Trounson, A., & McDonald, C. (2015). Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell, 17(1), 11–22. https://doi.org/10.1016/j.stem.2015.06.007.
CAS
Article
PubMed
Google Scholar
Rezania, A., Bruin, J. E., Arora, P., Rubin, A., Batushansky, I., Asadi, A., O'Dwyer, S., Quiskamp, N., Mojibian, M., Albrecht, T., Yang, Y. H. C., Johnson, J. D., & Kieffer, T. J. (2014). Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nature Biotechnology, 32(11), 1121–1133. https://doi.org/10.1038/nbt.3033.
CAS
Article
PubMed
Google Scholar
Ratajczak, M. Z., Kucia, M., Jadczyk, T., Greco, N. J., Wojakowski, W., Tendera, M., & Ratajczak, J. (2012). Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: Can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia, 26(6), 1166–1173. https://doi.org/10.1038/leu.2011.389.
CAS
Article
PubMed
Google Scholar
Parmar, M., Grealish, S., & Henchcliffe, C. (2020). The future of stem cell therapies for Parkinson disease. Nature Reviews. Neuroscience, 21(2), 103–115. https://doi.org/10.1038/s41583-019-0257-7.
CAS
Article
PubMed
Google Scholar
Madl, C. M., Heilshorn, S. C., & Blau, H. M. (2018). Bioengineering strategies to accelerate stem cell therapeutics. Nature, 557(7705), 335–342. https://doi.org/10.1038/s41586-018-0089-z.
CAS
Article
PubMed
PubMed Central
Google Scholar
Guha, P., Morgan, J. W., Mostoslavsky, G., Rodrigues, N. P., & Boyd, A. S. (2013). Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell, 12(4), 407–412. https://doi.org/10.1016/j.stem.2013.01.006.
CAS
Article
PubMed
Google Scholar
Itakura, G., Kawabata, S., Ando, M., Nishiyama, Y., Sugai, K., Ozaki, M., Iida, T., Ookubo, T., Kojima, K., Kashiwagi, R., Yasutake, K., Nakauchi, H., Miyoshi, H., Nagoshi, N., Kohyama, J., Iwanami, A., Matsumoto, M., Nakamura, M., & Okano, H. (2017). Fail-safe system against potential Tumorigenicity after transplantation of iPSC derivatives. Stem Cell Reports, 8(3), 673–684. https://doi.org/10.1016/j.stemcr.2017.02.003.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhao, T., Zhang, Z. N., Rong, Z., & Xu, Y. (2011). Immunogenicity of induced pluripotent stem cells. Nature, 474(7350), 212–215. https://doi.org/10.1038/nature10135.
CAS
Article
PubMed
Google Scholar
Araki, R., Uda, M., Hoki, Y., Sunayama, M., Nakamura, M., Ando, S., Sugiura, M., Ideno, H., Shimada, A., Nifuji, A., & Abe, M. (2013). Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature, 494(7435), 100–104. https://doi.org/10.1038/nature11807.
CAS
Article
PubMed
Google Scholar
Huang, X. P., Sun, Z., Miyagi, Y., McDonald Kinkaid, H., Zhang, L., Weisel, R. D., & Li, R. K. (2010). Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation, 122(23), 2419–2429. https://doi.org/10.1161/CIRCULATIONAHA.110.955971.
CAS
Article
PubMed
Google Scholar
Rama, P., Matuska, S., Paganoni, G., Spinelli, A., De Luca, M., & Pellegrini, G. (2010). Limbal stem-cell therapy and long-term corneal regeneration. The New England Journal of Medicine, 363(2), 147–155. https://doi.org/10.1056/NEJMoa0905955.
CAS
Article
PubMed
Google Scholar
Lee, J. S., Hong, J. M., Moon, G. J., Lee, P. H., Ahn, Y. H., Bang, O. Y., & STARTING collaborators. (2010). A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells, 28(6), 1099–1106. https://doi.org/10.1002/stem.430.
Article
PubMed
Google Scholar
Martin, R. M., Fowler, J. L., Cromer, M. K., Lesch, B. J., Ponce, E., Uchida, N., Nishimura, T., Porteus, M. H., & Loh, K. M. (2020). Improving the safety of human pluripotent stem cell therapies using genome-edited orthogonal safeguards. Nature Communications, 11(1), 2713. https://doi.org/10.1038/s41467-020-16455-7.
CAS
Article
PubMed
PubMed Central
Google Scholar
Approved Cellular and Gene Therapy Products (2020). https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products. Accessed December 9, 2020.
First stem-cell therapy recommended for approval in EU (2014). https://www.ema.europa.eu/en/news/first-stem-cell-therapy-recommended-approval-eu. Accessed December 9, 2020.
Martin, I., Galipeau, J., Kessler, C., Le Blanc, K., & Dazzi, F. (2019). Challenges for mesenchymal stromal cell therapies. Science Translational Medicine, 11(480), eaat2189. https://doi.org/10.1126/scitranslmed.aat2189.
CAS
Article
PubMed
Google Scholar
De Luca, M., Aiuti, A., Cossu, G., Parmar, M., Pellegrini, G., & Robey, P. G. (2019). Advances in stem cell research and therapeutic development. Nature Cell Biology, 21(7), 801–811. https://doi.org/10.1038/s41556-019-0344-z.
CAS
Article
PubMed
Google Scholar
Kay, A. G., Long, G., Tyler, G., Stefan, A., Broadfoot, S. J., Piccinini, A. M., Middleton, J., & Kehoe, O. (2017). Mesenchymal stem cell-conditioned medium reduces disease severity and immune responses in inflammatory arthritis. Scientific Reports, 7(1), 18019. https://doi.org/10.1038/s41598-017-18144-w.
CAS
Article
PubMed
PubMed Central
Google Scholar
Murphy, K. C., Whitehead, J., Falahee, P. C., Zhou, D., Simon, S. I., & Leach, J. K. (2017). Multifactorial experimental design to optimize the anti-inflammatory and Proangiogenic potential of Mesenchymal stem cell spheroids. Stem Cells, 35(6), 1493–1504. https://doi.org/10.1002/stem.2606.
CAS
Article
PubMed
PubMed Central
Google Scholar
Redondo-Castro, E., Cunningham, C., Miller, J., Martuscelli, L., Aoulad-Ali, S., Rothwell, N. J., Kielty, C. M., Allan, S. M., & Pinteaux, E. (2017). Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro. Stem Cell Research & Therapy, 8(1), 79. https://doi.org/10.1186/s13287-017-0531-4.
CAS
Article
Google Scholar
Luger, D., Lipinski, M. J., Westman, P. C., Glover, D. K., Dimastromatteo, J., Frias, J. C., Albelda, M. T., Sikora, S., Kharazi, A., Vertelov, G., Waksman, R., & Epstein, S. E. (2017). Intravenously delivered Mesenchymal stem cells: Systemic anti-inflammatory effects improve left ventricular dysfunction in acute myocardial infarction and ischemic cardiomyopathy. Circulation Research, 120(10), 1598–1613. https://doi.org/10.1161/CIRCRESAHA.117.310599.
CAS
Article
PubMed
Google Scholar
Park, S. R., Kim, J. W., Jun, H. S., Roh, J. Y., Lee, H. Y., & Hong, I. S. (2018). Stem cell Secretome and its effect on Cellular mechanisms relevant to wound healing. Molecular Therapy, 26(2), 606–617. https://doi.org/10.1016/j.ymthe.2017.09.023.
CAS
Article
PubMed
Google Scholar
Tachibana, A., Santoso, M. R., Mahmoudi, M., Shukla, P., Wang, L., Bennett, M., Goldstone, A. B., Wang, M., Fukushi, M., Ebert, A. D., Woo, Y. J., Rulifson, E., & Yang, P. C. (2017). Paracrine effects of the pluripotent stem cell-derived cardiac Myocytes salvage the injured myocardium. Circulation Research, 121(6), e22–e36. https://doi.org/10.1161/CIRCRESAHA.117.310803.
CAS
Article
PubMed
PubMed Central
Google Scholar
Li, X., Xie, X., Lian, W., Shi, R., Han, S., Zhang, H., Lu, L., & Li, M. (2018). Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Experimental & Molecular Medicine, 50(4), 29. https://doi.org/10.1038/s12276-018-0058-5.
CAS
Article
Google Scholar
de Mendonça, L., Felix, N. S., Blanco, N. G., Da Silva, J. S., Ferreira, T. P., Abreu, S. C., et al. (2017). Mesenchymal stromal cell therapy reduces lung inflammation and vascular remodeling and improves hemodynamics in experimental pulmonary arterial hypertension. Stem Cell Research & Therapy, 8(1), 220. https://doi.org/10.1186/s13287-017-0669-0.
CAS
Article
Google Scholar
Uemura, R., Xu, M., Ahmad, N., & Ashraf, M. (2006). Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circulation Research, 98(11), 1414–1421. https://doi.org/10.1161/01.RES.0000225952.61196.39.
CAS
Article
PubMed
Google Scholar
Lan, Y. W., Choo, K. B., Chen, C. M., Hung, T. H., Chen, Y. B., Hsieh, C. H., Kuo, H. P., & Chong, K. Y. (2015). Hypoxia-preconditioned mesenchymal stem cells attenuate bleomycin-induced pulmonary fibrosis. Stem Cell Research & Therapy, 6, 97. https://doi.org/10.1186/s13287-015-0081-6.
CAS
Article
Google Scholar
Horton, J. A., Hudak, K. E., Chung, E. J., White, A. O., Scroggins, B. T., Burkeen, J. F., & Citrin, D. E. (2013). Mesenchymal stem cells inhibit cutaneous radiation-induced fibrosis by suppressing chronic inflammation. Stem Cells, 31(10), 2231–2241. https://doi.org/10.1002/stem.1483.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wilson, J. G., Liu, K. D., Zhuo, H., Caballero, L., McMillan, M., Fang, X., Cosgrove, K., Vojnik, R., Calfee, C. S., Lee, J. W., Rogers, A. J., Levitt, J., Wiener-Kronish, J., Bajwa, E. K., Leavitt, A., McKenna, D., Thompson, B. T., & Matthay, M. A. (2015). Mesenchymal stem (stromal) cells for treatment of ARDS: A phase 1 clinical trial. The Lancet Respiratory Medicine, 3(1), 24–32. https://doi.org/10.1016/S2213-2600(14)70291-7.
Article
PubMed
Google Scholar
Glassberg, M. K., Minkiewicz, J., Toonkel, R. L., Simonet, E. S., Rubio, G. A., DiFede, D., Shafazand, S., Khan, A., Pujol, M. V., LaRussa, V. F., Lancaster, L. H., Rosen, G. D., Fishman, J., Mageto, Y. N., Mendizabal, A., & Hare, J. M. (2017). Allogeneic human Mesenchymal stem cells in patients with idiopathic pulmonary fibrosis via intravenous delivery (AETHER): A phase I safety clinical trial. Chest, 151(5), 971–981. https://doi.org/10.1016/j.chest.2016.10.061.
Article
PubMed
Google Scholar
Gu, W., Song, L., Li, X. M., Wang, D., Guo, X. J., & Xu, W. G. (2015). Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Scientific Reports, 5, 8733. https://doi.org/10.1038/srep08733.
CAS
Article
PubMed
PubMed Central
Google Scholar
Li, X., Michaeloudes, C., Zhang, Y., Wiegman, C. H., Adcock, I. M., Lian, Q., et al. (2018). Mesenchymal stem cells alleviate oxidative stress-induced mitochondrial dysfunction in the airways. The Journal of Allergy and Clinical Immunology, 141(5), 1634–1645.e1635. https://doi.org/10.1016/j.jaci.2017.08.017.
CAS
Article
PubMed
Google Scholar
Hao, Q., Gudapati, V., Monsel, A., Park, J. H., Hu, S., Kato, H., Lee, J. H., Zhou, L., He, H., & Lee, J. W. (2019). Mesenchymal stem cell-derived extracellular vesicles decrease lung injury in mice. Journal of Immunology, 203(7), 1961–1972. https://doi.org/10.4049/jimmunol.1801534.
CAS
Article
Google Scholar
Ahn, S. Y., Park, W. S., Kim, Y. E., Sung, D. K., Sung, S. I., Ahn, J. Y., & Chang, Y. S. (2018). Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury. Experimental & Molecular Medicine, 50(4), 26. https://doi.org/10.1038/s12276-018-0055-8.
CAS
Article
Google Scholar
Mariñas-Pardo, L., Mirones, I., Amor-Carro, O., Fraga-Iriso, R., Lema-Costa, B., Cubillo, I., Rodríguez Milla, M. Á., García-Castro, J., & Ramos-Barbón, D. (2014). Mesenchymal stem cells regulate airway contractile tissue remodeling in murine experimental asthma. Allergy, 69(6), 730–740. https://doi.org/10.1111/all.12392.
CAS
Article
PubMed
Google Scholar
Kapoor, S., Patel, S. A., Kartan, S., Axelrod, D., Capitle, E., & Rameshwar, P. (2012). Tolerance-like mediated suppression by mesenchymal stem cells in patients with dust mite allergy-induced asthma. The Journal of Allergy and Clinical Immunology, 129(4), 1094–1101. https://doi.org/10.1016/j.jaci.2011.10.048.
CAS
Article
PubMed
Google Scholar
Akdis, C. A. (2012). Therapies for allergic inflammation: Refining strategies to induce tolerance. Nature Medicine, 18(5), 736–749. https://doi.org/10.1038/nm.2754.
CAS
Article
PubMed
Google Scholar
Barnes, P. J. (2012). Severe asthma: Advances in current management and future therapy. The Journal of Allergy and Clinical Immunology, 129(1), 48–59. https://doi.org/10.1016/j.jaci.2011.11.006.
CAS
Article
PubMed
Google Scholar
Corren, J. (2019). New targeted therapies for uncontrolled asthma. The Journal of Allergy and Clinical Immunology. In Practice, 7(5), 1394–1403. https://doi.org/10.1016/j.jaip.2019.03.022.
Article
PubMed
Google Scholar
Agache, I., Rocha, C., Beltran, J., Song, Y., Posso, M., Solà, I., Alonso-Coello, P., Akdis, C., Akdis, M., Canonica, G. W., Casale, T., Chivato, T., Corren, J., del Giacco, S., Eiwegger, T., Firinu, D., Gern, J. E., Hamelmann, E., Hanania, N., Mäkelä, M., Martín, I. H., Nair, P., O'Mahony, L., Papadopoulos, N. G., Papi, A., Park, H. S., Pérez de Llano, L., Quirce, S., Sastre, J., Shamji, M., Schwarze, J., Canelo-Aybar, C., Palomares, O., & Jutel, M. (2020). Efficacy and safety of treatment with biologicals (benralizumab, dupilumab and omalizumab) for severe allergic asthma: A systematic review for the EAACI guidelines - recommendations on the use of biologicals in severe asthma. Allergy, 75(5), 1043–1057. https://doi.org/10.1111/all.14235.
CAS
Article
PubMed
Google Scholar
Agache, I., Lau, S., Akdis, C. A., Smolinska, S., Bonini, M., Cavkaytar, O., Flood, B., Gajdanowicz, P., Izuhara, K., Kalayci, O., Mosges, R., Palomares, O., Papadopoulos, N. G., Sokolowska, M., Angier, E., Fernandez-Rivas, M., Pajno, G., Pfaar, O., Roberts, G. C., Ryan, D., Sturm, G. J., Ree, R., Varga, E. M., Wijk, R. G., Yepes-Nuñez, J. J., & Jutel, M. (2019). EAACI guidelines on allergen immunotherapy: House dust mite-driven allergic asthma. Allergy, 74(5), 855–873. https://doi.org/10.1111/all.13749.
CAS
Article
PubMed
Google Scholar
Corren, J., Castro, M., O'Riordan, T., Hanania, N. A., Pavord, I. D., Quirce, S., Chipps, B. E., Wenzel, S. E., Thangavelu, K., Rice, M. S., Harel, S., Jagerschmidt, A., Khan, A. H., Kamat, S., Maroni, J., Rowe, P., Lu, Y., Amin, N., Pirozzi, G., Ruddy, M., Graham, N. M. H., & Teper, A. (2020). Dupilumab efficacy in patients with uncontrolled, moderate-to-severe allergic asthma. The Journal of Allergy and Clinical Immunology. In Practice, 8(2), 516–526. https://doi.org/10.1016/j.jaip.2019.08.050.
Article
PubMed
Google Scholar
Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9(5), 641–650. https://doi.org/10.1002/jor.1100090504.
CAS
Article
PubMed
Google Scholar
Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., & Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147. https://doi.org/10.1126/science.284.5411.143.
CAS
Article
PubMed
Google Scholar
Caplan, A. I. (2017). Mesenchymal stem cells: Time to change the name! Stem Cells Translational Medicine, 6(6), 1445–1451. https://doi.org/10.1002/sctm.17-0051.
Article
PubMed
PubMed Central
Google Scholar
Han, S. M., Han, S. H., Coh, Y. R., Jang, G., Chan Ra, J., Kang, S. K., Lee, H. W., & Youn, H. Y. (2014). Enhanced proliferation and differentiation of Oct4- and Sox2-overexpressing human adipose tissue mesenchymal stem cells. Experimental & Molecular Medicine, 46, e101. https://doi.org/10.1038/emm.2014.28.
CAS
Article
Google Scholar
Krampera, M., Glennie, S., Dyson, J., Scott, D., Laylor, R., Simpson, E., & Dazzi, F. (2003). Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 101(9), 3722–3729. https://doi.org/10.1182/blood-2002-07-2104.
CAS
Article
PubMed
Google Scholar
Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W., & Dazzi, F. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105(7), 2821–2827. https://doi.org/10.1182/blood-2004-09-3696.
CAS
Article
PubMed
Google Scholar
Wang, H. S., Hung, S. C., Peng, S. T., Huang, C. C., Wei, H. M., Guo, Y. J., Fu, Y. S., Lai, M. C., & Chen, C. C. (2004). Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells, 22(7), 1330–1337. https://doi.org/10.1634/stemcells.2004-0013.
Article
PubMed
Google Scholar
Lee, O. K., Kuo, T. K., Chen, W. M., Lee, K. D., Hsieh, S. L., & Chen, T. H. (2004). Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 103(5), 1669–1675. https://doi.org/10.1182/blood-2003-05-1670.
CAS
Article
PubMed
Google Scholar
Bieback, K., Kern, S., Klüter, H., & Eichler, H. (2004). Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells, 22(4), 625–634. https://doi.org/10.1634/stemcells.22-4-625.
Article
PubMed
Google Scholar
Roubelakis, M. G., Pappa, K. I., Bitsika, V., Zagoura, D., Vlahou, A., Papadaki, H. A., Antsaklis, A., & Anagnou, N. P. (2007). Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: Comparison to bone marrow mesenchymal stem cells. Stem Cells and Development, 16(6), 931–952. https://doi.org/10.1089/scd.2007.0036.
CAS
Article
PubMed
Google Scholar
Savickiene, J., Treigyte, G., Baronaite, S., Valiuliene, G., Kaupinis, A., Valius, M., Arlauskiene, A., & Navakauskiene, R. (2015). Human amniotic fluid Mesenchymal stem cells from second- and third-trimester amniocentesis: Differentiation potential, molecular signature, and proteome analysis. Stem Cells International, 2015, 319238–319215. https://doi.org/10.1155/2015/319238.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tsai, M. S., Hwang, S. M., Chen, K. D., Lee, Y. S., Hsu, L. W., Chang, Y. J., Wang, C. N., Peng, H. H., Chang, Y. L., Chao, A. S., Chang, S. D., Lee, K. D., Wang, T. H., Wang, H. S., & Soong, Y. K. (2007). Functional network analysis of the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow. Stem Cells, 25(10), 2511–2523. https://doi.org/10.1634/stemcells.2007-0023.
CAS
Article
PubMed
Google Scholar
Shi, S., & Gronthos, S. (2003). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. Journal of Bone and Mineral Research, 18(4), 696–704. https://doi.org/10.1359/jbmr.2003.18.4.696.
Article
PubMed
Google Scholar
Schüring, A. N., Schulte, N., Kelsch, R., Röpke, A., Kiesel, L., & Götte, M. (2011). Characterization of endometrial mesenchymal stem-like cells obtained by endometrial biopsy during routine diagnostics. Fertility and Sterility, 95(1), 423–426. https://doi.org/10.1016/j.fertnstert.2010.08.035.
Article
PubMed
Google Scholar
Meng, X., Ichim, T. E., Zhong, J., Rogers, A., Yin, Z., Jackson, J., Wang, H., Ge, W., Bogin, V., Chan, K. W., Thébaud, B., & Riordan, N. H. (2007). Endometrial regenerative cells: a novel stem cell population. Journal of Translational Medicine, 5, 57. https://doi.org/10.1186/1479-5876-5-57.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tondreau, T., Meuleman, N., Delforge, A., Dejeneffe, M., Leroy, R., Massy, M., Mortier, C., Bron, D., & Lagneaux, L. (2005). Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: Proliferation, Oct4 expression, and plasticity. Stem Cells, 23(8), 1105–1112. https://doi.org/10.1634/stemcells.2004-0330.
CAS
Article
PubMed
Google Scholar
Wang, S. J., Jiang, D., Zhang, Z. Z., Huang, A. B., Qi, Y. S., Wang, H. J., Zhang, J. Y., & Yu, J. K. (2016). Chondrogenic potential of peripheral blood derived Mesenchymal stem cells seeded on demineralized Cancellous bone scaffolds. Scientific Reports, 6, 36400. https://doi.org/10.1038/srep36400.
CAS
Article
PubMed
PubMed Central
Google Scholar
Xu, J., Su, Y., Hu, L., Cain, A., Gu, Y., Liu, B., Wu, R., Wang, S., & Wang, H. (2018). Effect of bone morphogenetic protein 6 on Immunomodulatory functions of salivary gland-derived Mesenchymal stem cells in Sjögren's syndrome. Stem Cells and Development, 27(22), 1540–1548. https://doi.org/10.1089/scd.2017.0161.
CAS
Article
PubMed
PubMed Central
Google Scholar
de Sousa, E. B., Casado, P. L., Moura Neto, V., Duarte, M. E., & Aguiar, D. P. (2014). Synovial fluid and synovial membrane mesenchymal stem cells: Latest discoveries and therapeutic perspectives. Stem Cell Research & Therapy, 5(5), 112. https://doi.org/10.1186/scrt501.
CAS
Article
Google Scholar
Liu, T. M., Martina, M., Hutmacher, D. W., Hui, J. H., Lee, E. H., & Lim, B. (2007). Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells, 25(3), 750–760. https://doi.org/10.1634/stemcells.2006-0394.
CAS
Article
PubMed
Google Scholar
Viswanathan, S., Shi, Y., Galipeau, J., Krampera, M., Leblanc, K., Martin, I., Nolta, J., Phinney, D. G., & Sensebe, L. (2019). Mesenchymal stem versus stromal cells: International Society for Cell & gene therapy (ISCT®) Mesenchymal stromal cell committee position statement on nomenclature. Cytotherapy, 21(10), 1019–1024. https://doi.org/10.1016/j.jcyt.2019.08.002.
CAS
Article
PubMed
Google Scholar
Mattar, P., & Bieback, K. (2015). Comparing the Immunomodulatory properties of bone marrow, adipose tissue, and birth-associated tissue Mesenchymal stromal cells. Frontiers in Immunology, 6, 560. https://doi.org/10.3389/fimmu.2015.00560.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ribeiro, A., Laranjeira, P., Mendes, S., Velada, I., Leite, C., Andrade, P., Santos, F., Henriques, A., Grãos, M., Cardoso, C. M. P., Martinho, A., Pais, M. L., da Silva, C., Cabral, J., Trindade, H., & Paiva, A. (2013). Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Research & Therapy, 4(5), 125. https://doi.org/10.1186/scrt336.
CAS
Article
Google Scholar
Najar, M., Raicevic, G., Boufker, H. I., Fayyad Kazan, H., De Bruyn, C., Meuleman, N., et al. (2010). Mesenchymal stromal cells use PGE2 to modulate activation and proliferation of lymphocyte subsets: Combined comparison of adipose tissue, Wharton's jelly and bone marrow sources. Cellular Immunology, 264(2), 171–179. https://doi.org/10.1016/j.cellimm.2010.06.006.
CAS
Article
PubMed
Google Scholar
Ivanova-Todorova, E., Bochev, I., Mourdjeva, M., Dimitrov, R., Bukarev, D., Kyurkchiev, S., Tivchev, P., Altunkova, I., & Kyurkchiev, D. S. (2009). Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells. Immunology Letters, 126(1–2), 37–42. https://doi.org/10.1016/j.imlet.2009.07.010.
CAS
Article
PubMed
Google Scholar
Jin, H. J., Bae, Y. K., Kim, M., Kwon, S. J., Jeon, H. B., Choi, S. J., et al. (2013). Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. International Journal of Molecular Sciences, 14(9), 17986–18001. https://doi.org/10.3390/ijms140917986.
Article
PubMed
PubMed Central
Google Scholar
Li, X., Bai, J., Ji, X., Li, R., Xuan, Y., & Wang, Y. (2014). Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. International Journal of Molecular Medicine, 34(3), 695–704. https://doi.org/10.3892/ijmm.2014.1821.
CAS
Article
PubMed
PubMed Central
Google Scholar
Adams, T. S., Schupp, J. C., Poli, S., Ayaub, E. A., Neumark, N., Ahangari, F., et al. (2020). Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Science Advances, 6(28), eaba1983. https://doi.org/10.1126/sciadv.aba1983.
CAS
Article
PubMed
PubMed Central
Google Scholar
Habermann, A. C., Gutierrez, A. J., Bui, L. T., Yahn, S. L., Winters, N. I., Calvi, C. L., et al. (2020). Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Science Advances, 6(28), eaba1972. https://doi.org/10.1126/sciadv.aba1972.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang, L., Shi, M., Tong, L., Wang, J., Ji, S., Bi, J., Chen, C., Jiang, J., Bai, C., Zhou, J., & Song, Y. (2019). Lung-resident Mesenchymal stem cells promote repair of LPS-induced acute lung injury via regulating the balance of regulatory T cells and Th17 cells. Inflammation, 42(1), 199–210. https://doi.org/10.1007/s10753-018-0884-6.
CAS
Article
PubMed
Google Scholar
Tong, L., Zhou, J., Rong, L., Seeley, E. J., Pan, J., Zhu, X., Liu, J., Wang, Q., Tang, X., Qu, J., Bai, C., & Song, Y. (2016). Fibroblast growth Factor-10 (FGF-10) mobilizes lung-resident Mesenchymal stem cells and protects against acute lung injury. Scientific Reports, 6, 21642. https://doi.org/10.1038/srep21642.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lu, Z., Chang, W., Meng, S., Xu, X., Xie, J., Guo, F., Yang, Y., Qiu, H., & Liu, L. (2019). Mesenchymal stem cells induce dendritic cell immune tolerance via paracrine hepatocyte growth factor to alleviate acute lung injury. Stem Cell Research & Therapy, 10(1), 372. https://doi.org/10.1186/s13287-019-1488-2.
CAS
Article
Google Scholar
Rolandsson Enes, S., Andersson Sjöland, A., Skog, I., Hansson, L., Larsson, H., Le Blanc, K., et al. (2016). MSC from fetal and adult lungs possess lung-specific properties compared to bone marrow-derived MSC. Scientific Reports, 6, 29160. https://doi.org/10.1038/srep29160.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cao, H., Wang, C., Chen, X., Hou, J., Xiang, Z., Shen, Y., & Han, X. (2018). Inhibition of Wnt/β-catenin signaling suppresses myofibroblast differentiation of lung resident mesenchymal stem cells and pulmonary fibrosis. Scientific Reports, 8(1), 13644. https://doi.org/10.1038/s41598-018-28968-9.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cao, H., Chen, X., Hou, J., Wang, C., Xiang, Z., Shen, Y., & Han, X. (2020). The Shh/Gli signaling cascade regulates myofibroblastic activation of lung-resident mesenchymal stem cells via the modulation of Wnt10a expression during pulmonary fibrogenesis. Laboratory Investigation, 100(3), 363–377. https://doi.org/10.1038/s41374-019-0316-8.
CAS
Article
PubMed
Google Scholar
Shi, C., Cao, X., Chen, X., Sun, Z., Xiang, Z., Zhao, H., Qian, W., & Han, X. (2015). Intracellular surface-enhanced Raman scattering probes based on TAT peptide-conjugated au nanostars for distinguishing the differentiation of lung resident mesenchymal stem cells. Biomaterials, 58, 10–25. https://doi.org/10.1016/j.biomaterials.2015.04.010.
CAS
Article
PubMed
Google Scholar
Hynes, K., Menicanin, D., Mrozik, K., Gronthos, S., & Bartold, P. M. (2014). Generation of functional mesenchymal stem cells from different induced pluripotent stem cell lines. Stem Cells and Development, 23(10), 1084–1096. https://doi.org/10.1089/scd.2013.0111.
CAS
Article
PubMed
Google Scholar
Tang, M., Chen, W., Liu, J., Weir, M. D., Cheng, L., & Xu, H. H. (2014). Human induced pluripotent stem cell-derived mesenchymal stem cell seeding on calcium phosphate scaffold for bone regeneration. Tissue Engineering. Part A, 20(7–8), 1295–1305. https://doi.org/10.1089/ten.TEA.2013.0211.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pinto, D. S., Ahsan, T., Serra, J., Fernandes-Platzgummer, A., Cabral, J. M. S., & da Silva, C. L. (2020). Modulation of the in vitro angiogenic potential of human mesenchymal stromal cells from different tissue sources. Journal of Cellular Physiology, 235(10), 7224–7238. https://doi.org/10.1002/jcp.29622.
CAS
Article
PubMed
Google Scholar
Soontararak, S., Chow, L., Johnson, V., Coy, J., Wheat, W., Regan, D., & Dow, S. (2018). Mesenchymal stem cells (MSC) derived from induced pluripotent stem cells (iPSC) equivalent to adipose-derived MSC in promoting intestinal healing and microbiome normalization in mouse inflammatory bowel disease model. Stem Cells Translational Medicine, 7(6), 456–467. https://doi.org/10.1002/sctm.17-0305.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yoshihara, M., Hayashizaki, Y., & Murakawa, Y. (2017). Genomic instability of iPSCs: Challenges towards their clinical applications. Stem Cell Reviews and Reports, 13(1), 7–16. https://doi.org/10.1007/s12015-016-9680-6.
CAS
Article
PubMed
Google Scholar
A Study of CYP-001 for the Treatment of Steroid-Resistant Acute Graft Versus Host Disease (2016). https://clinicaltrials.gov/ct2/show/NCT02923375?term=cyp-001&draw=2&rank=1. Accessed December 9, 2020.
The MEseNchymal coviD-19 Trial: a Pilot Study to Investigate Early Efficacy of MSCs in Adults With COVID-19 (MEND) (2020). https://clinicaltrials.gov/ct2/show/NCT04537351?term=cyp-001&draw=2&rank=2. Accessed December 9, 2020.
Yao, Y., Fan, X. L., Jiang, D., Zhang, Y., Li, X., Xu, Z. B., Fang, S. B., Chiu, S., Tse, H. F., Lian, Q., & Fu, Q. L. (2018). Connexin 43-mediated mitochondrial transfer of iPSC-MSCs alleviates asthma inflammation. Stem Cell Reports, 11(5), 1120–1135. https://doi.org/10.1016/j.stemcr.2018.09.012.
CAS
Article
PubMed
PubMed Central
Google Scholar
Royce, S. G., Mao, W., Lim, R., Kelly, K., & Samuel, C. S. (2019). iPSC- and mesenchymoangioblast-derived mesenchymal stem cells provide greater protection against experimental chronic allergic airways disease compared with a clinically used corticosteroid. The FASEB Journal, 33(5), 6402–6411. https://doi.org/10.1096/fj.201802307R.
CAS
Article
PubMed
Google Scholar
Royce, S. G., Rele, S., Broughton, B. R. S., Kelly, K., & Samuel, C. S. (2017). Intranasal administration of mesenchymoangioblast-derived mesenchymal stem cells abrogates airway fibrosis and airway hyperresponsiveness associated with chronic allergic airways disease. The FASEB Journal, 31(9), 4168–4178. https://doi.org/10.1096/fj.201700178R.
CAS
Article
PubMed
Google Scholar
Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A. I., Zhao, R. C., & Shi, Y. (2008). Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2(2), 141–150. https://doi.org/10.1016/j.stem.2007.11.014.
CAS
Article
PubMed
Google Scholar
Sudres, M., Norol, F., Trenado, A., Grégoire, S., Charlotte, F., Levacher, B., Lataillade, J. J., Bourin, P., Holy, X., Vernant, J. P., Klatzmann, D., & Cohen, J. L. (2006). Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. Journal of Immunology, 176(12), 7761–7767. https://doi.org/10.4049/jimmunol.176.12.7761.
CAS
Article
Google Scholar
Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E., Giunti, D., Ceravolo, A., Cazzanti, F., Frassoni, F., Mancardi, G., & Uccelli, A. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 106(5), 1755–1761. https://doi.org/10.1182/blood-2005-04-1496.
CAS
Article
PubMed
Google Scholar
Zhou, Y., Day, A., Haykal, S., Keating, A., & Waddell, T. K. (2013). Mesenchymal stromal cells augment CD4+ and CD8+ T-cell proliferation through a CCL2 pathway. Cytotherapy, 15(10), 1195–1207. https://doi.org/10.1016/j.jcyt.2013.05.009.
CAS
Article
PubMed
Google Scholar
Deng, Y., Zhang, Y., Ye, L., Zhang, T., Cheng, J., Chen, G., Zhang, Q., & Yang, Y. (2016). Umbilical cord-derived Mesenchymal stem cells instruct monocytes towards an IL10-producing phenotype by secreting IL6 and HGF. Scientific Reports, 6, 37566. https://doi.org/10.1038/srep37566.
CAS
Article
PubMed
PubMed Central
Google Scholar
Luz-Crawford, P., Kurte, M., Bravo-Alegría, J., Contreras, R., Nova-Lamperti, E., Tejedor, G., Noël, D., Jorgensen, C., Figueroa, F., Djouad, F., & Carrión, F. (2013). Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Research & Therapy, 4(3), 65. https://doi.org/10.1186/scrt216.
CAS
Article
Google Scholar
Sheng, H., Wang, Y., Jin, Y., Zhang, Q., Zhang, Y., Wang, L., Shen, B., Yin, S., Liu, W., Cui, L., & Li, N. (2008). A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Research, 18(8), 846–857. https://doi.org/10.1038/cr.2008.80.
CAS
Article
PubMed
Google Scholar
Spaggiari, G. M., Capobianco, A., Becchetti, S., Mingari, M. C., & Moretta, L. (2006). Mesenchymal stem cell-natural killer cell interactions: Evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood, 107(4), 1484–1490. https://doi.org/10.1182/blood-2005-07-2775.
CAS
Article
PubMed
Google Scholar
Spaggiari, G. M., Capobianco, A., Abdelrazik, H., Becchetti, F., Mingari, M. C., & Moretta, L. (2008). Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: Role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood, 111(3), 1327–1333. https://doi.org/10.1182/blood-2007-02-074997.
CAS
Article
PubMed
Google Scholar
Luz-Crawford, P., Djouad, F., Toupet, K., Bony, C., Franquesa, M., Hoogduijn, M. J., Jorgensen, C., & Noël, D. (2016). Mesenchymal stem cell-derived interleukin 1 receptor antagonist promotes macrophage polarization and inhibits B cell differentiation. Stem Cells, 34(2), 483–492. https://doi.org/10.1002/stem.2254.
CAS
Article
PubMed
Google Scholar
Rosado, M. M., Bernardo, M. E., Scarsella, M., Conforti, A., Giorda, E., Biagini, S., Cascioli, S., Rossi, F., Guzzo, I., Vivarelli, M., dello Strologo, L., Emma, F., Locatelli, F., & Carsetti, R. (2015). Inhibition of B-cell proliferation and antibody production by mesenchymal stromal cells is mediated by T cells. Stem Cells and Development, 24(1), 93–103. https://doi.org/10.1089/scd.2014.0155.
CAS
Article
PubMed
Google Scholar
Zhou, H., Guo, M., Bian, C., Sun, Z., Yang, Z., Zeng, Y., Ai, H. S., & Zhao, R. C. (2010). Efficacy of bone marrow-derived mesenchymal stem cells in the treatment of sclerodermatous chronic graft-versus-host disease: Clinical report. Biology of Blood and Marrow Transplantation, 16(3), 403–412. https://doi.org/10.1016/j.bbmt.2009.11.006.
CAS
Article
PubMed
Google Scholar
Duijvestein, M., Vos, A. C., Roelofs, H., Wildenberg, M. E., Wendrich, B. B., Verspaget, H. W., et al. (2010). Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: Results of a phase I study. Gut, 59(12), 1662–1669. https://doi.org/10.1136/gut.2010.215152.
Article
PubMed
Google Scholar
Wang, D., Li, J., Zhang, Y., Zhang, M., Chen, J., Li, X., Hu, X., Jiang, S., Shi, S., & Sun, L. (2014). Umbilical cord mesenchymal stem cell transplantation in active and refractory systemic lupus erythematosus: A multicenter clinical study. Arthritis Research & Therapy, 16(2), R79. https://doi.org/10.1186/ar4520.
Article
Google Scholar
Kim, Y., Jin, H. J., Heo, J., Ju, H., Lee, H. Y., Kim, S., Lee, S., Lim, J., Jeong, S. Y., Kwon, J. H., Kim, M., Choi, S. J., Oh, W., Yang, Y. S., Hwang, H. H., Yu, H. Y., Ryu, C. M., Jeon, H. B., & Shin, D. M. (2018). Small hypoxia-primed mesenchymal stem cells attenuate graft-versus-host disease. Leukemia, 32(12), 2672–2684. https://doi.org/10.1038/s41375-018-0151-8.
CAS
Article
PubMed
PubMed Central
Google Scholar
Waterman, R. S., Tomchuck, S. L., Henkle, S. L., & Betancourt, A. M. (2010). A new mesenchymal stem cell (MSC) paradigm: Polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. PLoS One, 5(4), e10088. https://doi.org/10.1371/journal.pone.0010088.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee, S. C., Jeong, H. J., Lee, S. K., & Kim, S. J. (2015). Lipopolysaccharide preconditioning of adipose-derived stem cells improves liver-regenerating activity of the secretome. Stem Cell Research & Therapy, 6, 75. https://doi.org/10.1186/s13287-015-0072-7.
CAS
Article
Google Scholar
Noone, C., Kihm, A., English, K., O'Dea, S., & Mahon, B. P. (2013). IFN-gamma stimulated human umbilical-tissue-derived cells potently suppress NK activation and resist NK-mediated cytotoxicity in vitro. Stem Cells and Development, 22(22), 3003–3014. https://doi.org/10.1089/scd.2013.0028.
CAS
Article
PubMed
PubMed Central
Google Scholar
Francois, M., Romieu-Mourez, R., Li, M., & Galipeau, J. (2012). Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Molecular Therapy, 20(1), 187–195. https://doi.org/10.1038/mt.2011.189.
CAS
Article
PubMed
Google Scholar
Sivanathan, K. N., Rojas-Canales, D. M., Hope, C. M., Krishnan, R., Carroll, R. P., Gronthos, S., Grey, S. T., & Coates, P. T. (2015). Interleukin-17A-induced human Mesenchymal stem cells are superior modulators of immunological function. Stem Cells, 33(9), 2850–2863. https://doi.org/10.1002/stem.2075.
CAS
Article
PubMed
Google Scholar
Benvenuto, F., Ferrari, S., Gerdoni, E., Gualandi, F., Frassoni, F., Pistoia, V., Mancardi, G., & Uccelli, A. (2007). Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells, 25(7), 1753–1760. https://doi.org/10.1634/stemcells.2007-0068.
CAS
Article
PubMed
Google Scholar
Pevsner-Fischer, M., Morad, V., Cohen-Sfady, M., Rousso-Noori, L., Zanin-Zhorov, A., Cohen, S., Cohen, I. R., & Zipori, D. (2007). Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood, 109(4), 1422–1432. https://doi.org/10.1182/blood-2006-06-028704.
CAS
Article
PubMed
Google Scholar
Gao, F., Chiu, S. M., Motan, D. A., Zhang, Z., Chen, L., Ji, H. L., et al. (2016). Mesenchymal stem cells and immunomodulation: Current status and future prospects. Cell Death & Disease, 7, e2062. https://doi.org/10.1038/cddis.2015.327.
CAS
Article
Google Scholar
Fang, S. B., Zhang, H. Y., Wang, C., He, B. X., Liu, X. Q., Meng, X. C., Peng, Y. Q., Xu, Z. B., Fan, X. L., Wu, Z. J., Chen, D., Zheng, L., Zheng, S. G., & Fu, Q. L. (2020). Small extracellular vesicles derived from human mesenchymal stromal cells prevent group 2 innate lymphoid cell-dominant allergic airway inflammation through delivery of miR-146a-5p. J Extracell Vesicles, 9(1), 1723260. https://doi.org/10.1080/20013078.2020.1723260.
CAS
Article
PubMed
PubMed Central
Google Scholar
Li, Y., Zhang, D., Xu, L., Dong, L., Zheng, J., Lin, Y., Huang, J., Zhang, Y., Tao, Y., Zang, X., Li, D., & du, M. (2019). Cell-cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models. Cellular & Molecular Immunology, 16(12), 908–920. https://doi.org/10.1038/s41423-019-0204-6.
CAS
Article
Google Scholar
Ni, K., Liu, M., Zheng, J., Wen, L., Chen, Q., Xiang, Z., Lam, K. T., Liu, Y., Chan, G. C. F., Lau, Y. L., & Tu, W. (2018). PD-1/PD-L1 pathway mediates the alleviation of pulmonary fibrosis by human Mesenchymal stem cells in humanized mice. American Journal of Respiratory Cell and Molecular Biology, 58(6), 684–695. https://doi.org/10.1165/rcmb.2017-0326OC.
CAS
Article
PubMed
Google Scholar
Li, H., Wang, W., Wang, G., Hou, Y., Xu, F., Liu, R., Wang, F., Xue, J., Hu, T., & Luan, X. (2015). Interferon-γ and tumor necrosis factor-α promote the ability of human placenta-derived mesenchymal stromal cells to express programmed death ligand-2 and induce the differentiation of CD4(+)interleukin-10(+) and CD8(+)interleukin-10(+)Treg subsets. Cytotherapy, 17(11), 1560–1571. https://doi.org/10.1016/j.jcyt.2015.07.018.
CAS
Article
PubMed
Google Scholar
Singh, A. K., Stock, P., & Akbari, O. (2011). Role of PD-L1 and PD-L2 in allergic diseases and asthma. Allergy, 66(2), 155–162. https://doi.org/10.1111/j.1398-9995.2010.02458.x.
CAS
Article
PubMed
Google Scholar
Wang, W. B., Yen, M. L., Liu, K. J., Hsu, P. J., Lin, M. H., Chen, P. M., Sudhir, P. R., Chen, C. H., Chen, C. H., Sytwu, H. K., & Yen, B. L. (2015). Interleukin-25 mediates transcriptional control of PD-L1 via STAT3 in multipotent human Mesenchymal stromal cells (hMSCs) to suppress Th17 responses. Stem Cell Reports, 5(3), 392–404. https://doi.org/10.1016/j.stemcr.2015.07.013.
CAS
Article
PubMed
PubMed Central
Google Scholar
Azevedo, R. I., Minskaia, E., Fernandes-Platzgummer, A., Vieira, A. I. S., da Silva, C. L., Cabral, J. M. S., & Lacerda, J. F. (2020). Mesenchymal stromal cells induce regulatory T cells via epigenetic conversion of human conventional CD4 T cells in vitro. Stem Cells, 38(8), 1007–1019. https://doi.org/10.1002/stem.3185.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee, H. J., Kim, S. N., Jeon, M. S., Yi, T., & Song, S. U. (2017). ICOSL expression in human bone marrow-derived mesenchymal stem cells promotes induction of regulatory T cells. Scientific Reports, 7, 44486. https://doi.org/10.1038/srep44486.
CAS
Article
PubMed
PubMed Central
Google Scholar
Krampera, M., Cosmi, L., Angeli, R., Pasini, A., Liotta, F., Andreini, A., Santarlasci, V., Mazzinghi, B., Pizzolo, G., Vinante, F., Romagnani, P., Maggi, E., Romagnani, S., & Annunziato, F. (2006). Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells, 24(2), 386–398. https://doi.org/10.1634/stemcells.2005-0008.
CAS
Article
PubMed
Google Scholar
Gieseke, F., Böhringer, J., Bussolari, R., Dominici, M., Handgretinger, R., & Müller, I. (2010). Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood, 116(19), 3770–3779. https://doi.org/10.1182/blood-2010-02-270777.
CAS
Article
PubMed
Google Scholar
Chinnadurai, R., Copland, I. B., Patel, S. R., & Galipeau, J. (2014). IDO-independent suppression of T cell effector function by IFN-γ-licensed human mesenchymal stromal cells. Journal of Immunology, 192(4), 1491–1501. https://doi.org/10.4049/jimmunol.1301828.
CAS
Article
Google Scholar
Ren, G., Zhao, X., Zhang, L., Zhang, J., L'Huillier, A., Ling, W., Roberts, A. I., le, A. D., Shi, S., Shao, C., & Shi, Y. (2010). Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. Journal of Immunology, 184(5), 2321–2328. https://doi.org/10.4049/jimmunol.0902023.
CAS
Article
Google Scholar
Schena, F., Gambini, C., Gregorio, A., Mosconi, M., Reverberi, D., Gattorno, M., Casazza, S., Uccelli, A., Moretta, L., Martini, A., & Traggiai, E. (2010). Interferon-γ-dependent inhibition of B cell activation by bone marrow-derived mesenchymal stem cells in a murine model of systemic lupus erythematosus. Arthritis and Rheumatism, 62(9), 2776–2786. https://doi.org/10.1002/art.27560.
CAS
Article
PubMed
Google Scholar
Luk, F., Carreras-Planella, L., Korevaar, S. S., de Witte, S. F. H., Borràs, F. E., Betjes, M. G. H., Baan, C. C., Hoogduijn, M. J., & Franquesa, M. (2017). Inflammatory conditions dictate the effect of Mesenchymal stem or stromal cells on B cell function. Frontiers in Immunology, 8, 1042. https://doi.org/10.3389/fimmu.2017.01042.
CAS
Article
PubMed
PubMed Central
Google Scholar
Luk, F., de Witte, S. F., Korevaar, S. S., Roemeling-van Rhijn, M., Franquesa, M., Strini, T., et al. (2016). Inactivated Mesenchymal stem cells maintain Immunomodulatory capacity. Stem Cells and Development, 25(18), 1342–1354. https://doi.org/10.1089/scd.2016.0068.
CAS
Article
PubMed
Google Scholar
Li, W., Ren, G., Huang, Y., Su, J., Han, Y., Li, J., Chen, X., Cao, K., Chen, Q., Shou, P., Zhang, L., Yuan, Z. R., Roberts, A. I., Shi, S., le, A. D., & Shi, Y. (2012). Mesenchymal stem cells: A double-edged sword in regulating immune responses. Cell Death and Differentiation, 19(9), 1505–1513. https://doi.org/10.1038/cdd.2012.26.
CAS
Article
PubMed
PubMed Central
Google Scholar
Peng, Y., Chen, X., Liu, Q., Zhang, X., Huang, K., Liu, L., Li, H., Zhou, M., Huang, F., Fan, Z., Sun, J., Liu, Q., Ke, M., Li, X., Zhang, Q., & Xiang, A. P. (2015). Mesenchymal stromal cells infusions improve refractory chronic graft versus host disease through an increase of CD5+ regulatory B cells producing interleukin 10. Leukemia, 29(3), 636–646. https://doi.org/10.1038/leu.2014.225.
CAS
Article
PubMed
Google Scholar
Kim, J., & Hematti, P. (2009). Mesenchymal stem cell-educated macrophages: A novel type of alternatively activated macrophages. Experimental Hematology, 37(12), 1445–1453. https://doi.org/10.1016/j.exphem.2009.09.004.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mougiakakos, D., Jitschin, R., Johansson, C. C., Okita, R., Kiessling, R., & Le Blanc, K. (2011). The impact of inflammatory licensing on heme oxygenase-1-mediated induction of regulatory T cells by human mesenchymal stem cells. Blood, 117(18), 4826–4835. https://doi.org/10.1182/blood-2010-12-324038.
CAS
Article
PubMed
Google Scholar
Li, Y. P., Paczesny, S., Lauret, E., Poirault, S., Bordigoni, P., Mekhloufi, F., Hequet, O., Bertrand, Y., Ou-Yang, J. P., Stoltz, J. F., Miossec, P., & Eljaafari, A. (2008). Human mesenchymal stem cells license adult CD34+ hemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the notch pathway. Journal of Immunology, 180(3), 1598–1608. https://doi.org/10.4049/jimmunol.180.3.1598.
CAS
Article
Google Scholar
Djouad, F., Charbonnier, L. M., Bouffi, C., Louis-Plence, P., Bony, C., Apparailly, F., Cantos, C., Jorgensen, C., & Noël, D. (2007). Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells, 25(8), 2025–2032. https://doi.org/10.1634/stemcells.2006-0548.
CAS
Article
PubMed
Google Scholar
Zhong, Z., Chen, A., Fa, Z., Ding, Z., Xiao, L., Wu, G., Wang, Q., & Zhang, R. (2020). Bone marrow mesenchymal stem cells upregulate PI3K/AKT pathway and down-regulate NF-κB pathway by secreting glial cell-derived neurotrophic factors to regulate microglial polarization and alleviate deafferentation pain in rats. Neurobiology of Disease, 143, 104945. https://doi.org/10.1016/j.nbd.2020.104945.
CAS
Article
PubMed
Google Scholar
Sgrignoli, M. R., Silva, D. A., Nascimento, F. F., Sgrignoli, D. A. M., Nai, G. A., da Silva, M. G., de Barros, M. A., Bittencourt, M. K. W., de Morais, B. P., Dinallo, H. R., Foglia, B. T. D., Cabrera, W. B., Fares, E. C., & Andrade, S. F. (2019). Reduction in the inflammatory markers CD4, IL-1, IL-6 and TNFα in dogs with keratoconjunctivitis sicca treated topically with mesenchymal stem cells. Stem Cell Research, 39, 101525. https://doi.org/10.1016/j.scr.2019.101525.
CAS
Article
PubMed
Google Scholar
Shi, B., Qi, J., Yao, G., Feng, R., Zhang, Z., Wang, D., Chen, C., Tang, X., Lu, L., Chen, W., & Sun, L. (2018). Mesenchymal stem cell transplantation ameliorates Sjögren's syndrome via suppressing IL-12 production by dendritic cells. Stem Cell Research & Therapy, 9(1), 308. https://doi.org/10.1186/s13287-018-1023-x.
CAS
Article
Google Scholar
Chatterjee, D., Marquardt, N., Tufa, D. M., Hatlapatka, T., Hass, R., Kasper, C., von Kaisenberg, C., Schmidt, R. E., & Jacobs, R. (2014). Human umbilical cord-derived Mesenchymal stem cells utilize Activin-a to suppress interferon-γ production by natural killer cells. Frontiers in Immunology, 5, 662. https://doi.org/10.3389/fimmu.2014.00662.
CAS
Article
PubMed
PubMed Central
Google Scholar
Abumaree, M. H., Al Jumah, M. A., Kalionis, B., Jawdat, D., Al Khaldi, A., Abomaray, F. M., et al. (2013). Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages. Stem Cell Reviews and Reports, 9(5), 620–641. https://doi.org/10.1007/s12015-013-9455-2.
CAS
Article
PubMed
Google Scholar
Lim, J. Y., Im, K. I., Lee, E. S., Kim, N., Nam, Y. S., Jeon, Y. W., & Cho, S. G. (2016). Enhanced immunoregulation of mesenchymal stem cells by IL-10-producing type 1 regulatory T cells in collagen-induced arthritis. Scientific Reports, 6, 26851. https://doi.org/10.1038/srep26851.
CAS
Article
PubMed
PubMed Central
Google Scholar
Dong, J., Wong, C. K., Cai, Z., Jiao, D., Chu, M., & Lam, C. W. (2015). Amelioration of allergic airway inflammation in mice by regulatory IL-35 through dampening inflammatory dendritic cells. Allergy, 70(8), 921–932. https://doi.org/10.1111/all.12631.
CAS
Article
PubMed
Google Scholar
Whitehead, G. S., Wilson, R. H., Nakano, K., Burch, L. H., Nakano, H., & Cook, D. N. (2012). IL-35 production by inducible costimulator (ICOS)-positive regulatory T cells reverses established IL-17-dependent allergic airways disease. The Journal of Allergy and Clinical Immunology, 129(1), 207–215.e201-205. https://doi.org/10.1016/j.jaci.2011.08.009.
CAS
Article
PubMed
Google Scholar
Cho, K. A., Lee, J. K., Kim, Y. H., Park, M., Woo, S. Y., & Ryu, K. H. (2017). Mesenchymal stem cells ameliorate B-cell-mediated immune responses and increase IL-10-expressing regulatory B cells in an EBI3-dependent manner. Cellular & Molecular Immunology, 14, 895–908. https://doi.org/10.1038/cmi.2016.59.
CAS
Article
Google Scholar
O'Garra, A., Stockinger, B., & Veldhoen, M. (2008). Differentiation of human T(H)-17 cells does require TGF-beta! Nature Immunology, 9(6), 588–590. https://doi.org/10.1038/ni0608-588.
CAS
Article
PubMed
Google Scholar
Batlle, E., & Massagué, J. (2019). Transforming growth factor-β signaling in immunity and cancer. Immunity, 50(4), 924–940. https://doi.org/10.1016/j.immuni.2019.03.024.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhou, L., Lopes, J. E., Chong, M. M., Ivanov, I. I., Min, R., Victora, G. D., et al. (2008). TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature, 453(7192), 236–240. https://doi.org/10.1038/nature06878.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gong, D., Shi, W., Yi, S. J., Chen, H., Groffen, J., & Heisterkamp, N. (2012). TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunology, 13, 31. https://doi.org/10.1186/1471-2172-13-31.
CAS
Article
PubMed
PubMed Central
Google Scholar
Paun, A., Bergeron, M. E., & Haston, C. K. (2017). The Th1/Th17 balance dictates the fibrosis response in murine radiation-induced lung disease. Scientific Reports, 7(1), 11586. https://doi.org/10.1038/s41598-017-11656-5.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ratajczak, J., Miekus, K., Kucia, M., Zhang, J., Reca, R., Dvorak, P., & Ratajczak, M. Z. (2006). Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery. Leukemia, 20(5), 847–856. https://doi.org/10.1038/sj.leu.2404132.
CAS
Article
PubMed
Google Scholar
Ratajczak, J., Wysoczynski, M., Hayek, F., Janowska-Wieczorek, A., & Ratajczak, M. Z. (2006). Membrane-derived microvesicles: Important and underappreciated mediators of cell-to-cell communication. Leukemia, 20(9), 1487–1495. https://doi.org/10.1038/sj.leu.2404296.
CAS
Article
PubMed
Google Scholar
Ratajczak, M. Z., & Ratajczak, J. (2020). Extracellular microvesicles/exosomes: Discovery, disbelief, acceptance, and the future? Leukemia, 34, 3126–3135. https://doi.org/10.1038/s41375-020-01041-z.
Article
PubMed
PubMed Central
Google Scholar
Phinney, D. G., Di Giuseppe, M., Njah, J., Sala, E., Shiva, S., St Croix, C. M., et al. (2015). Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nature Communications, 6, 8472. https://doi.org/10.1038/ncomms9472.
CAS
Article
PubMed
Google Scholar
Kim, H. S., Choi, D. Y., Yun, S. J., Choi, S. M., Kang, J. W., Jung, J. W., Hwang, D., Kim, K. P., & Kim, D. W. (2012). Proteomic analysis of microvesicles derived from human mesenchymal stem cells. Journal of Proteome Research, 11(2), 839–849. https://doi.org/10.1021/pr200682z.
CAS
Article
PubMed
Google Scholar
Du, T., Zou, X., Cheng, J., Wu, S., Zhong, L., Ju, G., et al. (2013). Human Wharton's jelly-derived mesenchymal stromal cells reduce renal fibrosis through induction of native and foreign hepatocyte growth factor synthesis in injured tubular epithelial cells. Stem Cell Research & Therapy, 4(3), 59. https://doi.org/10.1186/scrt215.
CAS
Article
Google Scholar
Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822. https://doi.org/10.1182/blood-2004-04-1559.
CAS
Article
PubMed
Google Scholar
Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99(10), 3838–3843. https://doi.org/10.1182/blood.v99.10.3838.
Article
PubMed
Google Scholar
Hwu, P., Du, M. X., Lapointe, R., Do, M., Taylor, M. W., & Young, H. A. (2000). Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. Journal of Immunology, 164(7), 3596–3599. https://doi.org/10.4049/jimmunol.164.7.3596.
CAS
Article
Google Scholar
Harting, M. T., Srivastava, A. K., Zhaorigetu, S., Bair, H., Prabhakara, K. S., Toledano Furman, N. E., Vykoukal, J. V., Ruppert, K. A., Cox Jr., C. S., & Olson, S. D. (2018). Inflammation-stimulated Mesenchymal stromal cell-derived extracellular vesicles attenuate inflammation. Stem Cells, 36(1), 79–90. https://doi.org/10.1002/stem.2730.
CAS
Article
PubMed
Google Scholar
Wu, S., Ju, G. Q., Du, T., Zhu, Y. J., & Liu, G. H. (2013). Microvesicles derived from human umbilical cord Wharton's jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS One, 8(4), e61366. https://doi.org/10.1371/journal.pone.0061366.
CAS
Article
PubMed
PubMed Central
Google Scholar
Di Trapani, M., Bassi, G., Midolo, M., Gatti, A., Kamga, P. T., Cassaro, A., et al. (2016). Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Scientific Reports, 6, 24120. https://doi.org/10.1038/srep24120.
CAS
Article
PubMed
PubMed Central
Google Scholar
Thomi, G., Surbek, D., Haesler, V., Joerger-Messerli, M., & Schoeberlein, A. (2019). Exosomes derived from umbilical cord mesenchymal stem cells reduce microglia-mediated neuroinflammation in perinatal brain injury. Stem Cell Research & Therapy, 10(1), 105. https://doi.org/10.1186/s13287-019-1207-z.
CAS
Article
Google Scholar
Zhu, H., Lan, L., Zhang, Y., Chen, Q., Zeng, Y., Luo, X., Ren, J., Chen, S., Xiao, M., Lin, K., Chen, M., Li, Q., Chen, Y., Xu, J., Zheng, Z., Chen, Z., Xie, Y., Hu, J., & Yang, T. (2020). Epidermal growth factor stimulates exosomal microRNA-21 derived from mesenchymal stem cells to ameliorate aGVHD by modulating regulatory T cells. The FASEB Journal, 34(6), 7372–7386. https://doi.org/10.1096/fj.201900847RRRR.
CAS
Article
PubMed
Google Scholar
Reis, M., Mavin, E., Nicholson, L., Green, K., Dickinson, A. M., & Wang, X. N. (2018). Mesenchymal stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Frontiers in Immunology, 9, 2538. https://doi.org/10.3389/fimmu.2018.02538.
CAS
Article
PubMed
PubMed Central
Google Scholar
Shahir, M., Mahmoud Hashemi, S., Asadirad, A., Varahram, M., Kazempour-Dizaji, M., Folkerts, G., Garssen, J., Adcock, I., & Mortaz, E. (2020). Effect of mesenchymal stem cell-derived exosomes on the induction of mouse tolerogenic dendritic cells. Journal of Cellular Physiology, 235(10), 7043–7055. https://doi.org/10.1002/jcp.29601.
CAS
Article
PubMed
PubMed Central
Google Scholar
Cho, B. S., Kim, J. O., Ha, D. H., & Yi, Y. W. (2018). Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Research & Therapy, 9(1), 187. https://doi.org/10.1186/s13287-018-0939-5.
CAS
Article
Google Scholar
Lambrecht, B. N., & Hammad, H. (2015). The immunology of asthma. Nature Immunology, 16(1), 45–56. https://doi.org/10.1038/ni.3049.
CAS
Article
PubMed
Google Scholar
Kavanagh, H., & Mahon, B. P. (2011). Allogeneic mesenchymal stem cells prevent allergic airway inflammation by inducing murine regulatory T cells. Allergy, 66(4), 523–531. https://doi.org/10.1111/j.1398-9995.2010.02509.x.
CAS
Article
PubMed
Google Scholar
Chen, Q. H., Wu, F., Liu, L., Chen, H. B., Zheng, R. Q., Wang, H. L., & Yu, L. N. (2020). Mesenchymal stem cells regulate the Th17/Treg cell balance partly through hepatocyte growth factor in vitro. Stem Cell Research & Therapy, 11(1), 91. https://doi.org/10.1186/s13287-020-01612-y.
CAS
Article
Google Scholar
Boonpiyathad, T., Sokolowska, M., Morita, H., Rückert, B., Kast, J. I., Wawrzyniak, M., Sangasapaviliya, A., Pradubpongsa, P., Fuengthong, R., Thantiworasit, P., Sirivichayakul, S., Kwok, W. W., Ruxrungtham, K., Akdis, M., & Akdis, C. A. (2019). Der p 1-specific regulatory T-cell response during house dust mite allergen immunotherapy. Allergy, 74(5), 976–985. https://doi.org/10.1111/all.13684.
CAS
Article
PubMed
Google Scholar
Rasmusson, I., Ringdén, O., Sundberg, B., & Le Blanc, K. (2005). Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Experimental Cell Research, 305(1), 33–41. https://doi.org/10.1016/j.yexcr.2004.12.013.
CAS
Article
PubMed
Google Scholar
Sato, K., Ozaki, K., Oh, I., Meguro, A., Hatanaka, K., Nagai, T., Muroi, K., & Ozawa, K. (2007). Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 109(1), 228–234. https://doi.org/10.1182/blood-2006-02-002246.
CAS
Article
PubMed
Google Scholar
Su, J., Chen, X., Huang, Y., Li, W., Li, J., Cao, K., Cao, G., Zhang, L., Li, F., Roberts, A. I., Kang, H., Yu, P., Ren, G., Ji, W., Wang, Y., & Shi, Y. (2014). Phylogenetic distinction of iNOS and IDO function in mesenchymal stem cell-mediated immunosuppression in mammalian species. Cell Death and Differentiation, 21(3), 388–396. https://doi.org/10.1038/cdd.2013.149.
CAS
Article
PubMed
Google Scholar
García-Ortiz, A., & Serrador, J. M. (2018). Nitric oxide signaling in T cell-mediated immunity. Trends in Molecular Medicine, 24(4), 412–427. https://doi.org/10.1016/j.molmed.2018.02.002.
CAS
Article
PubMed
Google Scholar
Ma, O. K., & Chan, K. H. (2016). Immunomodulation by mesenchymal stem cells: Interplay between mesenchymal stem cells and regulatory lymphocytes. World J Stem Cells, 8(9), 268–278. https://doi.org/10.4252/wjsc.v8.i9.268.
Article
PubMed
PubMed Central
Google Scholar
Robinson, D. S. (2010). The role of the T cell in asthma. The Journal of Allergy and Clinical Immunology, 126(6), 1081–1091; quiz 1092-1083. https://doi.org/10.1016/j.jaci.2010.06.025.
CAS
Article
PubMed
Google Scholar
Ghannam, S., Pène, J., Moquet-Torcy, G., Torcy-Moquet, G., Jorgensen, C., & Yssel, H. (2010). Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. Journal of Immunology, 185(1), 302–312. https://doi.org/10.4049/jimmunol.0902007.
CAS
Article
Google Scholar
Cho, K. S., Park, M. K., Kang, S. A., Park, H. Y., Hong, S. L., Park, H. K., Yu, H. S., & Roh, H. J. (2014). Adipose-derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma. Mediators of Inflammation, 2014, 436476–436412. https://doi.org/10.1155/2014/436476.
CAS
Article
PubMed
PubMed Central
Google Scholar
Park, H. K., Cho, K. S., Park, H. Y., Shin, D. H., Kim, Y. K., Jung, J. S., Park, S. K., & Roh, H. J. (2010). Adipose-derived stromal cells inhibit allergic airway inflammation in mice. Stem Cells and Development, 19(11), 1811–1818. https://doi.org/10.1089/scd.2009.0513.
CAS
Article
PubMed
Google Scholar
Braza, F., Dirou, S., Forest, V., Sauzeau, V., Hassoun, D., Chesné, J., Cheminant-Muller, M. A., Sagan, C., Magnan, A., & Lemarchand, P. (2016). Mesenchymal stem cells induce suppressive macrophages through phagocytosis in a mouse model of asthma. Stem Cells, 34(7), 1836–1845. https://doi.org/10.1002/stem.2344.
CAS
Article
PubMed
Google Scholar
de Castro, L. L., Xisto, D. G., Kitoko, J. Z., Cruz, F. F., Olsen, P. C., Redondo, P. A. G., Ferreira, T. P. T., Weiss, D. J., Martins, M. A., Morales, M. M., & Rocco, P. R. M. (2017). Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Research & Therapy, 8(1), 151. https://doi.org/10.1186/s13287-017-0600-8.
CAS
Article
Google Scholar
Duong, K. M., Arikkatt, J., Ullah, M. A., Lynch, J. P., Zhang, V., Atkinson, K., Sly, P. D., & Phipps, S. (2015). Immunomodulation of airway epithelium cell activation by mesenchymal stromal cells ameliorates house dust mite-induced airway inflammation in mice. American Journal of Respiratory Cell and Molecular Biology, 53(5), 615–624. https://doi.org/10.1165/rcmb.2014-0431OC.
CAS
Article
PubMed
Google Scholar
Dai, R., Liu, J., Cai, S., Zheng, C., & Zhou, X. (2017). Delivery of adipose-derived mesenchymal stem cells attenuates airway responsiveness and inflammation in a mouse model of ovalbumin-induced asthma. American Journal of Translational Research, 9(5), 2421–2428.
CAS
PubMed
PubMed Central
Google Scholar
Hong, G. H., Kwon, H. S., Lee, K. Y., Ha, E. H., Moon, K. A., Kim, S. W., Oh, W., Kim, T. B., Moon, H. B., & Cho, Y. S. (2017). hMSCs suppress neutrophil-dominant airway inflammation in a murine model of asthma. Experimental & Molecular Medicine, 49(1), e288. https://doi.org/10.1038/emm.2016.135.
CAS
Article
Google Scholar
Abreu, S. C., Antunes, M. A., Xisto, D. G., Cruz, F. F., Branco, V. C., Bandeira, E., Zola Kitoko, J., de Araújo, A. F., Dellatorre-Texeira, L., Olsen, P. C., Weiss, D. J., Diaz, B. L., Morales, M. M., & Rocco, P. R. M. (2017). Bone marrow, adipose, and lung tissue-derived murine Mesenchymal stromal cells release different mediators and differentially affect airway and lung parenchyma in experimental asthma. Stem Cells Translational Medicine, 6(6), 1557–1567. https://doi.org/10.1002/sctm.16-0398.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bonfield, T. L., Koloze, M., Lennon, D. P., Zuchowski, B., Yang, S. E., & Caplan, A. I. (2010). Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. American Journal of Physiology. Lung Cellular and Molecular Physiology, 299(6), L760–L770. https://doi.org/10.1152/ajplung.00182.2009.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sugita, K., Steer, C. A., Martinez-Gonzalez, I., Altunbulakli, C., Morita, H., Castro-Giner, F., et al. (2018). Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients. The Journal of Allergy and Clinical Immunology, 141(1), 300–310.e311. https://doi.org/10.1016/j.jaci.2017.02.038.
CAS
Article
PubMed
Google Scholar
Wawrzyniak, P., Wawrzyniak, M., Wanke, K., Sokolowska, M., Bendelja, K., Rückert, B., Globinska, A., Jakiela, B., Kast, J. I., Idzko, M., Akdis, M., Sanak, M., & Akdis, C. A. (2017). Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. The Journal of Allergy and Clinical Immunology, 139(1), 93–103. https://doi.org/10.1016/j.jaci.2016.03.050.
CAS
Article
PubMed
Google Scholar
Tan, H. T., Hagner, S., Ruchti, F., Radzikowska, U., Tan, G., Altunbulakli, C., et al. (2018). Tight junction, mucin, and inflammasome-related molecules are differentially expressed in eosinophilic, mixed, and neutrophilic experimental asthma in mice. Allergy, 74, 294–307. https://doi.org/10.1111/all.13619.
CAS
Article
PubMed
Google Scholar
Mathias, L. J., Khong, S. M., Spyroglou, L., Payne, N. L., Siatskas, C., Thorburn, A. N., et al. (2013). Alveolar macrophages are critical for the inhibition of allergic asthma by mesenchymal stromal cells. Journal of Immunology, 191(12), 5914–5924. https://doi.org/10.4049/jimmunol.1300667.
CAS
Article
Google Scholar
Takeda, K., Webb, T. L., Ning, F., Shiraishi, Y., Regan, D. P., Chow, L., Smith, M. J., Ashino, S., Guth, A. M., Hopkins, S., Gelfand, E. W., & Dow, S. (2018). Mesenchymal stem cells recruit CCR2. Journal of Immunology, 200(4), 1261–1269. https://doi.org/10.4049/jimmunol.1700562.
CAS
Article
Google Scholar
Ou-Yang, H. F., Huang, Y., Hu, X. B., & Wu, C. G. (2011). Suppression of allergic airway inflammation in a mouse model of asthma by exogenous mesenchymal stem cells. Experimental Biology and Medicine (Maywood, N.J.), 236(12), 1461–1467. https://doi.org/10.1258/ebm.2011.011221.
CAS
Article
Google Scholar
Lin, C. L., Hsiao, G., Wang, C. C., & Lee, Y. L. (2016). Imperatorin exerts antiallergic effects in Th2-mediated allergic asthma via induction of IL-10-producing regulatory T cells by modulating the function of dendritic cells. Pharmacological Research, 110, 111–121. https://doi.org/10.1016/j.phrs.2016.04.030.
CAS
Article
PubMed
Google Scholar
Kitoko, J. Z., de Castro, L. L., Nascimento, A. P., Abreu, S. C., Cruz, F. F., Arantes, A. C., Xisto, D. G., Martins, M. A., Morales, M. M., Rocco, P. R. M., & Olsen, P. C. (2018). Therapeutic administration of bone marrow-derived mesenchymal stromal cells reduces airway inflammation without up-regulating Tregs in experimental asthma. Clinical and Experimental Allergy, 48(2), 205–216. https://doi.org/10.1111/cea.13048.
CAS
Article
PubMed
Google Scholar
Eiwegger, T., & Akdis, C. A. (2011). IL-33 links tissue cells, dendritic cells and Th2 cell development in a mouse model of asthma. European Journal of Immunology, 41(6), 1535–1538. https://doi.org/10.1002/eji.201141668.
CAS
Article
PubMed
Google Scholar
Hammad, H., & Lambrecht, B. N. (2008). Dendritic cells and epithelial cells: Linking innate and adaptive immunity in asthma. Nature Reviews. Immunology, 8(3), 193–204. https://doi.org/10.1038/nri2275.
CAS
Article
PubMed
Google Scholar
Chen, L., Zhang, W., Yue, H., Han, Q., Chen, B., Shi, M., Li, J., Li, B., You, S., Shi, Y., & Zhao, R. C. (2007). Effects of human mesenchymal stem cells on the differentiation of dendritic cells from CD34+ cells. Stem Cells and Development, 16(5), 719–731. https://doi.org/10.1089/scd.2007.0065.
CAS
Article
PubMed
Google Scholar
Chen, Y. Q., & Shi, H. Z. (2006). CD28/CTLA-4--CD80/CD86 and ICOS--B7RP-1 costimulatory pathway in bronchial asthma. Allergy, 61(1), 15–26. https://doi.org/10.1111/j.1398-9995.2006.01008.x.
CAS
Article
PubMed
Google Scholar
Zeng, S. L., Wang, L. H., Li, P., Wang, W., & Yang, J. (2015). Mesenchymal stem cells abrogate experimental asthma by altering dendritic cell function. Molecular Medicine Reports, 12(2), 2511–2520. https://doi.org/10.3892/mmr.2015.3706.
CAS
Article
PubMed
PubMed Central
Google Scholar
Eljaszewicz, A., Wiese, M., Helmin-Basa, A., Jankowski, M., Gackowska, L., Kubiszewska, I., Kaszewski, W., Michalkiewicz, J., & Zegarski, W. (2013). Collaborating with the enemy: Function of macrophages in the development of neoplastic disease. Mediators of Inflammation, 2013, 831387–831311. https://doi.org/10.1155/2013/831387.
CAS
Article
PubMed
PubMed Central
Google Scholar
Idzkowska, E., Eljaszewicz, A., Miklasz, P., Musial, W. J., Tycinska, A. M., & Moniuszko, M. (2015). The role of different monocyte subsets in the pathogenesis of atherosclerosis and acute coronary syndromes. Scandinavian Journal of Immunology, 82(3), 163–173. https://doi.org/10.1111/sji.12314.
CAS
Article
PubMed
Google Scholar
Vergadi, E., Ieronymaki, E., Lyroni, K., Vaporidi, K., & Tsatsanis, C. (2017). Akt signaling pathway in macrophage activation and M1/M2 polarization. Journal of Immunology, 198(3), 1006–1014. https://doi.org/10.4049/jimmunol.1601515.
CAS
Article
Google Scholar
Eljaszewicz, A., Kleina, K., Grubczak, K., Radzikowska, U., Zembko, P., Kaczmarczyk, P., Tynecka, M., Dworzanczyk, K., Naumnik, B., & Moniuszko, M. (2018). Elevated numbers of circulating very small embryonic-like stem cells (VSELs) and intermediate CD14++CD16+ monocytes in IgA nephropathy. Stem Cell Reviews and Reports, 14(5), 686–693. https://doi.org/10.1007/s12015-018-9840-y.
Article
PubMed
Google Scholar
Cho, D. I., Kim, M. R., Jeong, H. Y., Jeong, H. C., Jeong, M. H., Yoon, S. H., Kim, Y. S., & Ahn, Y. (2014). Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Experimental & Molecular Medicine, 46, e70. https://doi.org/10.1038/emm.2013.135.
CAS
Article
Google Scholar
Horwood, N. J. (2016). Macrophage polarization and bone formation: A review. Clinical Reviews in Allergy and Immunology, 51(1), 79–86. https://doi.org/10.1007/s12016-015-8519-2.
CAS
Article
PubMed
Google Scholar
Wang, N., Liang, H., & Zen, K. (2014). Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Frontiers in Immunology, 5, 614. https://doi.org/10.3389/fimmu.2014.00614.
CAS
Article
PubMed
PubMed Central
Google Scholar
Song, X., Xie, S., Lu, K., & Wang, C. (2015). Mesenchymal stem cells alleviate experimental asthma by inducing polarization of alveolar macrophages. Inflammation, 38(2), 485–492. https://doi.org/10.1007/s10753-014-9954-6.
CAS
Article
PubMed
Google Scholar
Lambrecht, B. N., & Hammad, H. (2012). The airway epithelium in asthma. Nature Medicine, 18(5), 684–692. https://doi.org/10.1038/nm.2737.
CAS
Article
PubMed
Google Scholar
Hammad, H., & Lambrecht, B. N. (2015). Barrier epithelial cells and the control of type 2 immunity. Immunity, 43(1), 29–40. https://doi.org/10.1016/j.immuni.2015.07.007.
CAS
Article
PubMed
Google Scholar
Wang, M., Tan, G., Eljaszewicz, A., Meng, Y., Wawrzyniak, P., Acharya, S., Altunbulakli, C., Westermann, P., Dreher, A., Yan, L., Wang, C., Akdis, M., Zhang, L., Nadeau, K. C., & Akdis, C. A. (2019). Laundry detergents and detergent residue after rinsing directly disrupt tight junction barrier integrity in human bronchial epithelial cells. The Journal of Allergy and Clinical Immunology, 143(5), 1892–1903. https://doi.org/10.1016/j.jaci.2018.11.016.
CAS
Article
PubMed
Google Scholar
Xiao, C., Puddicombe, S. M., Field, S., Haywood, J., Broughton-Head, V., Puxeddu, I., et al. (2011). Defective epithelial barrier function in asthma. The Journal of Allergy and Clinical Immunology, 128(3), 549–556.e541-512. https://doi.org/10.1016/j.jaci.2011.05.038.
CAS
Article
PubMed
Google Scholar
Guida, G., & Riccio, A. M. (2019). Immune induction of airway remodeling. Seminars in Immunology, 46, 101346. https://doi.org/10.1016/j.smim.2019.101346.
CAS
Article
PubMed
Google Scholar
Qin, X. J., Zhang, G. S., Zhang, X., Qiu, Z. W., Wang, P. L., Li, Y. W., Li, W., Xie, Q. M., Ke, Y. H., Lee, J. J., & Shen, H. H. (2012). Protein tyrosine phosphatase SHP2 regulates TGF-β1 production in airway epithelia and asthmatic airway remodeling in mice. Allergy, 67(12), 1547–1556. https://doi.org/10.1111/all.12048.
CAS
Article
PubMed
Google Scholar
Ge, X., Bai, C., Yang, J., Lou, G., Li, Q., & Chen, R. (2013). Effect of mesenchymal stem cells on inhibiting airway remodeling and airway inflammation in chronic asthma. Journal of Cellular Biochemistry, 114(7), 1595–1605. https://doi.org/10.1002/jcb.24501.
CAS
Article
PubMed
Google Scholar
Ogulur, I., Gurhan, G., Aksoy, A., Duruksu, G., Inci, C., Filinte, D., Kombak, F. E., Karaoz, E., & Akkoc, T. (2014). Suppressive effect of compact bone-derived mesenchymal stem cells on chronic airway remodeling in murine model of asthma. International Immunopharmacology, 20(1), 101–109. https://doi.org/10.1016/j.intimp.2014.02.028.
CAS
Article
PubMed
Google Scholar
Urbanek, K., De Angelis, A., Spaziano, G., Piegari, E., Matteis, M., Cappetta, D., et al. (2016). Intratracheal Administration of Mesenchymal Stem Cells Modulates Tachykinin System, suppresses airway remodeling and reduces airway Hyperresponsiveness in an animal model. PLoS One, 11(7), e0158746. https://doi.org/10.1371/journal.pone.0158746.
CAS
Article
PubMed
PubMed Central
Google Scholar
Firinci, F., Karaman, M., Baran, Y., Bagriyanik, A., Ayyildiz, Z. A., Kiray, M., Kozanoglu, I., Yilmaz, O., Uzuner, N., & Karaman, O. (2011). Mesenchymal stem cells ameliorate the histopathological changes in a murine model of chronic asthma. International Immunopharmacology, 11(8), 1120–1126. https://doi.org/10.1016/j.intimp.2011.03.009.
CAS
Article
PubMed
Google Scholar
Araujo, B. B., Dolhnikoff, M., Silva, L. F., Elliot, J., Lindeman, J. H., Ferreira, D. S., et al. (2008). Extracellular matrix components and regulators in the airway smooth muscle in asthma. The European Respiratory Journal, 32(1), 61–69. https://doi.org/10.1183/09031936.00147807.
CAS
Article
PubMed
Google Scholar
Januskevicius, A., Vaitkiene, S., Gosens, R., Janulaityte, I., Hoppenot, D., Sakalauskas, R., & Malakauskas, K. (2016). Eosinophils enhance WNT-5a and TGF-β1 genes expression in airway smooth muscle cells and promote their proliferation by increased extracellular matrix proteins production in asthma. BMC Pulmonary Medicine, 16(1), 94. https://doi.org/10.1186/s12890-016-0254-9.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kobayashi, T., Kim, H., Liu, X., Sugiura, H., Kohyama, T., Fang, Q., Wen, F. Q., Abe, S., Wang, X., Atkinson, J. J., Shipley, J. M., Senior, R. M., & Rennard, S. I. (2014). Matrix metalloproteinase-9 activates TGF-β and stimulates fibroblast contraction of collagen gels. American Journal of Physiology. Lung Cellular and Molecular Physiology, 306(11), L1006–L1015. https://doi.org/10.1152/ajplung.00015.2014.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hough, K. P., Curtiss, M. L., Blain, T. J., Liu, R. M., Trevor, J., Deshane, J. S., & Thannickal, V. J. (2020). Airway remodeling in asthma. Front Med (Lausanne), 7, 191. https://doi.org/10.3389/fmed.2020.00191.
Article
Google Scholar
Allogeneic Human Cells (hMSC) Via Intravenous Delivery in Patients With Mild Asthma (ASTEC) (2017). https://clinicaltrials.gov/ct2/show/NCT03137199?term=msc&cond=Asthma&draw=2&rank=1. Accessed December 9, 2020.