in primary culture. Microvasc Res 49:325–339

    Article  CAS  PubMed  Google Scholar 

  • Wu GF, Alvarez E (2011) The immunopathophysiology of multiple sclerosis. Neurol Clin 29:257–278

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu GF, Dandekar AA, Pewe L, Perlman S (2000) CD4 and CD8 T cells have redundant but not identical roles in virus-induced demyelination. J Immunol 165:2278–2286

    Article  CAS  PubMed  Google Scholar 

  • Wucherpfennig KW, Strominger JL (1995) Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80:695–705

    Article  CAS  PubMed  Google Scholar 

  • Wulff H, Calabresi PA, Allie R, Yun S, Pennington M, Beeton C, Chandy KG (2003) The voltage-gated Kv1.3 K(+) channel in effector memory T cells as new target for MS. J Clin Invest 111:1703–1713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu M, Johnson JM, Tuohy VK (1996) A predictable sequential determinant spreading cascade invariably accompanies progression of experimental autoimmune encephalomyelitis: a basis for peptide-specific therapy after onset of clinical disease. J Exp Med 183:1777–1788

    Article  CAS  PubMed  Google Scholar 

  • Yu P, Bamford RN, Waldmann TA (2014) IL-15-dependent CD8+ CD122+ T cells ameliorate experimental autoimmune encephalomyelitis by modulating IL-17 production by CD4+ T cells. Eur J Immunol 44:3330–3341

    Article  CAS  PubMed  Google Scholar 

  • Zaguia F, Saikali P, Ludwin S, Newcombe J, Beauseigle D, McCrea E, Duquette P, Prat A, Antel JP, Arbour N (2013) Cytotoxic NKG2C+ CD4 T cells target oligodendrocytes in multiple sclerosis. J Immunol 190:2510–2518

    Article  CAS  PubMed  Google Scholar 

  • Zang YC, Li S, Rivera VM, Hong J, Robinson RR, Breitbach WT, Killian J, Zhang JZ (2004) Increased CD8+ cytotoxic T cell responses to myelin basic protein in multiple sclerosis. J Immunol 172:5120–5127

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner HL, Hafler DA (1994) Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 179:973–984

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

L.L. is supported by a doctoral studentship from the Multiple Sclerosis Society of Canada. N.A. holds a New Investigator Salary Award from the Canadian Institutes of Health Research.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Arbour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legroux, L., Arbour, N. Multiple Sclerosis and T Lymphocytes: An Entangled Story. J Neuroimmune Pharmacol 10, 528–546 (2015). https://doi.org/10.1007/s11481-015-9614-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-015-9614-0

Keywords

Navigation