Skip to main content

Advertisement

Log in

Stem Cell as Vehicles of Antibody in Treatment of Lymphoma: a Novel and Potential Targeted Therapy

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Lymphoma is a heterogeneous malignancy and its incidence is increasing in the past decades all over the world. Although more than half of lymphoma patients achieve complete or partial remission from the standard first-line ABVD or R-CHOP based therapy, patients who fail to respond to these regimens will give rise to relapsed or refractory (R/R) lymphoma and may lead to a worse prognosis. Developing novel agents is important for R/R lymphoma. Based on the homing ability and being genetically modified easily, stem cells are usually used as vehicles in cell-based anti-tumor therapy, which can not only retain their own biological characteristics, but also make anti-tumor agents secrete constantly in tumor environment, to eventually kill the tumor cells more effectively. In this review, we will briefly introduce the properties of antibody therapy carried by stem cells, especially the hopes and hurdles of stem cell-mediated antibody secretion in the treatment of lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

R/R:

relapsed or refractory

HL:

Hodgkin’s lymphoma

NHL:

non-Hodgkin’s lymphoma

ABVD:

doxorubicin, bleomycin, vinblastine, dacarbazine

CHOP:

cyclophosphamide, doxorubicin, vincristine, prednisone

ASCT:

autologous stem cell transplantation

Mab:

monoclonal antibody

ADCC:

antibody-dependent cell cytotoxicity

CDCC:

complement-dependent cellular cytotoxicity

ADA:

anti-drug antibody

DLBCL:

diffuse large B cell lymphoma

ESCs:

embryonic stem cells

ASCs:

adult stem cells

NSCs:

neural stem cells

MSCs:

mesenchymal stem cells

ASCs:

adipose stem cells

BMSCs:

bone marrow MSCs

UCB-MSCs:

umbilical cord blood MSCs

Ad-MSCs:

adipose-derived MSCs

SDF-1/CXCL12:

stromal cell-derived factor-1

CXCR4:

chemokine receptor 4

MMP:

matrix metalloproteinase

IL:

interleukin

TME:

tumor microenvironment

TNF:

tumor necrosis factor

TRAIL:

tumor necrosis factor related apoptosis-inducing ligand

CCL-2:

chemokine C-C motif ligand-2

VCAM-1:

vascular cell adhesion molecule-1

PPG:

lipase protein-G

HER2:

human epidermal growth factor receptor-2

GVHD:

graft-versus-host disease

TNFR2:

tumor necrosis factor receptor 2

PD-1:

programmed death receptor-1

BLI:

bioluminescence imaging system

Allo:

allogeneic

Auto:

autologous

NSCLC:

non-small cell lung cancer

HSV-TK:

herpes simplex virus thymidine kinase

CD:

enzyme cytosine deaminase

MV-NIS:

sodium iodine symporter (NIS) measles virus

EMT:

epithelial-mesenchymal transformation

INFβ:

interferon beta

CAR:

chimeric antigen receptor

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. a., & Jemal, A. (2018). Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492.

    Article  Google Scholar 

  2. Shanbhag, S., & Ambinder, R. F. (2018). Hodgkin Lymphoma: A Review and Update on Recent Progress. CA: a cancer journal for clinicians, 68(2), 116–132. https://doi.org/10.3322/caac.21438.

    Article  Google Scholar 

  3. Liu, Y., & Barta, S. K. (2019). Diffuse Large B-Cell Lymphoma: 2019 Update on Diagnosis, Risk Stratification, and Treatment. American journal of hematology, 94(5), 604–616. https://doi.org/10.1002/ajh.25460.

    Article  CAS  PubMed  Google Scholar 

  4. Reagan, P. M., & Friedberg, J. W. (2017). Reassessment of Anti-CD20 Therapy in Lymphoid Malignancies: Impact, Limitations, and New Directions. Oncology (Williston Park, N.Y.), 31(5), 402–411.

    Google Scholar 

  5. Maloney, D. G., Grillo-López, A. J., White, C. a., Bodkin, D., Schilder, R. J., Neidhart, J. a., Janakiraman, N., Foon, K. a., Liles, T. M., Dallaire, B. K., Wey, K., Royston, I., Davis, T., & Levy, R. (1997). IDEC-C2B8 (Rituximab) Anti-CD20 Monoclonal Antibody Therapy in Patients with Relapsed Low-Grade Non-Hodgkin's Lymphoma. Blood, 90(6), 2188–2195.

    Article  CAS  Google Scholar 

  6. Chen, R., Gopal, A. K., Smith, S. E., Ansell, S. M., Rosenblatt, J. D., Savage, K. J., Connors, J. M., Engert, A., Larsen, E. K., Huebner, D., Fong, A., & Younes, A. (2016). Five-Year Survival and Durability Results of Brentuximab Vedotin in Patients with Relapsed or Refractory Hodgkin Lymphoma. Blood, 128(12), 1562–1566. https://doi.org/10.1182/blood-2016-02-699850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pro, B., Advani, R., Brice, P., Bartlett, N. L., Rosenblatt, J. D., Illidge, T., Matous, J., Ramchandren, R., Fanale, M., Connors, J. M., Fenton, K., Huebner, D., Pinelli, J. M., Kennedy, D. A., & Shustov, A. (2017). Five-Year Results of Brentuximab Vedotin in Patients with Relapsed or Refractory Systemic Anaplastic Large Cell Lymphoma. Blood, 130(25), 2709–2717. https://doi.org/10.1182/blood-2017-05-780049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bartolotti, M., Franceschi, E., & Brandes, A. a. (2013). Treatment of Brain Metastases from HER-2-Positive Breast Cancer: Current Status and New Concepts. Future oncology, 9(11), 1653–1664. https://doi.org/10.2217/fon.13.90.

    Article  CAS  PubMed  Google Scholar 

  9. Tomita a. (2016). Genetic and Epigenetic Modulation of CD20 Expression in B-Cell Malignancies: Molecular Mechanisms and Significance to Rituximab Resistance. Journal of clinical and experimental hematopathology : JCEH, 56(2), 89–99. https://doi.org/10.3960/jslrt.56.89.

    Article  PubMed  Google Scholar 

  10. Adams, G. P., Schier, R., McCall, A. M., Simmons, H. H., Horak, E. M., Alpaugh, R. K., Marks, J. D., & Weiner, L. M. (2001). High Affinity Restricts the Localization and Tumor Penetration of Single-Chain Fv Antibody Molecules. Cancer research, 61(12), 4750–4755.

    CAS  PubMed  Google Scholar 

  11. Yamashita, M., Katakura, Y., & Shirahata, S. (2007). Recent Advances in the Generation of Human Monoclonal Antibody. Cytotechnology, 55(2–3), 55–60. https://doi.org/10.1007/s10616-007-9072-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scott, A. M., Wolchok, J. D., & Old, L. J. (2012). Antibody Therapy of Cancer. Nature Reviews. Cancer, 12(4), 278–287. https://doi.org/10.1038/nrc3236.

    Article  CAS  PubMed  Google Scholar 

  13. Rozental, A., Gafter-Gvili, A., Vidal, L., Raanani, P., & Gurion, R. (2019). The Role of Maintenance Therapy in Patients with Diffuse Large B Cell Lymphoma: A Systematic Review and Meta-Analysis. Hematological oncology, 37(1), 27–34. https://doi.org/10.1002/hon.2561.

    Article  CAS  PubMed  Google Scholar 

  14. Gómez-Mantilla, J. D., Trocóniz, I. F., Parra-Guillén, Z., & Garrido, M. J. (2014). Review on Modeling Anti-Antibody Responses to Monoclonal Antibodies. Journal of pharmacokinetics and pharmacodynamics, 41(5), 523–536. https://doi.org/10.1007/s10928-014-9367-z.

    Article  CAS  PubMed  Google Scholar 

  15. Harding, F. A., Stickler, M. M., Razo, J., & DuBridge, R. B. (2010). The Immunogenicity of Humanized and Fully Human Antibodies: Residual Immunogenicity Resides in the CDR Regions. mAbs, 2(3), 256–265. https://doi.org/10.4161/mabs.2.3.11641.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sehn, L. H., & Gascoyne, R. D. (2015). Diffuse Large B-Cell Lymphoma: Optimizing Outcome in the Context of Clinical and Biologic Heterogeneity. Blood, 125(1), 22–32. https://doi.org/10.1182/blood-2014-05-577189.

    Article  CAS  PubMed  Google Scholar 

  17. Sasportas, L. S., Kasmieh, R., Wakimoto, H., Hingtgen, S., Van de Water, J. A., Mohapatra, G., Figueiredo, J. L., Martuza, R. L., Weissleder, R., & Shah, K. (2009). Assessment of Therapeutic Efficacy and Fate of Engineered Human Mesenchymal Stem Cells for Cancer Therapy. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4822–4827. https://doi.org/10.1073/pnas.0806647106.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Machado, C., Telles, P. D., & Nascimento, I. L. (2013). Immunological Characteristics of Mesenchymal Stem Cells. Revistabrasileira de hematologia e hemoterapia, 35(1), 62–67. https://doi.org/10.5581/1516-8484.20130017.

    Article  Google Scholar 

  19. Cihova, M., Altanerova, V., & Altaner, C. (2011). Stem Cell Based Cancer Gene Therapy. Molecular pharmaceutics, 8(5), 1480–1487. https://doi.org/10.1021/mp200151a.

    Article  CAS  PubMed  Google Scholar 

  20. Ryu, C. H., Park, S. H., Park, S. a., Kim, S. M., Lim, J. Y., Jeong, C. H., Yoon, W. S., Oh, W. I., Sung, Y. C., & Jeun, S. S. (2011). Gene Therapy of Intracranial Glioma Using Interleukin 12-Secreting Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells. Human gene therapy, 22(6), 733–743. https://doi.org/10.1089/hum.2010.187.

    Article  CAS  PubMed  Google Scholar 

  21. Lee, H. J., Doo, S. W., Kim, D. H., Cha, Y. J., Kim, J. H., Song, Y. S., & Kim, S. U. (2013). Cytosine Deaminase-Expressing Human Neural Stem Cells Inhibit Tumor Growth in Prostate Cancer-Bearing Mice. Cancer letters, 335(1), 58–65. https://doi.org/10.1016/j.canlet.2013.01.048.

    Article  CAS  PubMed  Google Scholar 

  22. Hadryś, A., Sochanik, A., McFadden, G., & Jazowiecka-Rakus, J. (2020). Mesenchymal Stem Cells as Carriers for Systemic Delivery of Oncolytic Viruses. European journal of pharmacology, 874, 172991. https://doi.org/10.1016/j.ejphar.2020.172991.

    Article  CAS  PubMed  Google Scholar 

  23. Mueller, L. P., Luetzkendorf, J., Widder, M., Nerger, K., Caysa, H., & Mueller, T. (2011). TRAIL-Transduced Multipotent Mesenchymal Stromal Cells (TRAIL-MSC) Overcome TRAIL Resistance in Selected CRC Cell Lines in vitro and in vivo. Cancer gene therapy, 18(4), 229–239. https://doi.org/10.1038/cgt.2010.68.

    Article  CAS  PubMed  Google Scholar 

  24. Shah, K. (2012). Mesenchymal Stem Cells Engineered for Cancer Therapy. Advanced drug delivery reviews, 64(8), 739–748. https://doi.org/10.1016/j.addr.2011.06.010.

    Article  CAS  PubMed  Google Scholar 

  25. yin, H., Kanasty, R. L., Eltoukhy, A. a., Vegas, A. J., Dorkin, J. R., & Anderson, D. G. (2014). Non-viral Vectors for Gene-Based Therapy. Nature reviews. Genetics, 15(8), 541–555. https://doi.org/10.1038/nrg3763.

    Article  CAS  PubMed  Google Scholar 

  26. Portnow, J., Synold, T. W., Badie, B., Tirughana, R., Lacey, S. F., D'Apuzzo, M., Metz, M. Z., Najbauer, J., Bedell, V., Vo, T., Gutova, M., Frankel, P., Chen, M., & Aboody, K. S. (2017). Neural Stem Cell-Based Anticancer Gene Therapy: A First-in-Human Study in Recurrent High-Grade Glioma Patients. Clinical cancer research: an official journal of the American Association for Cancer Research, 23(12), 2951–2960. https://doi.org/10.1158/1078-0432.CCR-16-1518.

    Article  CAS  Google Scholar 

  27. Frank, R. T., Edmiston, M., Kendall, S. E., Najbauer, J., Cheung, C. W., Kassa, T., Metz, M. Z., Kim, S. U., Glackin, C. a., Wu, A. M., Yazaki, P. J., & Aboody, K. S. (2009). Neural Stem Cells as a Novel Platform for Tumor-Specific Delivery of Therapeutic Antibodies. PloS one, 4(12), e8314. https://doi.org/10.1371/journal.pone.0008314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heo, J. R., Hwang, K. a., Kim, S. U., & Choi, K. C. (2019). A Potential Therapy Using Engineered Stem Cells Prevented Malignant Melanoma in Cellular and Xenograft Mouse Models. Cancer research and treatment: official journal of Korean Cancer Association, 51(2), 797–811. https://doi.org/10.4143/crt.2018.364.

    Article  CAS  Google Scholar 

  29. Wei, Y., Nie, Y., Lai, J., Wan, Y. J., & li, Y. (2009). Comparison of the Population Capacity of Hematopoietic and Mesenchymal Stem Cells in Experimental Colitis Rat Model. Transplantation, 88(1), 42–48. https://doi.org/10.1097/TP.0b013e3181a9f0a7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Xing, Y., Chen, X., Cao, Y., Huang, J., Xie, X., & Wei, Y. (2015). Expression of Wnt and Notch Signaling Pathways in Inflammatory Bowel Disease Treated with Mesenchymal Stem Cell Transplantation: Evaluation in a Rat Model. Stem cell research & therapy, 6(1), 101. https://doi.org/10.1186/s13287-015-0092-3.

    Article  CAS  Google Scholar 

  31. Stuermer, E. K., Lipenksy, A., Thamm, O., Neugebauer, E., Schaefer, N., Fuchs, P., Bouillon, B., & Koenen, P. (2015). The Role of SDF-1 in Homing of Human Adipose-Derived Stem Cells. Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society, 23(1), 82–89. https://doi.org/10.1111/wrr.12248.

    Article  Google Scholar 

  32. Greco, S. J., & Rameshwar, P. (2012). Mesenchymal Stem Cells in Drug/Gene Delivery: Implications for Cell Therapy. Therapeutic delivery, 3(8), 997–1004. https://doi.org/10.4155/tde.12.69.

    Article  CAS  PubMed  Google Scholar 

  33. Musiał-Wysocka, A., Kot, M., & Majka, M. (2019). The Pros and Cons of Mesenchymal Stem Cell-Based Therapies. Cell transplantation, 28(7), 801–812. https://doi.org/10.1177/0963689719837897.

    Article  PubMed  PubMed Central  Google Scholar 

  34. he, L., & Zhang, H. (2019). MicroRNAs in the Migration of Mesenchymal Stem Cells. Stem cell reviews and reports, 15(1), 3–12. https://doi.org/10.1007/s12015-018-9852-7.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, X., Yang, Y., Zhang, L., Lu, Y., Zhang, Q., Fan, D., Zhang, Y., Zhang, Y., Ye, Z., & Xiong, D. (2017). Mesenchymal Stromal Cells as Vehicles of Tetravalent Bispecific Tandab (CD3/CD19) for the Treatment of B Cell Lymphoma Combined with IDO Pathway Inhibitor D-1-Methyl-Tryptophan. Journal of hematology & oncology, 10(1), 56. https://doi.org/10.1186/s13045-017-0397-z.

    Article  CAS  Google Scholar 

  36. Yan, C., Li, S., Li, Z., Peng, H., Yuan, X., Jiang, L., Zhang, Y., Fan, D., Hu, X., Yang, M., & Xiong, D. (2013). Human Umbilical Cord Mesenchymal Stem Cells as Vehicles of CD20-Specific TRAIL Fusion Protein Delivery: A Double-Target Therapy against Non-Hodgkin's Lymphoma. Molecular pharmaceutics, 10(1), 142–151. https://doi.org/10.1021/mp300261e.

    Article  CAS  PubMed  Google Scholar 

  37. Nystedt, J., Anderson, H., Tikkanen, J., Pietilä, M., Hirvonen, T., Takalo, R., Heiskanen, A., Satomaa, T., Natunen, S., Lehtonen, S., Hakkarainen, T., Korhonen, M., Laitinen, S., Valmu, L., & Lehenkari, P. (2013). Cell Surface Structures Influence Lung Clearance Rate of Systemically Infused Mesenchymal Stromal Cells. Stem cells (Dayton, Ohio), 31(2), 317–326. https://doi.org/10.1002/stem.1271.

    Article  CAS  Google Scholar 

  38. Lin, D. H., Biswas, A., Choolani, M., Fong, C. Y., & Bongso, A. (2017). Induction of Immunogenic Cell Death in Lymphoma Cells by Wharton's Jelly Mesenchymal Stem Cell Conditioned Medium. Stem cell reviews and reports, 13(6), 801–816. https://doi.org/10.1007/s12015-017-9767-8.

    Article  CAS  PubMed  Google Scholar 

  39. Leibacher, J., & Henschler, R. (2016). Biodistribution, Migration and Homing of Systemically Applied Mesenchymal Stem/Stromal Cells. Stem cell research & therapy, 7, 7. https://doi.org/10.1186/s13287-015-0271-2.

    Article  CAS  Google Scholar 

  40. Xinaris, C., Morigi, M., Benedetti, V., Imberti, B., Fabricio, A. S., Squarcina, E., Benigni, A., Gagliardini, E., & Remuzzi, G. (2013). A Novel Strategy to Enhance Mesenchymal Stem Cell Migration Capacity and Promote Tissue Repair in an Injury Specific Fashion. Cell transplantation, 22(3), 423–436. https://doi.org/10.3727/096368912X653246.

    Article  CAS  PubMed  Google Scholar 

  41. Fernandez-Pernas, P., Rodríguez-Lesende, I., de la Fuente, A., Mateos, J., Fuentes, I., De Toro, J., Blanco, F. J., & Arufe, M. C. (2017). CD105+-Mesenchymal Stem Cells Migrate into Osteoarthritis Joint: An Animal Model. PloS one, 12(11), e0188072. https://doi.org/10.1371/journal.pone.0188072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gao, F., Hu, X., Xie, X., Liu, X., & Wang, J. (2015). Heat Shock Protein 90 Stimulates Rat Mesenchymal Stem Cell Migration Via PI3K/Akt and ERK1/2 Pathways. Cell biochemistry and biophysics, 71(1), 481–489. https://doi.org/10.1007/s12013-014-0228-6.

    Article  CAS  PubMed  Google Scholar 

  43. Ribeiro, A., Laranjeira, P., Mendes, S., Velada, I., Leite, C., Andrade, P., Santos, F., Henriques, A., Grãos, M., Cardoso, C. M., Martinho, A., Pais, M., da Silva, C. L., Cabral, J., Trindade, H., & Paiva, A. (2013). Mesenchymal Stem Cells from Umbilical Cord Matrix, Adipose Tissue and Bone Marrow Exhibit Different Capability to Suppress Peripheral Blood B, Natural Killer and T Cells. Stem cell research & therapy, 4(5), 125. https://doi.org/10.1186/scrt336.

    Article  CAS  Google Scholar 

  44. Akimoto, K., Kimura, K., Nagano, M., Takano, S., To’a Salazar, G., Yamashita, T., & Ohneda, O. (2013). Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibit, but Adipose Tissue-Derived Mesenchymal Stem Cells Promote, Glioblastoma Multiforme Proliferation. Stem cells and development, 22(9), 1370–1386. https://doi.org/10.1089/scd.2012.0486.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, Y., & Zhang, B. (2008). TRAIL Resistance of Breast Cancer Cells Is Associated with Constitutive Endocytosis of Death Receptors 4 and 5. Molecular cancer research : MCR, 6(12), 1861–1871. https://doi.org/10.1158/1541-7786.MCR-08-0313.

    Article  CAS  PubMed  Google Scholar 

  46. Ren, G., Zhao, X., Wang, Y., Zhang, X., Chen, X., Xu, C., Yuan, Z. R., Roberts, A. I., Zhang, L., Zheng, B., wen, T., Han, Y., Rabson, A. B., Tischfield, J. a., Shao, C., & Shi, Y. (2012). CCR2-Dependent Recruitment of Macrophages by Tumor-Educated Mesenchymal Stromal Cells Promotes Tumor Development and Is Mimicked by TNFα. Cell stem cell, 11(6), 812–824. https://doi.org/10.1016/j.stem.2012.08.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang, X., li, Z., ma, Y., Gao, J., Liu, S., Gao, Y., & Wang, G. (2014). Human Umbilical Cord Mesenchymal Stem Cells Promote Carcinoma Growth and Lymph Node Metastasis when Co-Injected with Esophageal Carcinoma Cells in Nude Mice. Cancer cell international, 14(1), 93. https://doi.org/10.1186/s12935-014-0093-9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lee, M. J., Park, S. Y., Ko, J. H., Lee, H. J., Ryu, J. S., Park, J. W., Khwarg, S. I., Yoon, S. O., & Oh, J. Y. (2017). Mesenchymal Stromal Cells Promote B-Cell Lymphoma in Lacrimal Glands by Inducing Immunosuppressive Microenvironment. Oncotarget, 8(39), 66281–66292. https://doi.org/10.18632/oncotarget.19971.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xu, L., Wang, X., Wang, J., Liu, D., Wang, Y., Huang, Z., & Tan, H. (2016). Hypoxia-Induced Secretion of IL-10 from Adipose-Derived Mesenchymal Stem Cell Promotes Growth and Cancer Stem Cell Properties of Burkitt Lymphoma. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 37(6), 7835–7842. https://doi.org/10.1007/s13277-015-4664-8.

    Article  CAS  Google Scholar 

  50. Song, N., Gao, L., Qiu, H., Huang, C., Cheng, H., Zhou, H., lv, S., Chen, L., & Wang, J. (2015). Mouse Bone Marrow-Derived Mesenchymal Stem Cells Inhibit Leukemia/Lymphoma Cell Proliferation in vitro and in a Mouse Model of Allogeneic Bone Marrow Transplant. International journal of molecular medicine, 36(1), 139–149. https://doi.org/10.3892/ijmm.2015.2191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yuan, Y., Zhou, C., Chen, X., Tao, C., Cheng, H., & Lu, X. (2018). Suppression of Tumor Cell Proliferation and Migration by Human Umbilical Cord Mesenchymal Stem Cells: A Possible Role for Apoptosis and Wnt Signaling. Oncology letters, 15(6), 8536–8544. https://doi.org/10.3892/ol.2018.8368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ridge, S. M., Sullivan, F. J., & Glynn, S. A. (2017). Mesenchymal Stem Cells: Key Players in Cancer Progression. Molecular cancer, 16(1), 31. https://doi.org/10.1186/s12943-017-0597-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rhee, K. J., Lee, J. I., & Eom, Y. W. (2015). Mesenchymal Stem Cell-Mediated Effects of Tumor Support or Suppression. International journal of molecular sciences, 16(12), 30015–30033. https://doi.org/10.3390/ijms161226215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhong, W., Zhu, Z., Xu, X., Zhang, H., Xiong, H., & li, Q., & Wei, Y. (2019). Human Bone Marrow-Derived Mesenchymal Stem Cells Promote the Growth and Drug-Resistance of Diffuse Large B-Cell Lymphoma by Secreting IL-6 and Elevating IL-17A Levels. Journal of experimental & clinical cancer research:CR, 38(1), 73. https://doi.org/10.1186/s13046-019-1081-7.

    Article  Google Scholar 

  55. Zhong, W., Xu, X., Zhu, Z., Yang, L., Du, H., Xia, Z., Yuan, Z., Xiong, H., Du, Q., Wei, Y., & li, Q. (2018). Increased Interleukin-17A Levels Promote Rituximab Resistance by Suppressing p53 Expression and Predict an Unfavorable Prognosis in Patients with Diffuse Large B Cell Lymphoma. International journal of oncology, 52(5), 1528–1538. https://doi.org/10.3892/ijo.2018.4299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Luo, F., Liu, T., Wang, J., li, J., ma, P., Ding, H., Feng, G., Lin, D., Xu, Y., & Yang, K. (2016). Bone Marrow Mesenchymal Stem Cells Participate in Prostate Carcinogenesis and Promote Growth of Prostate Cancer by Cell Fusion in vivo. Oncotarget, 7(21), 30924–30934. https://doi.org/10.18632/oncotarget.9045.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mathew, E., Brannon, A. L., Del Vecchio, A., Garcia, P. E., Penny, M. K., Kane, K. T., Vinta, A., Buckanovich, R. J., & di Magliano, M. P. (2016). Mesenchymal Stem Cells Promote Pancreatic Tumor Growth by Inducing Alternative Polarization of Macrophages. Neoplasia (New York, N.Y.), 18(3), 142–151. Doi: https://doi.org/10.1016/j.neo.2016.01.005

  58. Zakaria, N., &Yahaya, B. H. (2020). Adipose-Derived Mesenchymal Stem Cells Promote Growth and Migration of Lung Adenocarcinoma Cancer Cells. Advances in experimental medicine and biology, https://doi.org/10.1007/5584_2019_464. Advance Online Publication.

  59. Muroi, K., Miyamura, K., Okada, M., Yamashita, T., Murata, M., Ishikawa, T., Uike, N., Hidaka, M., Kobayashi, R., Imamura, M., Tanaka, J., Ohashi, K., Taniguchi, S., Ikeda, T., Eto, T., Mori, M., Yamaoka, M., & Ozawa, K. (2016). Bone Marrow-Derived Mesenchymal Stem Cells (JR-031) for Steroid-Refractory Grade III or IV Acute Graft-Versus-Host Disease: A Phase II/III Study. International journal of hematology, 103(2), 243–250. https://doi.org/10.1007/s12185-015-1915-9.

    Article  CAS  PubMed  Google Scholar 

  60. Panés, J., García-Olmo, D., Van Assche, G., Colombel, J. F., Reinisch, W., Baumgart, D. C., Dignass, A., Nachury, M., Ferrante, M., Kazemi-Shirazi, L., Grimaud, J. C., de la Portilla, F., Goldin, E., Richard, M. P., Diez, M. C., Tagarro, I., Leselbaum, A., Danese, S., & ADMIRE CD Study Group Collaborators (2018). Long-Term Efficacy and Safety of Stem Cell Therapy (Cx601) for Complex Perianal Fistulas in Patients with Crohn's Disease. Gastroenterology, 154(5), 1334–1342.e4. Doi:https://doi.org/10.1053/j.gastro.2017.12.020

  61. Panés, J., García-Olmo, D., Van Assche, G., Colombel, J. F., Reinisch, W., Baumgart, D. C., Dignass, A., Nachury, M., Ferrante, M., Kazemi-Shirazi, L., Grimaud, J. C., de la Portilla, F., Goldin, E., Richard, M. P., Leselbaum, A., Danese, S., & ADMIRE CD Study Group Collaborators. (2016). Expanded Allogeneic Adipose-Derived Mesenchymal Stem Cells (Cx601) for Complex Perianal Fistulas in Crohn's Disease: A Phase 3 Randomised, Double-Blind Controlled Trial. Lancet (London, England), 388(10051), 1281–1290. https://doi.org/10.1016/S0140-6736(16)31203-X.

    Article  Google Scholar 

  62. Kotze, P. G., Spinelli, A., Warusavitarne, J., Di Candido, F., Sahnan, K., Adegbola, S. O., & Danese, S. (2019). Darvadstrocel for the Treatment of Patients with Perianal Fistulas in Crohn's Disease. Drugs of today (Barcelona, Spain: 1998), 55(2), 95–105. https://doi.org/10.1358/dot.2019.55.2.2914336.

    Article  CAS  Google Scholar 

  63. Liu, D., Cheng, F., Pan, S., & Liu, Z. (2020). Stem Cells: A Potential Treatment Option for Kidney Diseases. Stem cell research & therapy, 11(1), 249. https://doi.org/10.1186/s13287-020-01751-2.

    Article  Google Scholar 

  64. Na, J., & Kim, G. J. (2020). Recent Trends in Stem Cell Therapy for Premature Ovarian Insufficiency and its Therapeutic Potential: A Review. Journal of ovarian research, 13(1), 74. https://doi.org/10.1186/s13048-020-00671-2.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhang, J., lv, S., Liu, X., Song, B., & Shi, L. (2018). Umbilical Cord Mesenchymal Stem Cell Treatment for Crohn's Disease: A Randomized Controlled Clinical Trial. Gut and liver, 12(1), 73–78. https://doi.org/10.5009/gnl17035.

    Article  CAS  PubMed  Google Scholar 

  66. Swaminathan, M., Stafford-Smith, M., Chertow, G. M., Warnock, D. G., Paragamian, V., Brenner, R. M., Lellouche, F., Fox-Robichaud, A., Atta, M. G., Melby, S., Mehta, R. L., Wald, R., Verma, S., Mazer, C. D., & ACT-AKI Investigators. (2018). Allogeneic Mesenchymal Stem Cells for Treatment of AKI after Cardiac Surgery. Journal of the American Society of Nephrology: JASN, 29(1), 260–267. https://doi.org/10.1681/ASN.2016101150.

    Article  PubMed  Google Scholar 

  67. Choi, M. R., Kim, H. Y., Park, J. Y., Lee, T. Y., Baik, C. S., Chai, Y. G., Jung, K. H., Park, K. S., Roh, W., Kim, K. S., & Kim, S. H. (2010). Selection of Optimal Passage of Bone Marrow-Derived Mesenchymal Stem Cells for Stem Cell Therapy in Patients with Amyotrophic Lateral Sclerosis. Neuroscience letters, 472(2), 94–98. https://doi.org/10.1016/j.neulet.2010.01.054.

    Article  CAS  PubMed  Google Scholar 

  68. Elahi, K. C., Klein, G., Avci-Adali, M., Sievert, K. D., MacNeil, S., & Aicher, W. K. (2016). Human Mesenchymal Stromal Cells from Different Sources Diverge in their Expression of Cell Surface Proteins and Display Distinct Differentiation Patterns. Stem cells international, 2016, 5646384. https://doi.org/10.1155/2016/5646384.

    Article  CAS  PubMed  Google Scholar 

  69. Jang, Y. K., Kim, M., Lee, Y. H., Oh, W., Yang, Y. S., & Choi, S. J. (2014). Optimization of the Therapeutic Efficacy of Human Umbilical Cord Blood-Mesenchymal Stromal Cells in an NSG Mouse Xenograft Model of Graft-Versus-Host Disease. Cytotherapy, 16(3), 298–308. https://doi.org/10.1016/j.jcyt.2013.10.012.

    Article  CAS  PubMed  Google Scholar 

  70. Chen, Q., Li, Y., Chen, Z., Du, H., & Wan, J. (2019). Anti-VCAM 1 Antibody-Coated Mesenchymal Stromal Cells Attenuate Experimental Colitis Via Immunomodulation. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 4457–4468. Doi: https://doi.org/10.12659/MSM.914238

  71. Wang, C. M., Guo, Z., Xie, Y. J., Hao, Y. Y., Sun, J. M., Gu, J., & Wang, A. L. (2014). Co-Treating Mesenchymal Stem Cells with IL-1β and TNF-α Increases VCAM-1 Expression and Improves Post-Ischemic Myocardial Function. Molecular medicine reports, 10(2), 792–798. https://doi.org/10.3892/mmr.2014.2236.

    Article  CAS  PubMed  Google Scholar 

  72. Yan, F., li, X., li, N., Zhang, R., Wang, Q., Ru, Y., Hao, X., Ni, J., Wang, H., & Wu, G. (2017). Immunoproapoptotic Molecule scFv-Fdt-tBid Modified Mesenchymal Stem Cells for Prostate Cancer Dual-Targeted Therapy. Cancer letters, 402, 32–42. https://doi.org/10.1016/j.canlet.2017.05.003.

    Article  CAS  PubMed  Google Scholar 

  73. Balyasnikova, I. V., Franco-Gou, R., Mathis, J. M., & Lesniak, M. S. (2010). Genetic Modification of Mesenchymal Stem Cells to Express a Single-Chain Antibody against EGFRvIII on the Cell Surface. Journal of tissue engineering and regenerative medicine, 4(4), 247–258. https://doi.org/10.1002/term.228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kanojia, D., Balyasnikova, I. V., Morshed, R. a., Frank, R. T., Yu, D., Zhang, L., Spencer, D. a., Kim, J. W., Han, Y., Yu, D., Ahmed, A. U., Aboody, K. S., & Lesniak, M. S. (2015). Neural Stem Cells Secreting Anti-HER2 Antibody Improve Survival in a Preclinical Model of HER2 Overexpressing Breast Cancer Brain Metastases. Stem cells (Dayton, Ohio), 33(10), 2985–2994. https://doi.org/10.1002/stem.2109.

    Article  CAS  Google Scholar 

  75. Sage, E. K., Thakrar, R. M., & Janes, S. M. (2016). Genetically Modified Mesenchymal Stromal Cells in Cancer Therapy. Cytotherapy, 18(11), 1435–1445. https://doi.org/10.1016/j.jcyt.2016.09.003.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Packiam, V. T., Lamm, D. L., Barocas, D. a., Trainer, a., Fand, B., Davis 3rd, R. L., Clark, W., Kroeger, M., Dumbadze, I., Chamie, K., Kader, A. K., Curran, D., Gutheil, J., Kuan, a., Yeung, A. W., & Steinberg, G. D. (2018). An Open Label, Single-Arm, Phase II Multicenter Study of the Safety and Efficacy of CG0070 Oncolytic Vector Regimen in Patients with BCG-Unresponsive Non-muscle-Invasive Bladder Cancer: Interim Results. Urologic oncology, 36(10), 440–447. https://doi.org/10.1016/j.urolonc.2017.07.005.

    Article  CAS  PubMed  Google Scholar 

  77. Ruano, D., López-Martín, J. a., Moreno, L., Lassaletta, Á., Bautista, F., Andión, M., & Ramírez, M. (2020). First-in-Human, First-in-Child Trial of Autologous Mesenchymal Stem Cells Carrying the Oncolytic Virus Icovir-5, in Patients with Advanced Tumors. Molecular Therapy. https://doi.org/10.1016/j.ymthe.2020.01.019.

  78. Lee, H. J., Doo, S. W., Kim, D. H., Cha, Y. J., Kim, J. H., Song, Y. S., & Kim, S. U. (2013). Cytosine Deaminase-Expressing Human Neural Stem Cells Inhibit Tumor Growth in Prostate Cancer-Bearing Mice. Cancer letters, 335(1), 58–65. https://doi.org/10.1016/j.canlet.2013.01.048.

    Article  CAS  PubMed  Google Scholar 

  79. Nouri, F. S., Wang, X., & Hatefi, A. (2015). Genetically Engineered Theranostic Mesenchymal Stem Cells for the Evaluation of the Anticancer Efficacy of Enzyme/Prodrug Systems. Journal of controlled release: official journal of the Controlled Release Society, 200, 179–187. https://doi.org/10.1016/j.jconrel.2015.01.003.

    Article  CAS  Google Scholar 

  80. von Einem, J. C., Guenther, C., Volk, H. D., Grütz, G., Hirsch, D., Salat, C., Stoetzer, O., Nelson, P. J., Michl, M., Modest, D. P., Holch, J. W., Angele, M., Bruns, C., Niess, H., & Heinemann, V. (2019). Treatment of Advanced Gastrointestinal Cancer with Genetically Modified Autologous Mesenchymal Stem Cells: Results from the Phase 1/2 TREAT-ME-1 Trial. International Journal of Cancer, 145(6), 1538–1546. https://doi.org/10.1002/ijc.32230.

    Article  CAS  Google Scholar 

  81. Fakiruddin, K. S., Ghazalli, N., Lim, M. N., Zakaria, Z., & Abdullah, S. (2018). Mesenchymal Stem Cell Expressing TRAIL as Targeted Therapy against SensitisedTumour. International journal of molecular sciences, 19(8), 2188. https://doi.org/10.3390/ijms19082188.

    Article  CAS  Google Scholar 

  82. Fakiruddin, K. S., Lim, M. N., Nordin, N., Rosli, R., Zakaria, Z., & Abdullah, S. (2019). Targeting of CD133+ Cancer Stem Cells by Mesenchymal Stem Cell Expressing TRAIL Reveals a Prospective Role of Apoptotic Gene Regulation in Non-Small Cell Lung Cancer. Cancers, 11(9), 1261. https://doi.org/10.3390/cancers11091261.

    Article  CAS  Google Scholar 

  83. Viardot, A., Goebeler, M. E., Hess, G., Neumann, S., Pfreundschuh, M., Adrian, N., Zettl, F., Libicher, M., Sayehli, C., Stieglmaier, J., Zhang, A., Nagorsen, D., & Bargou, R. C. (2016). Phase 2 Study of the Bispecific T-Cell Engager (BiTE) Antibody Blinatumomab in Relapsed/Refractory Diffuse Large B-Cell Lymphoma. Blood, 127(11), 1410–1416. https://doi.org/10.1182/blood-2015-06-651380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Smith, S. M., Godfrey, J., Ahn, K. W., DiGilio, A., Ahmed, S., Agrawal, V., Bachanova, V., Bacher, U., Bashey, A., Bolaños-Meade, J., Cairo, M., Chen, A., Chhabra, S., Copelan, E., Dahi, P. B., Aljurf, M., Farooq, U., Ganguly, S., Hertzberg, M., Holmberg, L., … Hamadani, M. (2018). Autologous Transplantation Versus Allogeneic Transplantation in Patients with Follicular Lymphoma Experiencing Early Treatment Failure. Cancer, 124(12), 2541–2551. Doi: https://doi.org/10.1002/cncr.31374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Monsuez, J. J., Charniot, J. C., Vignat, N., & Artigou, J. Y. (2010). Cardiac Side-Effects of Cancer Chemotherapy. International journal of cardiology, 144(1), 3–15. https://doi.org/10.1016/j.ijcard.2010.03.003.

    Article  PubMed  Google Scholar 

  86. Kim, Y., Jin, H. J., Heo, J., Ju, H., Lee, H. Y., Kim, S., Lee, S., Lim, J., Jeong, S. Y., Kwon, J., Kim, M., Choi, S. J., Oh, W., Yang, Y. S., Hwang, H. H., Yu, H. Y., Ryu, C. M., Jeon, H. B., & Shin, D. M. (2018). Small Hypoxia-Primed Mesenchymal Stem Cells Attenuate Graft-Versus-Host Disease. Leukemia, 32(12), 2672–2684. https://doi.org/10.1038/s41375-018-0151-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Davis, T. a., Grillo-López, A. J., White, C. a., McLaughlin, P., Czuczman, M. S., Link, B. K., Maloney, D. G., Weaver, R. L., Rosenberg, J., & Levy, R. (2000). Rituximab Anti-CD20 Monoclonal Antibody Therapy in Non-Hodgkin's Lymphoma: Safety and Efficacy of Re-Treatment. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 18(17), 3135–3143. https://doi.org/10.1200/JCO.2000.18.17.3135.

    Article  CAS  Google Scholar 

  88. Ferretti, E., Di Carlo, E., Ognio, E., Guarnotta, C., Bertoni, F., Corcione, a., Prigione, I., Fraternali-Orcioni, G., Ribatti, D., Ravetti, J. L., Ponzoni, M., Tripodo, C., & Pistoia, V. (2015). Interleukin-17A Promotes the Growth of Human Germinal Center Derived Non-Hodgkin B Cell Lymphoma. Oncoimmunology, 4(10), e1030560. https://doi.org/10.1080/2162402X.2015.1030560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hashwah, H., Bertram, K., Stirm, K., Stelling, A., Wu, C. T., Kasser, S., Manz, M. G., Theocharides, A. P., Tzankov, A., & Müller, A. (2019). The IL-6 Signaling Complex Is a Critical Driver, Negative Prognostic Factor, and Therapeutic Target in Diffuse Large B-Cell Lymphoma. EMBO molecular medicine, 11(10), e10576. Doi:https://doi.org/10.15252/emmm.201910576

  90. Liang, Y., Wang, Y., Xiao, M., Hao, Y., Zhang, Y., & li, S. (2018). Tumor Necrosis Factor Receptor 2 May Promote the Proliferation and Drug Resistance of Kapras299 and L428 Lymphoma Cells Via the AKT and WNT/β-Catenin Signaling Pathways. Oncology letters, 15(6), 8847–8852. https://doi.org/10.3892/ol.2018.8396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tam, E. M., Fulton, R. B., Sampson, J. F., Muda, M., Camblin, A., Richards, J., Koshkaryev, A., Tang, J., Kurella, V., Jiao, Y., Xu, L., Zhang, K., Kohli, N., Luus, L., Hutto, E., Kumar, S., Lulo, J., Paragas, V., Wong, C., Suchy, J., … Raue, A. (2019). Antibody-Mediated Targeting of TNFR2 Activates CD8+ T Cells in Mice and Promotes Antitumor Immunity. Science translational medicine, 11(512), eaax0720. Doi:https://doi.org/10.1126/scitranslmed.aax0720

  92. Caplan, H., Olson, S. D., Kumar, a., George, M., Prabhakara, K. S., Wenzel, P., Bedi, S., Toledano-Furman, N. E., Triolo, F., Kamhieh-Milz, J., Moll, G., & Cox Jr., C. S. (2019). Mesenchymal Stromal Cell Therapeutic Delivery: Translational Challenges to Clinical Application. Frontiers in immunology, 10, 1645. https://doi.org/10.3389/fimmu.2019.01645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mastrolia, I., Foppiani, E. M., Murgia, A., Candini, O., Samarelli, A. V., Grisendi, G., Veronesi, E., Horwitz, E. M., & Dominici, M. (2019). Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review. Stem cells translational medicine, 8(11), 1135–1148. https://doi.org/10.1002/sctm.19-0044.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Dhillon, S. (2017). Obinutuzumab: A Review in Rituximab-Refractory or -Relapsed Follicular Lymphoma. Targeted oncology, 12(2), 255–262. https://doi.org/10.1007/s11523-017-0485-6.

    Article  PubMed  Google Scholar 

  95. Herbaux, C., Gauthier, J., Brice, P., Drumez, E., Ysebaert, L., Doyen, H., Fornecker, L., Bouabdallah, K., Manson, G., Ghesquières, H., Tabrizi, R., Hermet, E., Lazarovici, J., Thiebaut-Bertrand, A., Chauchet, A., Demarquette, H., Boyle, E., Houot, R., Yakoub-Agha, I., & Morschhauser, F. (2017). Efficacy and Tolerability of Nivolumab after Allogeneic Transplantation for Relapsed Hodgkin Lymphoma. Blood, 129(18), 2471–2478. https://doi.org/10.1182/blood-2016-11-749556.

    Article  CAS  PubMed  Google Scholar 

  96. Vidal, L., Gafter-Gvili, A., Leibovici, L., Dreyling, M., Ghielmini, M., Hsu Schmitz, S. F., Cohen, A., & Shpilberg, O. (2009). Rituximab Maintenance for the Treatment of Patients with Follicular Lymphoma: Systematic Review and Meta-Analysis of Randomized Trials. Journal of the National Cancer Institute, 101(4), 248–255. https://doi.org/10.1093/jnci/djn478.

    Article  CAS  PubMed  Google Scholar 

  97. Chen, R., Zinzani, P. L., Lee, H. J., Armand, P., Johnson, N. a., Brice, P., Radford, J., Ribrag, V., Molin, D., Vassilakopoulos, T. P., Tomita, A., von Tresckow, B., Shipp, M. A., Lin, J., Kim, E., Nahar, A., Balakumaran, A., & Moskowitz, C. H. (2019). Pembrolizumab in Relapsed or Refractory Hodgkin Lymphoma: 2-Year Follow-Up of KEYNOTE-087. Blood, 134(14), 1144–1153. https://doi.org/10.1182/blood.2019000324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Deeks, E. D. (2019). Polatuzumab Vedotin: First Global Approval. Drugs, 79(13), 1467–1475. https://doi.org/10.1007/s40265-019-01175-0.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Le Blanc, K., Frassoni, F., Ball, L., Locatelli, F., Roelofs, H., Lewis, I., Lanino, E., Sundberg, B., Bernardo, M. E., Remberger, M., Dini, G., Egeler, R. M., Bacigalupo, A., Fibbe, W., Ringdén, O., & Developmental Committee of the European Group for Blood and Marrow Transplantation. (2008). Mesenchymal Stem Cells for Treatment of Steroid-Resistant, Severe, Acute Graft-Versus-Host Disease: A Phase II Study. Lancet (London, England), 371(9624), 1579–1586. https://doi.org/10.1016/S0140-6736(08)60690-X.

    Article  CAS  Google Scholar 

  100. Boberg, E., von Bahr, L., Afram, G., Lindström, C., Ljungman, P., Heldring, N., Petzelbauer, P., Garming Legert, K., Kadri, N., & Le Blanc, K. (2020). Treatment of Chronic GvHD with Mesenchymal Stromal Cells Induces Durable Responses: A Phase II Study. Stem cells translational medicine, 9(10), 1190–1202. https://doi.org/10.1002/sctm.20-0099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Baron, F., Lechanteur, C., Willems, E., Bruck, F., Baudoux, E., Seidel, L., Vanbellinghen, J. F., Hafraoui, K., Lejeune, M., Gothot, A., Fillet, G., & Beguin, Y. (2010). Cotransplantation of Mesenchymal Stem Cells Might Prevent Death from Graft-Versus-Host Diease (GVHD) without Abrogating Graft-Versus-Tumor Effects after HLA-Mismatched Allogeneic Transplantation Following Nonmyeloablative Conditioning. Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation, 16(6), 838–847. https://doi.org/10.1016/j.bbmt.2010.01.011.

    Article  Google Scholar 

Download references

Funding

This work was supported by grants from the Guangzhou Science and Technology Plan Project (201904010027) and Key Clinical Technique Program of Guangzhou (2019ZD18).

Author information

Authors and Affiliations

Authors

Contributions

Wei, Y. conceptualized the outline and topic of the article. Zhang, J. and Yuan, Z. contributed in writing the manuscript. Zhong, W. contributed earlier research data on DLBCL. All authors participated in examining the manuscript and approving it for submission.

Corresponding author

Correspondence to Yaming Wei.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yuan, Z., Zhong, W. et al. Stem Cell as Vehicles of Antibody in Treatment of Lymphoma: a Novel and Potential Targeted Therapy. Stem Cell Rev and Rep 17, 829–841 (2021). https://doi.org/10.1007/s12015-020-10080-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-10080-z

Keywords

Navigation