Skip to main content

Advertisement

Log in

Induction of Immunogenic Cell Death in Lymphoma Cells by Wharton’s Jelly Mesenchymal Stem Cell Conditioned Medium

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Strategies that induce immunogenic cell death (ICD) or downregulate CD47 or PD-L1 expression have resulted in successful therapeutic options for tumor eradication. Several groups have reported the tumoricidal effects of human umbilical cord Wharton’s jelly stem cells (hWJSCs) or its conditioned medium (hWJSC-CM) on certain cancers but the mechanisms have not been elucidated. Since hWJSCs possess immunomodulatory properties, we investigated whether one of the tumoricidal mechanisms was via ICD. We first concentrated hWJSC-CM into a 3 kDa concentrate and then exposed various concentrations of this concentrate to human lymphoma cells to find out which concentration had the greatest tumoricidal effect. We observed that a 500 µg/ml concentration of the concentrate had the greatest inhibitory effect. Thereafter, lymphoma cells were exposed to 500 µg/ml of the hWJSC-CM-3 kDa concentrate and then subjected to analysis for morphology, viability, apoptosis, mitochondrial and endoplasmic reticulum stress, danger associated molecular patterns (DAMP), extracellular HMGB1, CD47 and PD-L1 markers and dendritic cell phenotype. Extensive nuclear chromatin and mitochondrial changes with significantly decreased cell viability and increased apoptosis were observed in the treated lymphoma cells compared to controls. There were also significant increases in the release of DAMPs, extracellular HMGB1 and dendritic cell activation and maturation, with concomitant decreases in CD47 and PD-L1 expression in the treated cells compared to controls. In other ongoing studies we observed increased expression of specific tumor-suppressor molecules (miRNA-146a and miRNA-126, MCP-1, IL-6, IL-8 and IL-12) in hWJSC-CM suggesting that one or more of these molecules may be the modulators of the ICD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bracci, L., Schiavoni, G., Sistigu, A., et al. (2014). Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death and Differentiation, 21, 15–25.

    Article  CAS  PubMed  Google Scholar 

  2. Inoue, H., & Tani, K. (2014). Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death and Differentiation, 21, 39–49.

    Article  CAS  PubMed  Google Scholar 

  3. Martins, I., Wang, Y., Michaud, M., et al. (2014). Molecular mechanisms of ATP secretion during immunogenic cell death. Cell Death and Differentiation, 21, 79–91.

    Article  CAS  PubMed  Google Scholar 

  4. Kroemer, G., Galluzzi, L., Kepp, O., et al. (2013). Immunogenic cell death in cancer therapy. Annual Review of Immunology, 31, 51–72.

    Article  CAS  PubMed  Google Scholar 

  5. Chatterjee, K., Zhang, J., Honbo, N., et al. (2010). Doxorubicin cardiomyopathy. Cardiology, 115, 155–162.

    Article  CAS  PubMed  Google Scholar 

  6. Thompson, C. B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science, 267, 1456–1462.

    Article  CAS  PubMed  Google Scholar 

  7. Igney, F. H., & Krammer, P. H. (2002). Death and anti-death: tumour resistance to apoptosis. Nature Reviews Cancer, 2, 277–288.

    Article  CAS  PubMed  Google Scholar 

  8. Kono, K., Mimura, K., & Kiessling, R. (2013). Immunogenic tumor cell death induced by chemoradiotherapy: molecular mechanisms and a clinical translation. Cell Death & Disease, 4, e688.

    Article  CAS  Google Scholar 

  9. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8, 315–317.

    Article  CAS  PubMed  Google Scholar 

  10. Fong, C. Y., Subramanian, A., Biswas, A., et al. (2010). Derivation efficiency, cell proliferation, freeze-thaw survival, stem-cell properties and differentiation of human wharton’s jelly stem cells. Reproductive Biomedicine Online, 21, 391–401.

    Article  PubMed  Google Scholar 

  11. Troyer, D. L., & Weiss, M. L. (2008). Concise review: wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells, 26, 591–599.

    Article  PubMed  Google Scholar 

  12. Anzalone, R., Lo Iacono, M., Loria, T., et al. (2011) Wharton’s jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cells Revs and Reports, 7:342 – 63.

    Article  Google Scholar 

  13. Bongso, A., & Fong, C. Y. (2013). The therapeutic potential, challenges and future clinical directions of stem cells from the wharton’s jelly of the human umbilical cord. Stem Cell Reviews, 9, 226–240.

    Article  CAS  PubMed  Google Scholar 

  14. Subramanian, A., Shu-Uin, G., Kae-Siang, N., et al. (2012). Human umbilical cord wharton’s jelly mesenchymal stem cells do not transform to tumor-associated fibroblasts in the presence of breast and ovarian cancer cells unlike bone marrow mesenchymal stem cells. Journal of Cellular Biochemistry, 113, 1886–1895.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, H., Zhang, N., Li, T., et al. (2012). Human umbilical cord wharton’s jelly stem cells: immune property genes assay and effect of transplantation on the immune cells of heart failure patients. Cellular Immunology, 276, 83–90.

    Article  CAS  PubMed  Google Scholar 

  16. Gauthaman, K., Fong, C. Y., Suganya, C. A., et al. (2012). Extra-embryonic human wharton’s jelly stem cells do not induce tumorigenesis, unlike human embryonic stem cells. Reproductive Biomedicine Online, 24, 235–246.

    Article  PubMed  Google Scholar 

  17. Wang, Y., Han, Z. B., Ma, J., et al. (2012). A toxicity study of multiple-administration human umbilical cord mesenchymal stem cells in cynomolgus monkeys. Stem Cells and Development, 21, 1401–1408.

    Article  PubMed  Google Scholar 

  18. Wu, K. H., Sheu, J. N., Wu, H. P., et al. (2013). Cotransplantation of umbilical cord-derived mesenchymal stem cells promote hematopoietic engraftment in cord blood transplantation: a pilot study. Transplantation, 95, 773–777.

    Article  PubMed  Google Scholar 

  19. Fan, C. G., Zhang, Q. J., & Zhou, J. R. (2011). Therapeutic potentials of mesenchymal stem cells derived from human umbilical cord. Stem Cell Reviews, 7, 195–207.

    Article  PubMed  Google Scholar 

  20. Chao, Y. H., Tsai, C., Peng, C. T., et al. (2011). Cotransplantation of umbilical cord MSCs to enhance engraftment of hematopoietic stem cells in patients with severe aplastic anemia. Bone Marrow Transplantation, 46, 1391–1392.

    Article  PubMed  Google Scholar 

  21. Hu, J., Yu, X., Wang, Z., et al. (2013). Long term effects of the implantation of wharton’s jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocrine Journal, 60, 347–357.

    Article  CAS  PubMed  Google Scholar 

  22. Dalous, J., Larghero, J., & Baud, O. (2012). Transplantation of umbilical cord-derived mesenchymal stem cells as a novel strategy to protect the central nervous system: technical aspects, preclinical studies, and clinical perspectives. Pediatric Research, 71, 482–490.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, X. Y., Lan, Y., He, W. Y., et al. (2008). Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos. Blood, 111, 2436–2443.

    Article  CAS  PubMed  Google Scholar 

  24. Gauthaman, K., Fong, C. Y., Cheyyatraivendran, S., et al. (2012). Human umbilical cord wharton’s jelly stem cell (hWJSC) extracts inhibit cancer cell growth in vitro. Journal of Cellular Biochemistry, 113, 2027–2039.

    Article  CAS  PubMed  Google Scholar 

  25. Gauthaman, K., Fong, C. Y., Arularasu, S., et al. (2013). Human wharton’s jelly stem cell conditioned medium and cell-free lysate inhibit human osteosarcoma and mammary carcinoma cell growth in vitro and in xenograft mice. Journal of Cellular Biochemistry, 114, 366–377.

    Article  CAS  PubMed  Google Scholar 

  26. Rachakatla, R. S., Marini, F., Weiss, M. L., et al. (2007). Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors. Cancer Gene Therapy, 14, 828–835.

    Article  CAS  PubMed  Google Scholar 

  27. Ayuzawa, R., Doi, C., Rachakatla, R. S., et al. (2009). Naive human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Letters, 280, 31–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tamura, M., Kawabata, A., Ohta, N., et al. (2011). Wharton’s jelly stem cells as agents for cancer therapy. The Open Tissue Engineering and Regenerative Medicine Journal, 4, 39–47.

    Article  CAS  Google Scholar 

  29. Maurya, D. K., Doi, C., Kawabata, A., et al. (2010). Therapy with un-engineered naive rat umbilical cord matrix stem cells markedly inhibits growth of murine lung adenocarcinoma. BMC Cancer, 10, 590.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chao, K. C., Yang, H. T., & Chen, M. W. (2012). Human umbilical cord mesenchymal stem cells suppress breast cancer tumourigenesis through direct cell-cell contact and internalization. Journal of Cellular and Molecular Medicine, 16, 1803–1815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, J., Han, G., Liu, H., et al. (2013). Suppression of cholangiocarcinoma cell growth by human umbilical cord mesenchymal stem cells: a possible role of Wnt and Akt signaling. PloS One, 8, e62844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma, Y., Hao, X., Zhang, S., et al. (2012). The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Research and Treatment, 133, 473–485.

    Article  CAS  PubMed  Google Scholar 

  33. Wu, S., Ju, G. Q., Du, T., et al. (2013). Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PloS One, 8, e61366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lin, H. D., Fong, C. Y., Biswas, A., et al. (2014). Human Wharton’s jelly stem cells, its conditioned medium and cell-free lysate inhibit the growth of human lymphoma cells. Stem Cell Reviews and Reports, 10, 573–586.

    Article  PubMed  Google Scholar 

  35. Kawabata, A., Ohta, N., Seiler, G., et al. (2013). Naive rat umbilical cord matrix stem cells significantly attenuate mammary tumor growth through modulation of endogenous immune responses. Cytotherapy, 15, 586–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang, H. T., & Chao, K. C. (2013). Foetal defence against cancer: a hypothesis. Journal of Cellular and Molecular Medicine, 17, 1096–1098.

    PubMed  PubMed Central  Google Scholar 

  37. Potter, J. F., & Schoeneman, M. (1970). Metastasis of maternal cancer to the placenta and fetus. Cancer, 25, 380–388.

    Article  CAS  PubMed  Google Scholar 

  38. Dildy, G. A., Moise, K. J. Jr., Carpenter, R. J. Jr., et al. (1989). Maternal malignancy metastatic to the products of conception: a review. Obstetrical & Gynecological Survey, 44, 535–540.

    Article  Google Scholar 

  39. Alexander, A., Samlowski, W. E., Grossman, D., et al. (2003). Metastatic melanoma in pregnancy: risk of transplacental metastases in the infant. Journal of Clinical Oncology: Official journal of the American Society of Clinical Oncology, 21, 2179–2186.

    Article  Google Scholar 

  40. Jackisch, C., Louwen, F., Schwenkhagen, A., et al. (2003). Lung cancer during pregnancy involving the products of conception and a review of the literature. Archives of Gynecology and Obstetrics, 268, 69–77.

    PubMed  Google Scholar 

  41. Liu, J., & Guo, L. (2006). Intraplacental choriocarcinoma in a term placenta with both maternal and infantile metastases: a case report and review of the literature. Gynecologic Oncology, 103, 1147–1151.

    Article  PubMed  Google Scholar 

  42. Weiss, M. L., Medicetty, S., Bledsoe, A. R., et al. (2006). Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells, 24, 781–792.

    Article  CAS  PubMed  Google Scholar 

  43. Tipnis, S., Viswanathan, C., & Majumdar, A. S. (2010). Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: role of B7-H1 and IDO. Immunology and Cell Biology, 88, 795–806.

    Article  PubMed  Google Scholar 

  44. Barcia, R. N., Santos, J. M., Filipe, M., et al. (2015). What makes umbilical cord tissue-derived mesenchymal stromal cells superior immunomodulators when compared to bone marrow derived mesenchymal stromal cells? Stem Cells International, 2015:583984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fong, C. Y., Gauthaman, K., Cheyyatraivendran, S., et al (2012). Human umbilical cord Wharton’s jelly stem cells and its conditioned medium support hematopoietic stem cell expansion ex vivo. Journal of Cellular Biochemistry, 113, 658–668.

    Article  CAS  PubMed  Google Scholar 

  46. Sze, S. K., de Kleijn, D. P., Lai, R. C., et al. (2007). Elucidating the secretion proteome of human embryonic stem cell-derived mesenchymal stem cells. Molecular & Cellular Proteomics: MCP, 6, 1680–1689.

    Article  CAS  Google Scholar 

  47. Pereira, T., Armada-da Silva, P. A., Amorim, I., et al. (2014). Effects of human mesenchymal stem cells isolated from Wharton’s jelly of the umbilical cord and conditioned media on skeletal muscle regeneration using a myectomy model. Stem Cells International, 2014:376918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dangkong, D., & Limpanasithikul, W. (2015). Effect of citral on the cytotoxicity of doxorubicin in human B-lymphoma cells. Pharmaceutical Biology, 53, 262–268.

    Article  CAS  PubMed  Google Scholar 

  49. Fucikova, J., Kralikova, P., Fialova, A., et al. (2011). Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Research, 71, 4821–4833.

    Article  CAS  PubMed  Google Scholar 

  50. Obeid, M., Tesniere, A., Ghiringhelli, F., et al. (2007). Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Medicine, 13, 54–61.

    Article  CAS  PubMed  Google Scholar 

  51. Sukkurwala, A. Q., Martins, I., Wang, Y., et al. (2014). Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8. Cell Death and Differentiation, 21, 59–68.

    Article  CAS  PubMed  Google Scholar 

  52. Zappasodi, R., Pupa, S. M., Ghedini, G. C., et al. (2010). Improved clinical outcome in indolent B-cell lymphoma patients vaccinated with autologous tumor cells experiencing immunogenic death. Cancer Research, 70, 9062–9072.

    Article  CAS  PubMed  Google Scholar 

  53. Chao, M. P., Jaiswal, S., Weissman-Tsukamoto, R., et al. (2010). Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Science Translational Medicine, 2, 63–94.

    Article  Google Scholar 

  54. Fucikova, J., Moserova, I., Truxova, I., et al. (2014). High hydrostatic pressure induces immunogenic cell death in human tumor cells. International Journal of Cancer, 135, 1165–1177.

    Article  CAS  PubMed  Google Scholar 

  55. Spisek, R., Charalambous, A., Mazumder, A., et al. (2007). Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood, 109, 4839–4845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Spisek, R., & Dhodapkar, M. V. (2007). Towards a better way to die with chemotherapy: role of heat shock protein exposure on dying tumor cells. Cell Cycle, 6, 1962–1965.

    Article  CAS  PubMed  Google Scholar 

  57. Ma, Y., Adjemian, S., Mattarollo, S. R., et al. (2013). Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity, 38, 729–741.

    Article  CAS  PubMed  Google Scholar 

  58. Garg, A. D., Martin, S., Golab, J., et al. (2014). Danger signalling during cancer cell death: origins, plasticity and regulation. Cell Death and Differentiation, 21, 26–38.

    Article  CAS  PubMed  Google Scholar 

  59. Ayna, G., Krysko, D. V., Kaczmarek, A., et al. (2012). ATP release from dying autophagic cells and their phagocytosis are crucial for inflammasome activation in macrophages. PloS One, 7, e40069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zitvogel, L., Kepp, O., Galluzzi, L., et al. (2012). Inflammasomes in carcinogenesis and anticancer immune responses. Nature Immunology, 13, 343–351.

    Article  CAS  PubMed  Google Scholar 

  61. Ghiringhelli, F., Apetoh, L., Tesniere, A., et al. (2009). Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nature Medicine, 15, 1170–1178.

    Article  CAS  PubMed  Google Scholar 

  62. Michaud, M., Martins, I., Sukkurwala, A. Q., et al. (2011). Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science, 334, 1573–1577.

    Article  CAS  PubMed  Google Scholar 

  63. Ko, A., Kanehisa, A., Martins, I., et al. (2014). Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death and Differentiation, 21, 92–99.

    Article  CAS  PubMed  Google Scholar 

  64. Mandapathil, M., Hilldorfer, B., Szczepanski, M. J., et al. (2010). Generation and accumulation of immunosuppressive adenosine by human CD4 + CD25highFOXP3 + regulatory T cells. The Journal of Biological Chemistry, 285, 7176–7186.

    Article  CAS  PubMed  Google Scholar 

  65. Apetoh, L., Ghiringhelli, F., Tesniere, A., et al. (2007). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Medicine, 13, 1050–1059.

    Article  CAS  PubMed  Google Scholar 

  66. Bell, C. W., Jiang, W., Reich, C. F., et al. (2006). The extracellular release of HMGB1 during apoptotic cell death. American Journal of Physiology Cell Physiology, 291, C1318-1325.

    Article  Google Scholar 

  67. Morva, A., Lemoine, S., Achour, A., et al. (2012). Maturation and function of human dendritic cells are regulated by B lymphocytes. Blood, 119(1), 106–114.

    Article  CAS  PubMed  Google Scholar 

  68. Lechmann, M., Berchtold, S., Hauber, J., & Steinkasserer, A. (2002). CD83 on dendritic cells: more than just a marker for maturation. TRENDS in Immunol, 23(6), 273–275.

    Article  CAS  Google Scholar 

  69. Kawamura, K., Iyonaga, K., Ichiyasu, H., et al. (2005). Differentiation, maturation, and survival of dendritic cells by osteopontin regulation. Clinical and Diagnostic Laboratory Immunology, 12, 206–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Casey, S. C., Tong, L., Li, Y., et al. (2016). MYC regulates the antitumor immune response through CD47 and PD-L1. Science, 352, 227–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Miyoshi, H., Kiyasu, J., Kato, T., et al. (2016). PD-L1 expression on neoplastic or stromal cell is respectively poor or good prognostic factor for adult T-cell leukemia/lymphoma. Blood, 128, 1374–1381.

    Article  CAS  PubMed  Google Scholar 

  72. Willingham, S. B., Volkmer, J. P., Gentles, A. J., et al. (2012). The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proceedings of the National Academy of Sciences of the United States of America, 109:6662–6667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fong, C. Y., Tam, K., Cheyyatraivendran, S., et al. (2014). Human Wharton’s jelly stem cells and its conditioned medium enhance healing of excisional and diabetic wounds. Journal of Cellular Biochemistry, 115, 290–302.

    Article  CAS  PubMed  Google Scholar 

  74. Paladini, L., Fabris, L., Bottai, G., et al. (2016). Targeting microRNAs as key modulators of tumor immune response. Journal of Experimental & Clinical Cancer Research, 35, 103.

    Article  Google Scholar 

  75. Mehta, A., & Baltimore, D. (2016). MicroRNAs as regulatory elements in immune system logic. Nature Reviews Immunology, 16, 279–294.

    Article  CAS  PubMed  Google Scholar 

  76. Mei, J., Bachoo, R., & Zhang, C., L. (2011). MicroRNA-146a inhibits glioma development by targeting Notch1. Molecular Cell Biology, 31, 3584–3592.

    Article  CAS  Google Scholar 

  77. Xu., B., Wang., N., Wang., X., et al. (2012). MiR-146a suppresses tumor growth and progression by targeting EGFR pathway and in a p-ERK-dependent manner in castration-resistant prostate cancer. The Prostate, 72, 1171–1178.

    Article  CAS  PubMed  Google Scholar 

  78. Chen, G., Umelo, I. A., Teugels, S.Lv., et al. (2013). miR-146a inhibits cell growth, cell migration and induces apoptosis in non-small cell lung cancer cells. PLoS One, 8(3), e60317.

  79. Yu, Q., Liu, S. L., Wang, H., et al. (2013). miR-126 Suppresses the proliferation of cervical cancer cells and alters cell sensitivity to the chemotherapeutic drug bleomycin. Asian Pacific Journal Cancer Prevention, 14:11, 6569–6572.

    Article  Google Scholar 

  80. Miko, E., Margitai, Z., Czimmerer, Z., et al. (2011). miR-126 inhibits proliferation of small cell lung cancer cells by targeting SLC7A5. FEBS Letters, 585(8), 1191–1196.

  81. Du, C., Lv, Z., Cao, L., et al. (2014). MiR-126-3p suppresses tumor metastasis and angiogenesis of hepatocellular carcinoma by targeting LRP6 and PIK3R2. Journal of Transational Medicine, 12, 259.

    Article  Google Scholar 

  82. Li, Z., Li, N., Wu, M., et al. (2013). Expression of miR-126 suppresses migration and invasion of colon cancer cells by targeting CXCR4. Molecular and Cell Biochemistry, 381(1–2), 233–243.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Singapore National University Health System (NUHS) Aspiration Fund (New Idea) (R-174-000-155-720) research grant.

Author information

Authors and Affiliations

Authors

Contributions

DHL: Conception and design, executed the experiments, collection and assembly of data, analysis and interpretation, manuscript writing. ABi: Sought written informed consent from patients, obtained IRB approval for study, collection of human umbilical cords. MC: Data analysis and interpretation, scientific input. CYF: Conception and design, analysis and interpretation, scientific input, helped to obtain financial support. ABo: Conception and design, analysis and interpretation, manuscript correction and final approval, obtained financial support, Principal Investigator of the grant.

Corresponding author

Correspondence to Ariff Bongso.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, D.H., Biswas, A., Choolani, M. et al. Induction of Immunogenic Cell Death in Lymphoma Cells by Wharton’s Jelly Mesenchymal Stem Cell Conditioned Medium. Stem Cell Rev and Rep 13, 801–816 (2017). https://doi.org/10.1007/s12015-017-9767-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9767-8

Keywords

Navigation