Skip to main content

Advertisement

Log in

Gene Therapy for Cystic Fibrosis

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Cystic Fibrosis (CF) is an autosomal recessive disorder due to mutations in the CF transmembrane conductance regulator (CFTR) gene that lead to defective ion transport in the conducting pulmonary airways and exocrine glands. Through a process that is not fully understood, CFTR defects predispose affected patients to chronic endobronchial infections with organisms such as Pseudomonas aeruginosa and Staphylococcus aureus. Following the discovery of the CFTR gene in 1989, CF became one of the primary targets for gene therapy research. Early enthusiasm surrounded the new field of gene therapy during most of the 1990s and it led academics and clinicians on a big effort to apply gene therapy for cystic fibrosis. Clinical studies have been pursued using recombinant adenovirus, recombinant adeno-associated virus, cationic liposomes, and cationic polymer vectors. Although to this date no dramatic therapeutic benefits have been observed, a lot of information has been gained from the pre-clinical and clinical studies that were performed. This learning curve has led to the optimization of vector technology and an appreciation of immune and mechanical barriers that have to be overcome for successful delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Durie PR et al (2004) Characteristic multiorgan pathology of cystic fibrosis in a long-living cystic fibrosis transmembrane regulator knockout murine model. Am J Pathol 164(4):1481–1493

    PubMed  Google Scholar 

  2. Wainwright B (1991) The molecular pathology of cystic fibrosis. Curr Biol 1(2):80–82

    PubMed  Google Scholar 

  3. Davidson DJ et al (2004) Lung pathology in response to repeated exposure to Staphylococcus aureus in congenic residual function cystic fibrosis mice does not increase in response to decreased CFTR levels or increased bacterial load. Pathobiology 71(3):152–158

    PubMed  Google Scholar 

  4. Recchia A et al (1999) Site-specific integration mediated by a hybrid adenovirus/adeno-associated virus vector. Proc Natl Acad Sci U S A 96(6):2615–2620

    PubMed  Google Scholar 

  5. Jiang C et al (1997) Fluid transport across cultures of human tracheal glands is altered in cystic fibrosis. J Physiol 501(Pt 3):637–647

    PubMed  Google Scholar 

  6. Widdicombe JH (2002) Regulation of the depth and composition of airway surface liquid. J Anat 201(4):313–318

    PubMed  Google Scholar 

  7. Li C, Naren AP (2005) Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners. Pharmacol Ther 108(2):208–223

    PubMed  Google Scholar 

  8. de Bentzmann S et al (1996) Asialo GM1 is a receptor for Pseudomonas aeruginosa adherence to regenerating respiratory epithelial cells. Infect Immun 64(5):1582–1588

    PubMed  Google Scholar 

  9. Zar H et al (1995) Binding of Pseudomonas aeruginosa to respiratory epithelial cells from patients with various mutations in the cystic fibrosis transmembrane regulator. J Pediatr 126(2):230–233

    PubMed  Google Scholar 

  10. Bastonero S et al (2005) Inhibition by TNF-alpha and IL-4 of cationic lipid mediated gene transfer in cystic fibrosis tracheal gland cells. J Gene Med 7(11):1439–1449

    PubMed  Google Scholar 

  11. Terheggen-Lagro SW, Rijkers GT, van der Ent CK (2005) The role of airway epithelium and blood neutrophils in the inflammatory response in cystic fibrosis. J Cyst Fibros 4(Suppl 2):15–23

    PubMed  Google Scholar 

  12. Conese M et al (2003) Neutrophil recruitment and airway epithelial cell involvement in chronic cystic fibrosis lung disease. J Cyst Fibros 2(3):129–135

    PubMed  Google Scholar 

  13. Sagel SD, Accurso FJ (2002) Monitoring inflammation in CF. Cytokines. Clin Rev Allergy Immunol 23(1):41–57

    PubMed  Google Scholar 

  14. Venkatakrishnan A et al (2000) Exaggerated activation of nuclear factor-kappaB and altered IkappaB-beta processing in cystic fibrosis bronchial epithelial cells. Am J Respir Cell Mol Biol 23(3):396–403

    PubMed  Google Scholar 

  15. Riordan JR et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245(4922):1066–1073

    PubMed  Google Scholar 

  16. Tabcharani JA et al (1991) Phosphorylation-regulated Cl channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352(6336):628–631

    PubMed  Google Scholar 

  17. Bear CE et al (1992) Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR). Cell 68(4):809–818

    PubMed  Google Scholar 

  18. Hanrahan JW et al (1998) Patch-clamp studies of cystic fibrosis transmembrane conductance regulator chloride channel. Methods Enzymol 293:169–194

    PubMed  Google Scholar 

  19. Seibert FS et al (1999) Influence of phosphorylation by protein kinase A on CFTR at the cell surface and endoplasmic reticulum. Biochim Biophys Acta 1461(2):275–283

    PubMed  Google Scholar 

  20. Ostedgaard LS, Baldursson O, Welsh MJ (2001) Regulation of the cystic fibrosis transmembrane conductance regulator Cl channel by its R domain. J Biol Chem 276(11):7689–7692

    PubMed  Google Scholar 

  21. Welsh MJ et al (1992) Cystic fibrosis transmembrane conductance regulator: a chloride channel with novel regulation. Neuron 8(5):821–829

    PubMed  Google Scholar 

  22. Chappe V et al (2004) Stimulatory and inhibitory protein kinase C consensus sequences regulate the cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 101(1):390–395

    PubMed  Google Scholar 

  23. Konig J et al (2001) The cystic fibrosis transmembrane conductance regulator (CFTR) inhibits ENaC through an increase in the intracellular Cl concentration. EMBO Rep 2(11):1047–1051

    PubMed  Google Scholar 

  24. Wagner CA et al (2001) Effects of the serine/threonine kinase SGK1 on the epithelial Na(+) channel (ENaC) and CFTR: implications for cystic fibrosis. Cell Physiol Biochem 11(4):209–218

    PubMed  Google Scholar 

  25. Briel M, Greger R, Kunzelmann K (1998) Cl transport by cystic fibrosis transmembrane conductance regulator (CFTR) contributes to the inhibition of epithelial Na channels (ENaCs) in Xenopus oocytes co-expressing CFTR and ENaC. J Physiol 508(Pt 3):825–836

    PubMed  Google Scholar 

  26. Olivier R et al (2002) Selected contribution: limiting Na(+) transport rate in airway epithelia from alpha-ENaC transgenic mice: a model for pulmonary edema. J Appl Physiol 93(5):1881–1887

    PubMed  Google Scholar 

  27. Gabriel SE et al (1993) CFTR and outward rectifying chloride channels are distinct proteins with a regulatory relationship. Nature 363(6426):263–268

    PubMed  Google Scholar 

  28. Guggino WB (1993) Outwardly rectifying chloride channels and CF: a divorce and remarriage. J Bioenerg Biomembr 25(1):27–35

    PubMed  Google Scholar 

  29. Egan ME, Schwiebert EM, Guggino WB (1995) Differential expression of ORCC and CFTR induced by low temperature in CF airway epithelial cells. Am J Physiol 268(1 Pt 1):C243–C251

    PubMed  Google Scholar 

  30. Schwiebert EM et al (1998) Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 95(5):2674–2679

    PubMed  Google Scholar 

  31. Ando-Akatsuka Y et al (2002) Down-regulation of volume-sensitive Cl channels by CFTR is mediated by the second nucleotide-binding domain. Pflugers Arch 445(2):177–186

    PubMed  Google Scholar 

  32. Biwersi J, Emans N, Verkman AS (1996) Cystic fibrosis transmembrane conductance regulator activation stimulates endosome fusion in vivo. Proc Natl Acad Sci U S A 93(22):12484–12489

    PubMed  Google Scholar 

  33. Dunn KW et al (1994) Regulation of endocytic trafficking and acidification are independent of the cystic fibrosis transmembrane regulator. J Biol Chem 269(7):5336–5345

    PubMed  Google Scholar 

  34. Ko SB et al (2004) Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol 6(4):343–350

    PubMed  Google Scholar 

  35. Mount DB, Romero MF (2004) The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch 447(5):710–721

    PubMed  Google Scholar 

  36. Lohi H et al (2003) Isoforms of SLC26A6 mediate anion transport and have functional PDZ interaction domains. Am J Physiol Cell Physiol 284(3):C769–C779

    PubMed  Google Scholar 

  37. Ko SB et al (2002) A molecular mechanism for aberrant CFTR-dependent HCO(3)(−) transport in cystic fibrosis. Embo J 21(21):5662–5672

    PubMed  Google Scholar 

  38. Finkbeiner WE, Shen BQ, Widdicombe JH (1994) Chloride secretion and function of serous and mucous cells of human airway glands. Am J Physiol 267(2 Pt 1):L206–L210

    PubMed  Google Scholar 

  39. Johnson LG et al (1992) Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet 2(1):21–25

    PubMed  Google Scholar 

  40. Davis PB, Drumm M, Konstan MW (1996) Cystic fibrosis. Am J Respir Crit Care Med 154(5):1229–1256

    PubMed  Google Scholar 

  41. Engelhardt JF, Litzky L, Wilson JM (1994) Prolonged transgene expression in cotton rat lung with recombinant adenoviruses defective in E2a. Hum Gene Ther 5(10):1217–1229

    PubMed  Google Scholar 

  42. Ghadge GD et al (1995) CNS gene delivery by retrograde transport of recombinant replication-defective adenoviruses. Gene Ther 2(2):132–137

    PubMed  Google Scholar 

  43. Horellou P et al (1994) Direct intracerebral gene transfer of an adenoviral vector expressing tyrosine hydroxylase in a rat model of Parkinson’s disease. Neuroreport 6(1):49–53

    Article  PubMed  Google Scholar 

  44. Grubb BR et al (1994) Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans. Nature 371(6500):802–806

    PubMed  Google Scholar 

  45. Harvey BG et al (1999) Airway epithelial CFTR mRNA expression in cystic fibrosis patients after repetitive administration of a recombinant adenovirus. J Clin Invest 104(9):1245–1255

    PubMed  Google Scholar 

  46. Perricone MA et al (2001) Aerosol and lobar administration of a recombinant adenovirus to individuals with cystic fibrosis. II. Transfection efficiency in airway epithelium. Hum Gene Ther 12(11):1383–1394

    PubMed  Google Scholar 

  47. Lee JH, Zabner J, Welsh MJ (1999) Delivery of an adenovirus vector in a calcium phosphate coprecipitate enhances the therapeutic index of gene transfer to airway epithelia. Hum Gene Ther 10(4):603–613

    PubMed  Google Scholar 

  48. Yang Q et al (1995) Inhibition of cellular and SV40 DNA replication by the adeno-associated virus Rep proteins. Virology 207(1):246–250

    PubMed  Google Scholar 

  49. Brody SL et al (1994) Acute responses of non-human primates to airway delivery of an adenovirus vector containing the human cystic fibrosis transmembrane conductance regulator cDNA. Hum Gene Ther 5(7):821–836

    PubMed  Google Scholar 

  50. Zabner J et al (1994) Safety and efficacy of repetitive adenovirus-mediated transfer of CFTR cDNA to airway epithelia of primates and cotton rats. Nat Genet 6(1):75–83

    PubMed  Google Scholar 

  51. Yang Y et al (1994) Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci U S A 91(10):4407–4411

    PubMed  Google Scholar 

  52. Yang Y et al (1994) Inactivation of E2a in recombinant adenoviruses improves the prospect for gene therapy in cystic fibrosis. Nat Genet 7(3):362–369

    PubMed  Google Scholar 

  53. Crystal RG et al (1994) Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat Genet 8(1):42–51

    PubMed  Google Scholar 

  54. Zuckerman JB et al (1999) A phase I study of adenovirus-mediated transfer of the human cystic fibrosis transmembrane conductance regulator gene to a lung segment of individuals with cystic fibrosis. Hum Gene Ther 10(18):2973–2985

    PubMed  Google Scholar 

  55. Palmer DJ, Ng P (2005) Helper-dependent adenoviral vectors for gene therapy. Hum Gene Ther 16(1):1–16

    PubMed  Google Scholar 

  56. Toietta G et al (2003) Reduced inflammation and improved airway expression using Helper-Dependent adenoviral vectors with a k18 promoter. Mol Ther 7(5):649–658

    PubMed  Google Scholar 

  57. Morsy MA et al (1998) An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc Natl Acad Sci U S A 95(14):7866–7871

    PubMed  Google Scholar 

  58. Brunetti-Pierri N et al (2006) Improved hepatic transduction, reduced systemic vector dissemination, and long-term transgene expression by delivering helper-dependent adenoviral vectors into the surgically isolated liver of nonhuman primates. Hum Gene Ther 17(4):391–404

    PubMed  Google Scholar 

  59. Koehler DR et al (2006) Readministration of helper-dependent adenovirus to mouse lung. Gene Ther 13(9):773–780

    PubMed  Google Scholar 

  60. Koehler DR et al (2005) Aerosol delivery of an enhanced helper-dependent adenovirus formulation to rabbit lung using an intratracheal catheter. J Gene Med 7(11):1409–1420

    PubMed  Google Scholar 

  61. Flotte TR et al (2007) Viral vector-mediated and cell-based therapies for treatment of cystic fibrosis. Mol Ther 15(2):229–241

    PubMed  Google Scholar 

  62. Amalfitano A, Parks RJ (2002) Separating fact from fiction: assessing the potential of modified adenovirus vectors for use in human gene therapy. Curr Gene Ther 2(2):111–133

    PubMed  Google Scholar 

  63. Palmer D, Ng P (2003) Improved system for helper-dependent adenoviral vector production. Mol Ther 8(5):846–852

    PubMed  Google Scholar 

  64. Chirmule N et al (1999) Repeated administration of adenoviral vectors in lungs of human CD4 transgenic mice treated with a nondepleting CD4 antibody. J Immunol 163(1):448–455

    PubMed  Google Scholar 

  65. Chirmule N et al (1998) Role of E4 in eliciting CD4 T-cell and B-cell responses to adenovirus vectors delivered to murine and nonhuman primate lungs. J Virol 72(7):6138–6145

    PubMed  Google Scholar 

  66. Croyle MA et al (2001) “Stealth” adenoviruses blunt cell-mediated and humoral immune responses against the virus and allow for significant gene expression upon readministration in the lung. J Virol 75(10):4792–4801

    PubMed  Google Scholar 

  67. Jooss K, Turka LA, Wilson JM (1998) Blunting of immune responses to adenoviral vectors in mouse liver and lung with CTLA4Ig. Gene Ther 5(3):309–319

    PubMed  Google Scholar 

  68. Kay MA et al (1997) Transient immunomodulation with anti-CD40 ligand antibody and CTLA4Ig enhances persistence and secondary adenovirus-mediated gene transfer into mouse liver. Proc Natl Acad Sci U S A 94(9):4686–4691

    PubMed  Google Scholar 

  69. Yang Y, Greenough K, Wilson JM (1996) Transient immune blockade prevents formation of neutralizing antibody to recombinant adenovirus and allows repeated gene transfer to mouse liver. Gene Ther 3(5):412–420

    PubMed  Google Scholar 

  70. Yang Y et al (1996) Transient subversion of CD40 ligand function diminishes immune responses to adenovirus vectors in mouse liver and lung tissues. J Virol 70(9):6370–6377

    PubMed  Google Scholar 

  71. Trempe JP, Carter BJ (1988) Alternate mRNA splicing is required for synthesis of adeno-associated virus VP1 capsid protein. J Virol 62(9):3356–3363

    PubMed  Google Scholar 

  72. Kearns WG et al (1996) Recombinant adeno-associated virus (AAV-CFTR) vectors do not integrate in a site-specific fashion in an immortalized epithelial cell line. Gene Ther 3(9):748–755

    PubMed  Google Scholar 

  73. Shi Y et al (1991) Transcriptional repression by YY1, a human GLI-Kruppel-related protein, and relief of repression by adenovirus E1A protein. Cell 67(2):377–388

    PubMed  Google Scholar 

  74. Im DS, Muzyczka N (1990) The AAV origin binding protein Rep68 is an ATP-dependent site-specific endonuclease with DNA helicase activity. Cell 61(3):447–457

    PubMed  Google Scholar 

  75. Xiao X, Li J, Samulski RJ (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72(3):2224–2232

    PubMed  Google Scholar 

  76. Flotte TR et al (1993) Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc Natl Acad Sci U S A 90(22):10613–10617

    PubMed  Google Scholar 

  77. Clark KR, Sferra TJ, Johnson PR (1997) Recombinant adeno-associated viral vectors mediate long-term transgene expression in muscle. Hum Gene Ther 8(6):659–669

    PubMed  Google Scholar 

  78. Flannery JG et al (1997) Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc Natl Acad Sci U S A 94(13):6916–6921

    PubMed  Google Scholar 

  79. Kessler PD et al (1996) Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci U S A 93(24):14082–14087

    PubMed  Google Scholar 

  80. Snyder RO et al (1997) Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet 16(3):270–276

    PubMed  Google Scholar 

  81. Tratschin JD et al (1984) A human parvovirus, adeno-associated virus, as a eucaryotic vector: transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase. Mol Cell Biol 4(10):2072–2081

    PubMed  Google Scholar 

  82. Hermonat PL, Muzyczka N (1984) Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci U S A 81(20):6466–6470

    PubMed  Google Scholar 

  83. Hernandez YJ et al (1999) Latent adeno-associated virus infection elicits humoral but not cell- mediated immune responses in a nonhuman primate model. J Virol 73(10):8549–8558

    PubMed  Google Scholar 

  84. Afione SA et al (1996) In vivo model of adeno-associated virus vector persistence and rescue. J Virol 70(5):3235–3241

    PubMed  Google Scholar 

  85. Nakai H et al (2001) Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J Virol 75(15):6969–6976

    PubMed  Google Scholar 

  86. Song S et al (2001) Effect of DNA-dependent protein kinase on the molecular fate of the rAAV2 genome in skeletal muscle. Proc Natl Acad Sci U S A 98(7):4084–4088

    PubMed  Google Scholar 

  87. Summerford C, Samulski RJ (1998) Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 72(2):1438–1445

    PubMed  Google Scholar 

  88. Summerford C, Bartlett JS, Samulski RJ (1999) AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 5(1):78–82

    PubMed  Google Scholar 

  89. Teramoto S et al (1998) Factors influencing adeno-associated virus-mediated gene transfer to human cystic fibrosis airway epithelial cells: comparison with adenovirus vectors. J Virol 72(11):8904–8912

    PubMed  Google Scholar 

  90. Conrad CK et al (1996) Safety of single-dose administration of an adeno-associated virus (AAV)-CFTR vector in the primate lung. Gene Ther 3(8):658–668

    PubMed  Google Scholar 

  91. Flotte T et al (1996) A phase I study of an adeno-associated virus-CFTR gene vector in adult CF patients with mild lung disease. Hum Gene Ther 7(9):1145–1159

    PubMed  Google Scholar 

  92. Wagner JA et al (1999) Safety and biological efficacy of an adeno-associated virus vector–cystic fibrosis transmembrane regulator (AAV–CFTR) in the cystic fibrosis maxillary sinus. Laryngoscope 109(2 Pt 1):266–274

    PubMed  Google Scholar 

  93. Wagner JA et al (1998) Efficient and persistent gene transfer of AAV-CFTR in maxillary sinus. Lancet 351(9117):1702–1703

    PubMed  Google Scholar 

  94. Flotte TR, Carter BJ (1998) Adeno-associated virus vectors for gene therapy of cystic fibrosis. Methods Enzymol 292:717–732

    PubMed  Google Scholar 

  95. Wagner JA et al (1999) Safety and biological efficacy of an adeno-associated virus vector-cystic fibrosis transmembrane regulator (AAV-CFTR) in the cystic fibrosis maxillary sinus. Laryngoscope 109(2 Pt 1):266–274

    PubMed  Google Scholar 

  96. Flotte TR et al (2003) Phase I trial of intranasal and endobronchial administration of a recombinant adeno-associated virus serotype 2 (rAAV2)-CFTR vector in adult cystic fibrosis patients: a two-part clinical study. Hum Gene Ther 14(11):1079–1088

    PubMed  Google Scholar 

  97. Moss RB et al (2004) Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial. Chest 125(2):509–521

    PubMed  Google Scholar 

  98. Moss RB et al (2007) Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial. Hum Gene Ther 18(8):726–732

    PubMed  Google Scholar 

  99. Duan D et al (1998) Polarity influences the efficiency of recombinant adenoassociated virus infection in differentiated airway epithelia. Hum Gene Ther 9(18):2761–2776

    PubMed  Google Scholar 

  100. Duan D et al (2000) Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus. J Clin Invest 105(11):1573–1587

    PubMed  Google Scholar 

  101. Virella-Lowell I et al (2000) Inhibition of recombinant adeno-associated virus (rAAV) transduction by bronchial secretions from cystic fibrosis patients. Gene Therapy 7:1783–1789

    PubMed  Google Scholar 

  102. Gao GP et al (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 99(18):11854–11859

    PubMed  Google Scholar 

  103. Gao G et al (2004) Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol 78(12):6381–6388

    PubMed  Google Scholar 

  104. Flotte T et al (2001) Efficient ex vivo transduction of pancreatic islet cells with recombinant adeno-associated virus vectors. Diabetes 50(3):515–520

    PubMed  Google Scholar 

  105. Chao H et al (2000) Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol Ther 2(6):619–623

    PubMed  Google Scholar 

  106. Zabner J et al (2000) Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. J Virol 74(8):3852–3858

    PubMed  Google Scholar 

  107. Davidson BL et al (2000) Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A 97(7):3428–3432

    PubMed  Google Scholar 

  108. Liu X et al (2007) Biological differences in rAAV transduction of airway epithelia in humans and in Old World non-human primates. Mol Ther 15(12):2114–2123

    PubMed  Google Scholar 

  109. Zabner J et al (2000) Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer. J Virol 74(8):3852–3858

    PubMed  Google Scholar 

  110. Davidson BL et al (2000) Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A 97(7):3428–3432

    PubMed  Google Scholar 

  111. Carroll TP et al (1995) Alternate translation initiation codons can create functional forms of cystic fibrosis transmembrane conductance regulator. J Biol Chem 270(20):11941–11946

    PubMed  Google Scholar 

  112. Sirninger J et al (2004) Functional characterization of a recombinant adeno-associated virus 5-pseudotyped cystic fibrosis transmembrane conductance regulator vector. Hum Gene Ther 15(9):832–841

    PubMed  Google Scholar 

  113. Muller C et al (2006) Enhanced IgE allergic response to Aspergillus fumigatus in CFTR−/− mice. Lab Invest 86(2):130–140

    PubMed  Google Scholar 

  114. Fischer AC et al (2007) Expression of a truncated cystic fibrosis transmembrane conductance regulator with an AAV5-pseudotyped vector in primates. Mol Ther 15(4):756–763

    PubMed  Google Scholar 

  115. Steigerwald R et al (2003) Requirements for adeno-associated virus-derived non-viral vectors to achieve stable and site-specific integration of plasmid DNA in liver carcinoma cells. Digestion 68(1):13–23

    PubMed  Google Scholar 

  116. Nakai H et al (2003) AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet 34(3):297–302

    PubMed  Google Scholar 

  117. Song S et al (2004) DNA-dependent PK inhibits adeno-associated virus DNA integration. Proc Natl Acad Sci U S A 101(7):2112–2116

    PubMed  Google Scholar 

  118. Dyall J, Szabo P, Berns KI (1999) Adeno-associated virus (AAV) site-specific integration: formation of AAV–AAVS1 junctions in an in vitro system. Proc Natl Acad Sci U S A 96(22):12849–12854

    PubMed  Google Scholar 

  119. Johnston KM et al (1997) HSV/AAV hybrid amplicon vectors extend transgene expression in human glioma cells. Hum Gene Ther 8(3):359–870

    Google Scholar 

  120. Zhang C, Cortez NG, Berns KI (2007) Characterization of a bipartite recombinant adeno-associated viral vector for site-specific integration. Hum Gene Ther 18(9):787–797

    PubMed  Google Scholar 

  121. Lee ER et al (1996) Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung. Hum Gene Ther 7(14):1701–1717

    PubMed  Google Scholar 

  122. Scheule RK et al (1997) Basis of pulmonary toxicity associated with cationic lipid-mediated gene transfer to the mammalian lung. Hum Gene Ther 8(6):689–707

    PubMed  Google Scholar 

  123. Alton EW et al (1999) Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial. Lancet 353(9157):947–954

    PubMed  Google Scholar 

  124. Ruiz FE et al (2001) A clinical inflammatory syndrome attributable to aerosolized lipid-DNA administration in cystic fibrosis. Hum Gene Ther 12(7):751–761

    PubMed  Google Scholar 

  125. Yew NS et al (2000) Reduced inflammatory response to plasmid DNA vectors by elimination and inhibition of immunostimulatory CpG motifs. Mol Ther 1(3):255–262

    PubMed  Google Scholar 

  126. Zhao H, Cheng SH, Yew NS (2000) Requirements for effective inhibition of immunostimulatory CpG motifs by neutralizing motifs. Antisense Nucleic Acid Drug Dev 10(5):381–389

    PubMed  Google Scholar 

  127. Yew NS et al (1999) Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid:pDNA complexes. Hum Gene Ther 10(2):223–234

    PubMed  Google Scholar 

  128. Boussif O et al (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 92(16):7297–301

    PubMed  Google Scholar 

  129. Zou SM et al (2000) Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J Gene Med 2(2):128–134

    PubMed  Google Scholar 

  130. Gautam A et al (2001) Transgene expression in mouse airway epithelium by aerosol gene therapy with PEI–DNA complexes. Mol Ther 3(4):551–556

    PubMed  Google Scholar 

  131. Gautam A, Densmore CL, Waldrep JC (2001) Pulmonary cytokine responses associated with PEI-DNA aerosol gene therapy. Gene Ther 8(3):254–257

    PubMed  Google Scholar 

  132. Gebhart CL, Kabanov AV (2001) Evaluation of polyplexes as gene transfer agents. J Control Release 73(2–3):401–416

    PubMed  Google Scholar 

  133. Chollet P et al (2002) Side-effects of a systemic injection of linear polyethylenimine–DNA complexes. J Gene Med 4(1):84–91

    PubMed  Google Scholar 

  134. Ziady AG et al (2002) Functional evidence of CFTR gene transfer in nasal epithelium of cystic fibrosis mice in vivo following luminal application of DNA complexes targeted to the serpin–enzyme complex receptor. Mol Ther 5(4):413–419

    PubMed  Google Scholar 

  135. Ziady AG et al (2003) Minimal toxicity of stabilized compacted DNA nanoparticles in the murine lung. Mol Ther 8(6):948–956

    PubMed  Google Scholar 

  136. Ziady AG et al (2003) Transfection of airway epithelium by stable PEGylated poly-L-lysine DNA nanoparticles in vivo. Mol Ther 8(6):936–947

    PubMed  Google Scholar 

  137. Konstan MW et al (2004) Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution. Hum Gene Ther 15(12):1255–1269

    PubMed  Google Scholar 

  138. Swanson J (2006) CFTR: helping to acidify macrophage lysosomes. Nat Cell Biol 8(9):908–909

    PubMed  Google Scholar 

  139. Mueller C et al (2008) Partial correction of the CFTR-dependent ABPA mouse model with recombinant adeno-associated virus gene transfer of truncated CFTR gene. J Gene Med 10(1):51–60

    PubMed  Google Scholar 

  140. Bubien JK (2001) CFTR may play a role in regulated secretion by lymphocytes: a new hypothesis for the pathophysiology of cystic fibrosis. Pflugers Arch 443(Suppl 1):S36–S39

    PubMed  Google Scholar 

  141. McDonald TV et al (1992) Human lymphocytes transcribe the cystic fibrosis transmembrane conductance regulator gene and exhibit CF-defective cAMP-regulated chloride current. J Biol Chem 267(5):3242–3248

    PubMed  Google Scholar 

  142. Chen JH, Schulman H, Gardner P (1989) A cAMP-regulated chloride channel in lymphocytes that is affected in cystic fibrosis. Science 243(4891):657–660

    PubMed  Google Scholar 

  143. Krauss RD et al (1992) Antisense oligonucleotides to CFTR confer a cystic fibrosis phenotype on B lymphocytes. Am J Physiol 263(6 Pt 1):C1147–C1151

    PubMed  Google Scholar 

  144. Krauss RD et al (1992) Transfection of wild-type CFTR into cystic fibrosis lymphocytes restores chloride conductance at G1 of the cell cycle. Embo J 11(3):875–883

    PubMed  Google Scholar 

  145. Bonvillain RW et al (2007) Post-operative infections in cystic fibrosis and non-cystic fibrosis patients after lung transplantation. J Heart Lung Transplant 26(9):890–897

    PubMed  Google Scholar 

  146. Liou TG, Woo MS, Cahill BC (2006) Lung transplantation for cystic fibrosis. Curr Opin Pulm Med 12(6):459–63

    PubMed  Google Scholar 

  147. Nunley DR et al (1998) Allograft colonization and infections with pseudomonas in cystic fibrosis lung transplant recipients. Chest 113(5):1235–1243

    PubMed  Google Scholar 

  148. Knutsen AP et al (2004) Increased sensitivity to IL-4 in cystic fibrosis patients with allergic bronchopulmonary aspergillosis. Allergy 59(1):81–87

    PubMed  Google Scholar 

  149. Hartl D et al (2006) Pulmonary T(H)2 response in Pseudomonas aeruginosa-infected patients with cystic fibrosis. J Allergy Clin Immunol 117(1):204–211

    PubMed  Google Scholar 

  150. Galietta LJ et al (2002) IL-4 is a potent modulator of ion transport in the human bronchial epithelium in vitro. J Immunol 168(2):839–845

    PubMed  Google Scholar 

  151. Hauber HP et al (2003) Increased expression of interleukin-13 but not interleukin-4 in cystic fibrosis patients. J Cyst Fibros 2(4):189–194

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence R. Flotte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, C., Flotte, T.R. Gene Therapy for Cystic Fibrosis. Clinic Rev Allerg Immunol 35, 164–178 (2008). https://doi.org/10.1007/s12016-008-8080-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-008-8080-3

Keywords

Navigation