Skip to main content

Advertisement

Log in

Heat Shock Protein 90 Stimulates Rat Mesenchymal Stem Cell Migration via PI3K/Akt and ERK1/2 Pathways

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

A Correction to this article was published on 15 June 2019

This article has been updated

Abstract

The objective of this study was to determine the role of Hsp90α in regulating the migration of mesenchymal stem cells (MSCs) and to investigate the underlying mechanisms of this effect. MSCs migration was assessed by wound healing assay and transwell migration assay. Hsp90α expression was silenced in MSC by siRNA (sirHsp90α). The activity of secreted metalloproteases MMP-2 and MMP-9, and their expression levels in MSC were evaluated using gelatin zymography, Western blot analysis and real-time PCR. Gene expression of VCAM-1 and CXCR4 cytokines was evaluated by real-time PCR. Akt and ERK activity were analyzed by Western blotting using antibodies against phosphorylated forms of these proteins. Treatment with Hsp90α significantly enhanced MSC migration, and this effect was blocked by transfecting MSC with sirHsp90α. Treating the cells with recombinant human Hsp90α (rhHsp90α) enhanced gene expression and protein levels of MMP-2 and MMP-9, as well as their secretion and activity. MSC incubated with rhHsp90α exhibited increased gene expression of CXCR4 and VCAM-1. Finally, the levels of phosphorylated Akt and Erk were markedly increased by rhHsp90α treatment. These findings indicate that Hsp90α promotes MSCs migration via PI3K/Akt and ERK signaling pathways, and that this effect is possibly mediated by MMPs, SDF-1/CXCR4 pathway, and VCAM-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 15 June 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

  • 15 June 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Majumdar, M. K., Thiede, M. A., Haynesworth, S. E., Bruder, S. P., & Gerson, S. L. (2000). Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. Journal of Hematotherapy & Stem Cell Research, 9(6), 841–848.

    Article  CAS  Google Scholar 

  2. Wright, V., Peng, H., Usas, A., et al. (2002). BMP4-expressing muscle-derived stem cells differentiate into osteogenic lineage and improve bone healing in immunocompetent mice. Molecular Therapy, 6(2), 169–178.

    Article  CAS  PubMed  Google Scholar 

  3. Mizuno, K., Muneta, T., Morito, T., et al. (2008). Exogenous synovial stem cells adhere to defect of meniscus and differentiate into cartilage cells. Journal of Medical and Dental Sciences, 55(1), 101–111.

    PubMed  Google Scholar 

  4. Li, Y., Yu, J., Li, M., Qu, Z., & Ruan, Q. (2011). Mouse mesenchymal stem cells from bone marrow differentiate into smooth muscle cells by induction of plaque-derived smooth muscle cells. Life Sciences, 88(3–4), 130–140.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, Q. W., Chen, Z. L., & Piao, Y. J. (2005). Mesenchymal stem cells differentiate into tenocytes by bone morphogenetic protein (BMP) 12 gene transfer. Journal of Bioscience and Bioengineering, 100(4), 418–422.

    Article  CAS  PubMed  Google Scholar 

  6. Elabd, C., Chiellini, C., Carmona, M., et al. (2009). Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells, 27(11), 2753–2760.

    Article  CAS  PubMed  Google Scholar 

  7. Psaltis, P. J., Zannettino, A. C., Worthley, S. G., & Gronthos, S. (2008). Concise review: Mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells, 26(9), 2201–2210.

    Article  PubMed  Google Scholar 

  8. Marenzi, G., & Bartorelli, A. L. (2007). Improved clinical outcome after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. European Heart Journal, 28(17), 2172–2173. author reply 2173–2174.

    Article  PubMed  Google Scholar 

  9. Fuh, E., & Brinton, T. J. (2009). Bone marrow stem cells for the treatment of ischemic heart disease: A clinical trial review. Journal of Cardiovascular Translational Research, 2(2), 202–218.

    Article  PubMed  Google Scholar 

  10. Barbash, I. M., Chouraqui, P., Baron, J., et al. (2003). Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation, 108(7), 863–868.

    Article  PubMed  Google Scholar 

  11. Langer, T., Rosmus, S., & Fasold, H. (2003). Intracellular localization of the 90 kDA heat shock protein (HSP90alpha) determined by expression of a EGFP-HSP90alpha-fusion protein in unstressed and heat stressed 3T3 cells. Cell Biology International, 27(1), 47–52.

    Article  CAS  PubMed  Google Scholar 

  12. Yano, A., Tsutsumi, S., Soga, S., et al. (2008). Inhibition of Hsp90 activates osteoclast c-Src signaling and promotes growth of prostate carcinoma cells in bone. Proceedings of the National Academy of Sciences of the United States of America, 105(40), 15541–15546.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Wu, L. X., Xu, J. H., Huang, X. W., Zhang, K. Z., Wen, C. X., & Chen, Y. Z. (2006). Down-regulation of p210(bcr/abl) by curcumin involves disrupting molecular chaperone functions of Hsp90. Acta Pharmacologica Sinica, 27(6), 694–699.

    Article  CAS  PubMed  Google Scholar 

  14. Zsebik, B., Citri, A., Isola, J., Yarden, Y., Szollosi, J., & Vereb, G. (2006). Hsp90 inhibitor 17-AAG reduces ErbB2 levels and inhibits proliferation of the trastuzumab resistant breast tumor cell line JIMT-1. Immunology Letters, 104(1–2), 146–155.

    Article  CAS  PubMed  Google Scholar 

  15. Giaccone, G., & Rajan, A. (2009). Met amplification and HSP90 inhibitors. Cell Cycle, 8(17), 2682.

    Article  CAS  PubMed  Google Scholar 

  16. Grammatikakis, N., Lin, J. H., Grammatikakis, A., Tsichlis, P. N., & Cochran, B. H. (1999). p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. Molecular and Cellular Biology, 19(3), 1661–1672.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Sidera, K., Gaitanou, M., Stellas, D., Matsas, R., & Patsavoudi, E. (2008). A critical role for HSP90 in cancer cell invasion involves interaction with the extracellular domain of HER-2. Journal of Biological Chemistry, 283(4), 2031–2041.

    Article  CAS  PubMed  Google Scholar 

  18. Tsutsumi, S., Scroggins, B., Koga, F., et al. (2008). A small molecule cell-impermeant Hsp90 antagonist inhibits tumor cell motility and invasion. Oncogene, 27(17), 2478–2487.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gao, F., Hu, X. Y., Xie, X. J., et al. (2010). Heat shock protein 90 protects rat mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis via the PI3K/Akt and ERK1/2 pathways. Journal of Zhejiang University-Science B, 11(8), 608–617.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Xie, X. J., Wang, J. A., Cao, J., & Zhang, X. (2006). Differentiation of bone marrow mesenchymal stem cells induced by myocardial medium under hypoxic conditions. Acta Pharmacologica Sinica, 27(9), 1153–1158.

    Article  CAS  PubMed  Google Scholar 

  21. Heussen, C., & Dowdle, E. B. (1980). Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Analytical Biochemistry, 102(1), 196–202.

    Article  CAS  PubMed  Google Scholar 

  22. Baer, P. C., & Geiger, H. (2010). Mesenchymal stem cell interactions with growth factors on kidney repair. Current Opinion in Nephrology and Hypertension, 19(1), 1–6.

    Article  CAS  PubMed  Google Scholar 

  23. Walsh, D., Li, Z., Wu, Y., & Nagata, K. (1997). Heat shock and the role of the HSPs during neural plate induction in early mammalian CNS and brain development. Cellular and Molecular Life Sciences, 53(2), 198–211.

    Article  CAS  PubMed  Google Scholar 

  24. Lesko, E., Gozdzik, J., Kijowski, J., Jenner, B., Wiecha, O., & Majka, M. (2007). HSP90 antagonist, geldanamycin, inhibits proliferation, induces apoptosis and blocks migration of rhabdomyosarcoma cells in vitro and seeding into bone marrow in vivo. Anti-Cancer Drugs, 18(10), 1173–1181.

    Article  CAS  PubMed  Google Scholar 

  25. Minami, Y., Kawasaki, H., Miyata, Y., Suzuki, K., & Yahara, I. (1991). Analysis of native forms and isoform compositions of the mouse 90-kDa heat shock protein, HSP90. Journal of Biological Chemistry, 266(16), 10099–10103.

    CAS  PubMed  Google Scholar 

  26. Nemoto, T., & Sato, N. (1998). Oligomeric forms of the 90-kDa heat shock protein. Biochemical Journal, 330(Pt 2), 989–995.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Grenert, J. P., Sullivan, W. P., Fadden, P., et al. (1997). The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. Journal of Biological Chemistry, 272(38), 23843–23850.

    Article  CAS  PubMed  Google Scholar 

  28. Basso, A. D., Solit, D. B., Chiosis, G., Giri, B., Tsichlis, P., & Rosen, N. (2002). Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. Journal of Biological Chemistry, 277(42), 39858–39866.

    Article  CAS  PubMed  Google Scholar 

  29. Roe, S. M., Ali, M. M., Meyer, P., et al. (2004). The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell, 116(1), 87–98.

    Article  CAS  PubMed  Google Scholar 

  30. Sato, S., Fujita, N., & Tsuruo, T. (2000). Modulation of Akt kinase activity by binding to Hsp90. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 10832–10837.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Abi-Younes, S., Sauty, A., et al. (2000). The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques. Circulation Research, 86(2), 131–138.

    Article  CAS  PubMed  Google Scholar 

  32. Yamaguchi, J., Kusano, K. F., et al. (2003). Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 107(9), 1322–1328.

    Article  CAS  PubMed  Google Scholar 

  33. Oberlin, E., Amara, A., et al. (1996). The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature, 382(6594), 833–835.

    Article  CAS  PubMed  Google Scholar 

  34. Jo, D. Y., Rafii, S., et al. (2000). Chemotaxis of primitive hematopoietic cells in response to stromal cell-derived factor-1. Journal of Clinical Investigation, 105(1), 101–111.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Lima e Silva, R., Shen, J., et al. (2007). The SDF-1/CXCR4 ligand/receptor pair is an important contributor to several types of ocular neovascularization. FASEB Journal, 21(12), 3219–3230.

    Article  CAS  PubMed  Google Scholar 

  36. Abbott, J. D., Huang, Y., et al. (2004). Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation, 110(21), 3300–3305.

    Article  PubMed  Google Scholar 

  37. Guo, Y., Hangoc, G., et al. (2005). SDF-1/CXCL12 enhances survival and chemotaxis of murine embryonic stem cells and production of primitive and definitive hematopoietic progenitor cells. Stem Cells, 23(9), 1324–1332.

    Article  CAS  PubMed  Google Scholar 

  38. Shao, H., Tan, Y., et al. (2008). Statin and stromal cell-derived factor-1 additively promote angiogenesis by enhancement of progenitor cells incorporation into new vessels. Stem Cells, 26(5), 1376–1384.

    Article  CAS  PubMed  Google Scholar 

  39. Hyun, Y. M., Chung, H. L., et al. (2009). Activated integrin VLA-4 localizes to the lamellipodia and mediates T cell migration on VCAM-1. The Journal of Immunology, 183(1), 359–369.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Bowden, R. A., Ding, Z. M., et al. (2002). Role of alpha4 integrin and VCAM-1 in CD18-independent neutrophil migration across mouse cardiac endothelium. Circulation Research, 90(5), 562–569.

    Article  CAS  PubMed  Google Scholar 

  41. Matsuura, K., Honda, A., et al. (2009). Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. Journal of Clinical Investigation, 119(8), 2204–2217.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Lu, L., Zhang, J. Q., et al. (2004). Molecular and cellular events at the site of myocardial infarction: from the perspective of rebuilding myocardial tissue. Biochemical and Biophysical Research Communications, 320(3), 907–913.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Nos. 30670868, 30770887, and 30770887/H0220), the Traditional Chinese Medicine of Zhejiang Province (No. 2014ZA005), and the Zhejiang Provincial Natural Science foundation of China (Y2100362) and Science Technology Department of Zhejiang Province (2010R10G2010160). China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Hu, X., Xie, X. et al. Heat Shock Protein 90 Stimulates Rat Mesenchymal Stem Cell Migration via PI3K/Akt and ERK1/2 Pathways. Cell Biochem Biophys 71, 481–489 (2015). https://doi.org/10.1007/s12013-014-0228-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0228-6

Keywords

Navigation