Baksh, D., Yao, R., & Tuan, R. S. (2007). Comparison of proliferative and multilineage differentiation potential of human Mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells, 25, 1384–1392.
CAS
PubMed
Article
Google Scholar
Stolzing, A., Jones, E., McGonagle, D., & Scutt, A. (2008). Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mechanisms of Ageing and Development, 129, 163–173.
CAS
PubMed
Article
Google Scholar
Cheng, H.-Y., Ghetu, N., Wallace, C. G., et al. (2014). The impact of Mesenchymal stem cell source on proliferation, differentiation, immunomodulation and therapeutic efficacy. J Stem Cell Res Ther, 4, 237.
Google Scholar
Pittenger, M. F., Discher, D. E., Péault, B. M., et al. (2019). Mesenchymal stem cell perspective: cell biology to clinical progress. npj Regenerative Medicine, 4, 22.
PubMed
PubMed Central
Article
CAS
Google Scholar
Dominici, M., le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop Dj, & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.
CAS
PubMed
Article
Google Scholar
Krampera, M., Galipeau, J., Shi, Y., Tarte, K., Sensebe, L., & MSC Committee of the International Society for Cellular Therapy (ISCT). (2013). Immunological characterization of multipotent mesenchymal stromal cells-the international society for cellular therapy (ISCT) working proposal. Cytotherapy, 15, 1054–1061.
PubMed
Article
Google Scholar
Weiss, M. L., & Troyer, D. L. (2006). Stem cells in the umbilical cord. Stem Cell Reviews, 2, 155–162.
CAS
PubMed
PubMed Central
Article
Google Scholar
Semenova, E., Mrowiec, Z. R., Machaj, E. K., et al. (2017). Isolation and characteristics of Mesenchymal stromal cells from different parts of placenta. J Stem Cell Res Ther, 7, 376.
Article
CAS
Google Scholar
Semenova, E., Chroscinska-Krawczyk, M., Grudniak, M. P., et al. (2018). Clinical application of AD-MSCs – A review. Journal of Pre-Clinical and Clinical Research, 12, 100–105.
Article
CAS
Google Scholar
Marquez, M. P., Alencastro, F., Madrigal, A., Jimenez, J. L., Blanco, G., Gureghian, A., Keagy, L., Lee, C., Liu, R., Tan, L., Deignan, K., Armstrong, B., & Zhao, Y. (2017). The role of cellular proliferation in Adipogenic differentiation of human adipose tissue-derived Mesenchymal stem cells. Stem Cells and Development, 26, 1578–1595.
CAS
PubMed
PubMed Central
Article
Google Scholar
Carrington, L. M., & Boulton, M. (2005). Hepatocyte growth factor and keratinocyte growth factor regulation of epithelial and stromal corneal wound healing. Journal of Cataract and Refractive Surgery, 31, 412–423.
PubMed
Article
Google Scholar
Karantalis, V., Balkan, W., Schulman, I. H., et al. (2012). Cell-based therapy for prevention and reversal of myocardial remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 303, 256–270.
Article
CAS
Google Scholar
Hare, J. M., Fishman, J. E., Gerstenblith, G., DiFede Velazquez, D. L., Zambrano, J. P., Suncion, V. Y., Tracy, M., Ghersin, E., Johnston, P. V., Brinker, J. A., Breton, E., Davis-Sproul, J., Byrnes, J., George, R., Lardo, A., Schulman, I. H., Mendizabal, A. M., Lowery, M. H., Rouy, D., Altman, P., Wong Po Foo, C., Ruiz, P., Amador, A., da Silva, J., McNiece, I. K., & Heldman, A. W. (2012). Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: The POSEIDON randomized trial. JAMA : The Journal of the American Medical Association, 308, 2369–2379.
CAS
PubMed
Article
Google Scholar
Usunier, B., Benderitter, M., Tamarat, R., & Chapel, A. (2014). Management of Fibrosis: The Mesenchymal stromal cells breakthrough. Stem Cells International, 2014, 340257.
PubMed
PubMed Central
Article
Google Scholar
Prockop, D. J., & Oh, J. Y. (2012). Mesenchymal stem/stromal cells (MSCs): Role as guardians of inflammation. Molecular Therapy, 20, 14–20.
CAS
PubMed
Article
Google Scholar
Uccelli, A., Pistoia, V., & Moretta, L. (2007). Mesenchymal stem cells: A new strategy for immunosuppression? Trends in Immunology, 28, 219–226.
CAS
PubMed
Article
Google Scholar
Zhang, J., Li, Y., Lu, M., Cui, Y., Chen, J., Noffsinger, L., Elias, S. B., & Chopp, M. (2006). Bone marrow stromal cells reduce axonal loss in experimental autoimmune encephalomyelitis mice. Journal of Neuroscience Research, 84, 587–595.
CAS
PubMed
Article
Google Scholar
Gordon, D., Pavlovska, G., Uney, J. B., Wraith, D. C., & Scolding, N. J. (2010). Human mesenchymal stem cells infiltrate the spinal cord, reduce demyelination, and localize to white matter lesions in experimental autoimmune encephalomyelitis. Journal of Neuropathology and Experimental Neurology, 69, 1087–1095.
PubMed
Article
Google Scholar
Kemp, K., Hares, K., Mallam, E., Heesom, K. J., Scolding, N., & Wilkins, A. (2010). Mesenchymal stem cell-secreted superoxide dismutase promotes cerebellar neuronal survival. Journal of Neurochemistry, 114, 1569–1580.
CAS
PubMed
Article
Google Scholar
Wang, F., Yasuhara, T., Shingo, T., Kameda, M., Tajiri, N., Yuan, W., Kondo, A., Kadota, T., Baba, T., Tayra, J., Kikuchi, Y., Miyoshi, Y., & Date, I. (2010). Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: Focusing on neuroprotective effects of stromal cell-derived factor-1α. BMC Neuroscience, 11, 52.
CAS
PubMed
PubMed Central
Article
Google Scholar
Moloney, T. C., Rooney, G. E., Barry, F. P., Howard, L., & Dowd, E. (2010). Potential of rat bone marrow-derived mesenchymal stem cells as vehicles for delivery of neurotrophins to the Parkinsonian rat brain. Brain Research, 1359, 33–43.
CAS
PubMed
Article
Google Scholar
Ma, T., Gong, K., Ao, Q., et al. (2013). Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer’s disease mice. Cell Transplantation, 22.
Shin, J. Y., Park, H. J., Kim, H. N., Oh, S. H., Bae, J. S., Ha, H. J., & Lee, P. H. (2014). Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy, 10, 32–44.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sadlik, B., Jaroslawski, G., Puszkarz, M., Blasiak, A., Oldak, T., Gladysz, D., & Whyte, G. P. (2018). Cartilage repair in the knee using umbilical cord Wharton’s jelly–derived Mesenchymal stem cells embedded onto collagen scaffolding and implanted under dry arthroscopy. Arthroscopy Techniques, 7, e57–e63.
PubMed
Article
Google Scholar
Sadlik, B., Jaroslawski, G., Gladysz, D., et al. (2017). Knee cartilage regeneration with umbilical cord mesenchymal stem cells embedded in collagen scaffold using dry arthroscopy technique. Advances in Experimental Medicine and Biology, 1020, 113–122.
CAS
PubMed
Article
Google Scholar
Conconi, M. T., di Liddo, R., Tommasini, M., et al. (2011). Phenotype and differentiation potential of stromal populations obtained from various zones of human umbilical cord: An overview. The Open Tissue Engineering and Regenerative Medicine Journal, 4, 6–20.
Article
Google Scholar
Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M. M., & Davies, J. E. (2005). Human umbilical cord perivascular (HUCPV) cells: A source of Mesenchymal progenitors. Stem Cells, 23, 220–229.
PubMed
Article
Google Scholar
Troyer, D. L., & Weiss, M. L. (2008). Concise review: Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells, 26, 591–599.
PubMed
Article
Google Scholar
Kita, K., Gauglitz, G. G., Phan, T. T., Herndon, D. N., & Jeschke, M. G. (2010). Isolation and characterization of Mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells and Development, 19, 491–501.
CAS
PubMed
Article
Google Scholar
Redaelli, S., Bentivegna, A., Foudah, D., Miloso, M., Redondo, J., Riva, G., Baronchelli, S., Dalpra, L., & Tredici, G. (2012). From cytogenomic to epigenomic profiles: Monitoring the biologic behavior of in vitro cultured human bone marrow mesenchymal stem cells. Stem Cell Research & Therapy, 3(6), 47.
CAS
Article
Google Scholar
Alunno, A., Bistoni, O., Montanucci, P., Basta, G., Calafiore, R., & Gerli, R. (2018). Umbilical cord mesenchymal stem cells for the treatment of autoimmune diseases: Beware of cell-to-cell contact. Annals of the Rheumatic Diseases, 77, e14.
PubMed
Article
CAS
Google Scholar
Meng, M., Liu, Y., Wang, W., Wei, C., Liu, F., du, Z., Xie, Y., Tang, W., Hou, Z., & Li, Q. (2018). Umbilical cord mesenchymal stem cell transplantation in the treatment of multiple sclerosis. American Journal of Translational Research, 10, 212–223.
CAS
PubMed
PubMed Central
Google Scholar
Lim, I. J., & Phan, T. T. (2014). Epithelial and mesenchymal stem cells from the umbilical cord lining membrane. Cell Transplantation, 23, 497–503.
PubMed
Article
Google Scholar
Doan, C. C., Le, T. L., Hoang, N. S., et al. (2014). Differentiation of umbilical cord lining membrane-derived mesenchymal stem cells into endothelial-like cells. Iranian Biomedical Journal, 18, 67–75.
CAS
PubMed
Google Scholar
Xu, M., Zhang, B., Liu, Y., Zhang, J., Sheng, H., Shi, R., Liao, L., Liu, N., Hu, J., Wang, J., Ning, H., Liu, T., Zhang, Y., & Chen, H. (2014). The immunologic and hematopoietic profiles of Mesenchymal stem cells derived from different sections of human umbilical cord. Acta Biochimica et Biophysica Sinica, 46(12), 1056–1065.
CAS
PubMed
Article
Google Scholar
Subramanian, A., Fong, C. Y., Biswas, A., & Bongso, A. (2015). Comparative characterization of cells from the various compartments of the human umbilical cord shows that the Wharton’s jelly compartment provides the best source of clinically utilizable mesenchymal stem cells. PLoS One, 10(6), e0127992.
PubMed
PubMed Central
Article
CAS
Google Scholar
Bongso, A., & Fong, C. Y. (2013). The therapeutic potential, challenges and future clinical directions of stem cells from the Wharton’s jelly of the human umbilical cord. Stem Cell Reviews and Reports, 9, 226–240.
CAS
PubMed
Article
Google Scholar
Holmannová, D., Kolácková, M., Kondélková, K., et al. (2012). CD200/CD200R paired potent inhibitory molecules regulating immune and inflammatory responses; part I: CD200/CD200R structure, activation, and function. Acta medica (Hradec Králové) / Universitas Carolina. Facultas Medica Hradec Králové, 55, 12–17.
Google Scholar
Pietilä, M., Lehtonen, S., Tuovinen, E., Lähteenmäki, K., Laitinen, S., Leskelä, H. V., Nätynki, A., Pesälä, J., Nordström, K., & Lehenkari, P. (2012). CD200 positive human mesenchymal stem cells suppress TNF-alpha secretion from CD200 receptor positive macrophage-like cells. PLoS One, 7(2), e31671.
PubMed
PubMed Central
Article
CAS
Google Scholar
Najar, M., Raicevic, G., Jebbawi, F., de Bruyn, C., Meuleman, N., Bron, D., Toungouz, M., & Lagneaux, L. (2012). Characterization and functionality of the CD200-CD200R system during mesenchymal stromal cell interactions with T-lymphocytes. Immunology Letters, 146, 50–56.
CAS
PubMed
Article
Google Scholar
la Rocca, G., & lo Iacono, M., Corsello, T., et al. (2013). Human Wharton’s jelly Mesenchymal stem cells maintain the expression of key Immunomodulatory molecules when subjected to Osteogenic, Adipogenic and Chondrogenic differentiation in vitro: New perspectives for cellular therapy. Current Stem Cell Research & Therapy, 8, 100–113.
Article
Google Scholar
Donders, R., Bogie, J., Ravanidis, S., et al. (2018). Human Wharton’s jelly-derived stem cells display a distinct Immunomodulatory and Proregenerative transcriptional signature compared to bone marrow-derived stem cells. Stem Cells and Development, 27, 65–84.
CAS
PubMed
Article
Google Scholar
Bárcia, R. N., Santos, J. M., Filipe, M., et al. (2015). What makes umbilical cord tissue-derived Mesenchymal stromal cells superior immunomodulators when compared to bone marrow derived Mesenchymal stromal cells? https://doi.org/10.1155/2015/583984.
Varnum, M. M., Kiyota, T., Ingraham, K. L., Ikezu, S., & Ikezu, T. (2015). The anti-inflammatory glycoprotein, CD200, restores neurogenesis and enhances amyloid phagocytosis in a mouse model of Alzheimer’s disease. Neurobiology of Aging, 36, 2995–3007.
CAS
PubMed
PubMed Central
Article
Google Scholar
Yang, Y., Zhang, X.-j., Zhang, C., et al. (2018). Loss of neuronal CD200 contributed to microglial activation after acute cerebral ischemia in mice. Neuroscience Letters, 678, 48–54.
CAS
PubMed
Article
Google Scholar
Sun, H., Li, A., Hou, T., Tao, X., Chen, M., Wu, C., Chen, S., Zhu, L., & Liao, H. (2019). Neurogenesis promoted by the CD200/CD200R signaling pathway following treadmill exercise enhances post-stroke functional recovery in rats. Brain, Behavior, and Immunity, 82, 354–371.
PubMed
Article
Google Scholar
Li, Z., Ye, H., Cai, X., Sun, W., He, B., Yang, Z., & Xu, P. (2019). Bone marrow-mesenchymal stem cells modulate microglial activation in the peri-infarct area in rats during the acute phase of stroke. Brain Research Bulletin, 153, 324–333.
CAS
PubMed
Article
Google Scholar
Zhang, S., Wang, X. J., Tian, L. P., Pan, J., Lu, G. Q., Zhang, Y. J., Ding, J. Q., & Chen, S. D. (2011). CD200-CD200R dysfunction exacerbates microglial activation and dopaminergic neurodegeneration in a rat model of Parkinson’s disease. Journal of Neuroinflammation, 8, 154.
CAS
PubMed
PubMed Central
Article
Google Scholar
Liu, Y., Bando, Y., Vargas-Lowy, D., Elyaman, W., Khoury, S. J., Huang, T., Reif, K., & Chitnis, T. (2010). CD200R1 agonist attenuates mechanisms of chronic disease in a murine model of multiple sclerosis. Journal of Neuroscience, 30, 2025–2038.
CAS
PubMed
Article
Google Scholar
Gandarillas, A., & Watt, F. M. (1997). C-Myc promotes differentiation of human epidermal stem cells. Genes and Development, 11, 2869–2882.
CAS
PubMed
PubMed Central
Article
Google Scholar
Paula, A. C., Martins, T. M., Zonari, A., Frade, S. P. P. J., Angelo, P. C., Gomes, D. A., & Goes, A. M. (2015). Human adipose tissue-derived stem cells cultured in xeno-free culture condition enhance c-MYC expression increasing proliferation but bypassing spontaneous cell transformation. Stem Cell Research & Therapy, 6(1), 76.
Article
CAS
Google Scholar
Knoepfler, P. S. (2008). Why Myc? An unexpected ingredient in the stem cell cocktail. Cell Stem Cell, 2, 18–21.
CAS
PubMed
Article
Google Scholar
Nair, R., Roden, D. L., Teo, W. S., McFarland, A., Junankar, S., Ye, S., Nguyen, A., Yang, J., Nikolic, I., Hui, M., Morey, A., Shah, J., Pfefferle, A. D., Usary, J., Selinger, C., Baker, L. A., Armstrong, N., Cowley, M. J., Naylor, M. J., Ormandy, C. J., Lakhani, S. R., Herschkowitz, J. I., Perou, C. M., Kaplan, W., O'Toole, S. A., & Swarbrick, A. (2014). C-Myc and Her2 cooperate to drive a stem-like phenotype with poor prognosis in breast cancer. Oncogene, 33, 3992–4002.
CAS
PubMed
Article
Google Scholar
Shimizu, T., Ishikawa, T., Sugihara, E., Kuninaka, S., Miyamoto, T., Mabuchi, Y., Matsuzaki, Y., Tsunoda, T., Miya, F., Morioka, H., Nakayama, R., Kobayashi, E., Toyama, Y., Kawai, A., Ichikawa, H., Hasegawa, T., Okada, S., Ito, T., Ikeda, Y., Suda, T., & Saya, H. (2010). C-MYC overexpression with loss of Ink4a/Arf transforms bone marrow stromal cells into osteosarcoma accompanied by loss of adipogenesis. Oncogene, 29, 5687–5699.
CAS
PubMed
Article
Google Scholar
Melnik, S., Werth, N., Boeuf, S., Hahn, E. M., Gotterbarm, T., Anton, M., & Richter, W. (2019). Impact of c-MYC expression on proliferation, differentiation, and risk of neoplastic transformation of human mesenchymal stromal cells. Stem Cell Research & Therapy, 10, 73.
CAS
Article
Google Scholar
Wang, J.-Y., Wu, P.-K., Chen, P. C.-H., Lee, C. W., Chen, W. M., & Hung, S. C. (2017). Generation of osteosarcomas from a combination of Rb silencing and c-Myc overexpression in human Mesenchymal stem cells. Stem Cells Translational Medicine, 6, 512–526.
CAS
PubMed
Article
Google Scholar
Amable, P. R., Teixeira, M. V., Carias, R. B., Granjeiro, J. M., & Borojevic, R. (2014). Gene expression and protein secretion during human mesenchymal cell differentiation into adipogenic cells. BMC Cell Biology, 15, 46.
PubMed
PubMed Central
Article
CAS
Google Scholar
Mohanty, N., Gulati, B. R., Kumar, R., Gera, S., Kumar, S., Kumar, P., & Yadav, P. S. (2016). Phenotypical and functional characteristics of mesenchymal stem cells derived from equine umbilical cord blood. Cytotechnology, 68, 795–807.
CAS
PubMed
Article
Google Scholar
Menssen, A., Häupl, T., Sittinger, M., Delorme, B., Charbord, P., & Ringe, J. (2011). Differential gene expression profiling of human bone marrow-derived mesenchymal stem cells during adipogenic development. BMC Genomics, 12, 461.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hu, E., Liang, P., & Spiegelman, B. M. (1996). AdipoQ is a novel adipose-specific gene dysregulated in obesity. Journal of Biological Chemistry, 271, 10697–10703.
CAS
Article
PubMed
Google Scholar
Zołocińska, A. (2018). The expression of marker genes during the differentiation of Mesenchymal stromal cells. Advances in clinical and experimental medicine : official organ Wroclaw Medical University, 27(5), 717–723.
Article
Google Scholar
Leuning, D. G., Beijer, N. R. M., du Fossé, N. A., Vermeulen, S., Lievers, E., van Kooten, C., Rabelink, T. J., & Boer, J. . (2018). The cytokine secretion profile of mesenchymal stromal cells is determined by surface structure of the microenvironment. Scientific Reports, 8, 7716.
PubMed
PubMed Central
Article
CAS
Google Scholar
Di Nicola, M., Carlo-Stella, C., Magni, M., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.
PubMed
Article
Google Scholar
Bochev, I., Elmadjian, G., Kyurkchiev, D., Tzvetanov, L., Altankova, I., Tivchev, P., & Kyurkchiev, S. (2008). Mesenchymal stem cells from human bone marrow or adipose tissue differently modulate mitogen-stimulated B-cell immunoglobulin production in vitro. Cell Biology International, 32, 384–393.
CAS
PubMed
Article
Google Scholar
di Ianni, M., del Papa, B., de Ioanni, M., Moretti, L., Bonifacio, E., Cecchini, D., Sportoletti, P., Falzetti, F., & Tabilio, A. (2008). Mesenchymal cells recruit and regulate T regulatory cells. Experimental Hematology, 36, 309–318.
PubMed
Article
CAS
Google Scholar
Kimura, A., & Kishimoto, T. (2010). IL-6: Regulator of Treg/Th17 balance. European Journal of Immunology, 40, 1830–1835.
CAS
PubMed
Article
Google Scholar
Nakagawa, T., Tsuruoka, M., Ogura, H., Okuyama, Y., Arima, Y., Hirano, T., & Murakami, M. (2010). IL-6 positively regulates Foxp3 1 CD8 1 T cells in vivo. International Immunology, 22, 129–139.
CAS
PubMed
Article
Google Scholar
Scheller, J., Chalaris, A., Schmidt-Arras, D., & Rose-John, S. (2011). The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta, Molecular Cell Research, 1813, 878–888.
CAS
Article
Google Scholar
Ivanova-Todorova, E., Bochev, I., Dimitrov, R., et al. (2012). Conditioned medium from adipose tissue-derived Mesenchymal stem cells induces CD4+FOXP3+ cells and increases IL-10 secretion. Journal of Biomedicine and Biotechnology, 2012, 295167.
PubMed
PubMed Central
Article
CAS
Google Scholar
Kyurkchiev, D., Ivanova-Todorova, E., Bochev, I., Mourdjeva, M., & Kyurkchiev, S. (2013). Differences between adipose tissue- derived mesenchymal stem cells and bone marrow-derived mesenchymal stem cells as regulators of the immune response (pp 71–84). In In: Stem cells and Cancer stem cells, volume 10: Therapeutic applications in disease and injury. Netherlands: Springer.
Google Scholar
Bernardo, M. E., & Fibbe, W. E. (2013). Mesenchymal stromal cells: Sensors and switchers of inflammation. Cell Stem Cell, 13, 392–402.
CAS
PubMed
Article
Google Scholar
Xing, Z., Gauldie, J., Cox, G., Baumann, H., Jordana, M., Lei, X. F., & Achong, M. K. (1998). IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. Journal of Clinical Investigation, 101, 311–320.
CAS
PubMed Central
Article
PubMed
Google Scholar
Tanaka, T., Narazaki, M., & Kishimoto, T. (2014). Il-6 in inflammation, immunity, and disease. Cold Spring Harbor Perspectives in Biology, 6(10), a016295.
PubMed
PubMed Central
Article
Google Scholar
Park, C. W., Kim, K. S., Bae, S., Son, H. K., Myung, P. K., Hong, H. J., & Kim, H. (2009). Cytokine secretion profiling of human mesenchymal stem cells by antibody array. International Journal of Stem Cells, 2, 59–68.
CAS
PubMed
PubMed Central
Article
Google Scholar
Newman, R. E., Yoo, D., LeRoux, M. A., & Danilkovitch-Miagkova, A. (2009). Treatment of inflammatory diseases with mesenchymal stem cells. Inflammation & Allergy Drug Targets, 8, 110–123.
CAS
PubMed
Article
Google Scholar
Bouffi, C., Bony, C., Courties, G., Jorgensen, C., & Noël, D. (2010). IL-6-dependent PGE2 secretion by mesenchymal stem cells inhibits local inflammation in experimental arthritis. PLoS One, 5(12), e14247.
PubMed
PubMed Central
Article
CAS
Google Scholar
Ben-Ami, E., Berrih-Aknin, S., & Miller, A. (2011). Mesenchymal stem cells as an immunomodulatory therapeutic strategy for autoimmune diseases. Autoimmunity Reviews, 10, 410–415.
CAS
PubMed
Article
Google Scholar
Kyurkchiev, D., Bochev, I., Ivanova-Todorova, E., Mourdjeva, M., Oreshkova, T., Belemezova, K., & Kyurkchiev, S. (2014). Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells, 6, 552–570.
PubMed
PubMed Central
Article
Google Scholar
Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. L., & Flavell, R. A. (2006). Transforming growth factor-beta regulation of immune responses. Annual Review of Immunology, 24, 99–146.
CAS
PubMed
Article
Google Scholar
Yoshimura, A., & Muto, G. (2011). TGF-β function in immune suppression. In: Current topics in microbiology and immunology. Current Topics in Microbiology and Immunology, 350, 127–147.
CAS
PubMed
Google Scholar
Groh, M. E., Maitra, B., Szekely, E., & Koç, O. N. (2005). Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Experimental Hematology, 33, 928–934.
CAS
PubMed
Article
Google Scholar
English, K., Ryan, J. M., Tobin, L., Murphy, M. J., Barry, F. P., & Mahon, B. P. (2009). Cell contact, prostaglandin E2 and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25Highforkhead box P3+ regulatory T cells. Clinical and Experimental Immunology, 156, 149–160.
CAS
PubMed
PubMed Central
Article
Google Scholar
Xu, X., Zheng, L., Yuan, Q., Zhen, G., Crane, J. L., Zhou, X., & Cao, X. (2018). Transforming growth factor-β in stem cells and tissue homeostasis. Bone Research, 6, 2.
PubMed
PubMed Central
Article
CAS
Google Scholar
Akiyama, K., Chen, C., Wang, D., Xu, X., Qu, C., Yamaza, T., Cai, T., Chen, W. J., Sun, L., & Shi, S. (2012). Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell, 10, 544–555.
CAS
PubMed
PubMed Central
Article
Google Scholar
Boomsma, R. A., & Geenen, D. L. (2012). Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS One, 7, e35685.
CAS
PubMed
PubMed Central
Article
Google Scholar
Rafei, M., Hsieh, J., Fortier, S., Li, M. Y., Yuan, S., Birman, E., Forner, K., Boivin, M. N., Doody, K., Tremblay, M., Annabi, B., & Galipeau, J. (2008). Mesenchymal stromal cell derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood, 112, 4991–4998.
CAS
PubMed
Article
Google Scholar
Giri, J., Das, R., Nylen, E., et al. (2020). CCL2 and CXCL12 derived from Mesenchymal stromal cells cooperatively polarize IL-10+ tissue macrophages to mitigate gut injury. Cell Reports, 30(6), 1923–1934.e4.
CAS
PubMed
Article
Google Scholar
Nishida, F., Zappa Villar, M. F., Zanuzzi, C. N., Sisti, M. S., Camiña, A. E., Reggiani, P. C., & Portiansky, E. L. (2020). Intracerebroventricular delivery of human umbilical cord Mesenchymal stem cells as a promising therapy for repairing the spinal cord injury induced by Kainic acid. Stem Cell Reviews and Reports, 16, 167–180.
CAS
PubMed
Article
Google Scholar
Waugh, D. J., & Wilson, C. (2008). The interleukin-8 pathway in cancer. Clinical Cancer Research, 14(21), 6735–6741.
CAS
PubMed
Article
Google Scholar
Li, J. J., Ma, F. X., Wang, Y. W., Chen, F., Lu, S. H., Chi, Y., du, W. J., Song, B. Q., Hu, L. D., Chen, H., & Han, Z. C. (2017). Knockdown of IL-8 provoked premature senescence of placenta-derived mesenchymal stem cells. Stem Cells and Development, 26, 912–931.
CAS
PubMed
Article
Google Scholar
Amable, P. R., Teixeira, M. V., Carias, R. B., et al. (2014). Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton’s jelly. Stem Cell Research & Therapy, 5(2), 53.
Article
CAS
Google Scholar
Kalamegam, G., Sait, K., Anfinan, N., Kadam, R., Ahmed, F., Rasool, M., Naseer, M. I., Pushparaj, P. N., & al-Qahtani, M. (2019). Cytokines secreted by human Wharton’s jelly stem cells inhibit the proliferation of ovarian cancer (OVCAR3) cells in vitro. Oncology Letters, 17(5), 4521–4531.
CAS
PubMed
PubMed Central
Google Scholar
Paladino, F. V., Peixoto-Cruz, J. S., Santacruz-Perez, C., & Goldberg, A. C. (2016). Comparison between isolation protocols highlights intrinsic variability of human umbilical cord mesenchymal cells. Cell and Tissue Banking, 17, 123–136.
CAS
PubMed
Article
Google Scholar
Swamynathan, P., Venugopal, P., Kannan, S., Thej, C., Kolkundar, U., Bhagwat, S., Ta, M., Majumdar, A., & Balasubramanian, S. (2014). Are serum-free and xeno-free culture conditions ideal for large scale clinical grade expansion of Wharton’s jelly derived mesenchymal stem cells? A comparative study. Stem Cell Research & Therapy, 5(4), 88.
Article
Google Scholar
Mori, Y., Ohshimo, J., Shimazu, T., He, H., Takahashi, A., Yamamoto, Y., Tsunoda, H., Tojo, A., & Nagamura-Inoue, T. (2015). Improved explant method to isolate umbilical cord-derived mesenchymal stem cells and their immunosuppressive properties. Tissue Engineering - Part C: Methods, 21, 367–372.
CAS
Article
Google Scholar
Badraiq, H., Devito, L., & Ilic, D. (2015). Isolation and expansion of mesenchymal stromal/stem cells from umbilical cord under chemically defined conditions. Methods in Molecular Biology, 1283, 65–71.
CAS
PubMed
Article
Google Scholar
Barczewska, M., Maksymowicz, S., Zdolińska-Malinowska, I., Siwek, T., & Grudniak, M. (2020). Umbilical cord Mesenchymal stem cells in amyotrophic lateral sclerosis: An original study. Stem Cell Reviews and Reports, 16, 922–932.
CAS
PubMed
PubMed Central
Article
Google Scholar
Dehghani, L., Hashemi, S. M., Saadatnia, M., Zali, A., Oraee-Yazdani, S., Heidari Keshel, S., Khojasteh, A., & Soleimani, M. (2020). Stem cell-derived Exosomes as treatment for stroke: A systematic review. Stem Cell Reviews and Reports. https://doi.org/10.1007/s12015-020-10024-7.
Soder, R. P., Dawn, B., Weiss, M. L., Dunavin, N., Weir, S., Mitchell, J., Li, M., Shune, L., Singh, A. K., Ganguly, S., Morrison, M., Abdelhakim, H., Godwin, A. K., Abhyankar, S., & McGuirk, J. (2020). A phase I study to evaluate two doses of Wharton’s jelly-derived Mesenchymal stromal cells for the treatment of De novo high-risk or steroid-refractory acute graft versus host disease. Stem Cell Reviews and Reports, 16, 979–991.
CAS
PubMed
Article
Google Scholar
Adami, R., & Bottai, D. (2019). Spinal muscular atrophy modeling and treatment advances by induced pluripotent stem cells studies. Stem Cell Reviews and Reports, 15, 795–813.
PubMed
Article
Google Scholar
Karamini, A., Bakopoulou, A., Andreadis, D., Gkiouras, K., & Kritis, A. (2020). Therapeutic potential of Mesenchymal stromal stem cells in rheumatoid arthritis: A systematic review of in vivo studies. Stem Cell Reviews and Reports, 16, 276–287.
PubMed
Article
Google Scholar
Hénon, P. (2020). Key success factors for regenerative medicine in acquired heart diseases. Stem Cell Reviews and Reports, 16, 441–458.
PubMed
PubMed Central
Article
Google Scholar
López, E., Blázquez, R., Marinaro, F., Álvarez, V., Blanco, V., Báez, C., González, I., Abad, A., Moreno, B., Sánchez-Margallo, F. M., Crisóstomo, V., & Casado, J. G. (2020). The Intrapericardial delivery of extracellular vesicles from Cardiosphere-derived cells stimulates M2 polarization during the acute phase of porcine myocardial infarction. Stem Cell Reviews and Reports, 16, 612–625.
PubMed
Article
CAS
Google Scholar
Can, A., Celikkan, F. T., & Cinar, O. (2017). Umbilical cord mesenchymal stromal cell transplantations: A systemic analysis of clinical trials. Cytotherapy, 19, 1351–1382.
PubMed
Article
Google Scholar