Skip to main content

Advertisement

Log in

Application of iPS Cells in Dental Bioengineering and Beyond

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The stem-cell-based tissue-engineering approaches are widely applied in establishing functional organs and tissues for regenerative medicine. Successful generation of induced pluripotent stem cells (iPS cells) and rapid progress of related technical platform provide great promise in the development of regenerative medicine, including organ regeneration. We have previously reported that iPS cells could be an appealing stem cells source contributing to tooth regeneration. In the present paper, we mainly review the application of iPS technology in dental bioengineering and discuss the challenges for iPS cells in the whole tooth regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chavez-Munoz, C., Nguyen, K. T., Xu, W., et al. (2013). Transdifferentiation of adipose-derived stem cells into keratinocyte-like cells: engineering a stratified epidermis. Plos One, 8(12), e80587.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Takebe, T., Sekine, K., Enomura, M., et al. (2013). Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 499(7459), 481–484.

    Article  PubMed  CAS  Google Scholar 

  3. Shiba, Y., Fernandes, S., Zhu, W. Z., et al. (2012). Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature, 489(7415), 322–325.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Kriks, S., Shim, J. W., Piao, J., et al. (2011). Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature, 480(7378), 547–551.

    PubMed  CAS  PubMed Central  Google Scholar 

  5. Daadi, M. M., Grueter, B. A., Malenka, R. C., Redmond, D. E., Jr., & Steinberg, G. K. (2012). Dopaminergic neurons from midbrain-specified human embryonic stem cell-derived neural stem cells engrafted in a monkey model of Parkinson’s disease. PloS One, 7(7), e41120.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Niapour, A., Karamali, F., Nemati, S., et al. (2012). Cotransplantation of human embryonic stem cell-derived neural progenitors and schwann cells in a rat spinal cord contusion injury model elicits a distinct neurogenesis and functional recovery. Cell Transplantation, 21(5), 827–843.

    Article  PubMed  Google Scholar 

  7. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  PubMed  CAS  Google Scholar 

  8. Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    Article  PubMed  CAS  Google Scholar 

  9. Yamanaka, S. (2012). Induced pluripotent stem cells: past, present, and future. Cell Stem Cell, 10(6), 678–684.

    Article  PubMed  CAS  Google Scholar 

  10. Maherali, N., Sridharan, R., Xie, W., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1(1), 55–70.

    Article  PubMed  CAS  Google Scholar 

  11. Zhao, X. Y., Li, W., Lv, Z., et al. (2009). iPS cells produce viable mice through tetraploid complementation. Nature, 461(7260), 86–90.

    Article  PubMed  CAS  Google Scholar 

  12. Spence, J. R., Mayhew, C. N., Rankin, S. A., et al. (2011). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 470(7332), 105–109.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hargus, G., Cooper, O., Deleidi, M., et al. (2010). Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proceedings of the National Academy of Sciences of the United States of America, 107(36), 15921–15926.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Soldner, F., Laganiere, J., Cheng, A. W., et al. (2011). Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell, 146(2), 318–331.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Sebastiano, V., Maeder, M. L., Angstman, J. F., et al. (2011). In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells, 29(11), 1717–1726.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Volponi, A. A., Pang, Y., & Sharpe, P. T. (2010). Stem cell-based biological tooth repair and regeneration. Trends in Cell Biology, 20(12), 715–722.

    Article  PubMed  CAS  Google Scholar 

  17. Huang, G. T., Gronthos, S., & Shi, S. (2009). Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. Journal of Dental Research, 88(9), 792–806.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13625–13630.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Miura, M., Gronthos, S., Zhao, M., et al. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 5807–5812.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Seo, B. M., Miura, M., Gronthos, S., et al. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364(9429), 149–155.

    Article  PubMed  CAS  Google Scholar 

  21. Huang, G. T., Sonoyama, W., Liu, Y., et al. (2008). The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. Journal of Endodontics, 34(6), 645–651.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Morsczeck, C., Gotz, W., Schierholz, J., et al. (2005). Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biology, 24(2), 155–165.

    Article  PubMed  CAS  Google Scholar 

  23. Yamada, Y., Nakamura, S., Ito, K., et al. (2010). A feasibility of useful cell-based therapy by bone regeneration with deciduous tooth stem cells, dental pulp stem cells, or bone-marrow-derived mesenchymal stem cells for clinical study using tissue engineering technology. Tissue Engineering. Part A, 16(6), 1891–1900.

    Article  PubMed  CAS  Google Scholar 

  24. Ning, F., Guo, Y., Tang, J., et al. (2010). Differentiation of mouse embryonic stem cells into dental epithelial-like cells induced by ameloblasts serum-free conditioned medium. Biochemical and Biophysical Research Communications, 394(2), 342–347.

    Article  PubMed  CAS  Google Scholar 

  25. Arakaki, M., Ishikawa, M., Nakamura, T., et al. (2012). Role of epithelial-stem cell interactions during dental cell differentiation. Journal of Biological Chemistry, 287(13), 10590–10601.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Li, L., Wang, Y., Lin, M., et al. (2013). Augmented BMPRIA-mediated BMP signaling in cranial neural crest lineage leads to cleft palate formation and delayed tooth differentiation. PloS One, 8(6), e66107.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Komada, Y., Yamane, T., Kadota, D., et al. (2012). Origins and properties of dental, thymic, and bone marrow mesenchymal cells and their stem cells. PloS One, 7(11), e46436.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Rothova, M., Peterkova, R., & Tucker, A. S. (2012). Fate map of the dental mesenchyme: dynamic development of the dental papilla and follicle. Developmental Biology, 366(2), 244–254.

    Article  PubMed  CAS  Google Scholar 

  29. Otsu, K., Kishigami, R., Oikawa-Sasaki, A., et al. (2012). Differentiation of induced pluripotent stem cells into dental mesenchymal cells. Stem Cells and Development, 21(7), 1156–1164.

    Article  PubMed  CAS  Google Scholar 

  30. Wen, Y., Wang, F., Zhang, W., et al. (2012). Application of induced pluripotent stem cells in generation of a tissue-engineered tooth-like structure. Tissue Engineering. Part A, 18(15–16), 1677–1685.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Cai, J., Cho, S. W., Kim, J. Y., et al. (2007). Patterning the size and number of tooth and its cusps. Developmental Biology, 304(2), 499–507.

    Article  PubMed  CAS  Google Scholar 

  32. Nakao, K., Morita, R., Saji, Y., et al. (2007). The development of a bioengineered organ germ method. Nature Methods, 4(3), 227–230.

    Article  PubMed  CAS  Google Scholar 

  33. Sterneckert, J., Hoing, S., & Scholer, H. R. (2012). Concise review: Oct4 and more: the reprogramming expressway. Stem Cells, 30(1), 15–21.

    Article  PubMed  CAS  Google Scholar 

  34. Jerabek, S., Merino, F., Scholer, H. R., & Cojocaru, V. (2014). OCT4: Dynamic DNA binding pioneers stem cell pluripotency. Biochimica et Biophysica Acta, 1839(3), 138–154.

    Article  PubMed  CAS  Google Scholar 

  35. Onichtchouk, D. (2012). Pou5f1/oct4 in pluripotency control: insights from zebrafish. Genesis, 50(2), 75–85.

    Article  PubMed  CAS  Google Scholar 

  36. Wang, X., & Dai, J. (2010). Concise review: isoforms of OCT4 contribute to the confusing diversity in stem cell biology. Stem Cells, 28(5), 885–893.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Cai, J., Zhang, Y., Liu, P., et al. (2013). Generation of tooth-like structures from integration-free human urine induced pluripotent stem cells. Cell Regeneration, 2, 6.

    Article  Google Scholar 

  38. Ravindran, S., Zhang, Y., Huang, C. C., & George, A. (2014). Odontogenic induction of dental stem cells by extracellular matrix-inspired three-dimensional scaffold. Tissue Engineering. Part A, 20(1–2), 92–102.

    Article  PubMed  CAS  Google Scholar 

  39. Lin, D., Huang, Y., He, F., et al. (2007). Expression survey of genes critical for tooth development in the human embryonic tooth germ. Developmental Dynamics, 236(5), 1307–1312.

    Article  PubMed  CAS  Google Scholar 

  40. Bei, M., & Maas, R. (1998). FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development. Development, 125(21), 4325–4333.

    PubMed  CAS  Google Scholar 

  41. Tucker, A. S., Yamada, G., Grigoriou, M., Pachnis, V., & Sharpe, P. T. (1999). Fgf-8 determines rostral-caudal polarity in the first branchial arch. Development, 126(1), 51–61.

    PubMed  CAS  Google Scholar 

  42. Yoshizaki, K., Yamamoto, S., Yamada, A., et al. (2008). Neurotrophic factor neurotrophin-4 regulates ameloblastin expression via full-length TrkB. Journal of Biological Chemistry, 283(6), 3385–3391.

    Article  PubMed  CAS  Google Scholar 

  43. Kiyoshima, T., Fujiwara, H., Nagata, K., et al. (2014). Induction of dental epithelial cell differentiation marker gene expression in non-odontogenic human keratinocytes by transfection with thymosin beta 4. Stem Cell Research, 12(1), 309–322.

    Article  PubMed  CAS  Google Scholar 

  44. Ikeda, E., Morita, R., Nakao, K., et al. (2009). Fully functional bioengineered tooth replacement as an organ replacement therapy. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13475–13480.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Kappeler, L., & Epelbaum, J. (2005). Biological aspects of longevity and ageing. Revue d’Épidémiologie et de Santé Publique, 53(3), 235–241.

    Article  PubMed  CAS  Google Scholar 

  46. Metallo, C. M., Ji, L., de Pablo, J. J., & Palecek, S. P. (2008). Retinoic acid and bone morphogenetic protein signaling synergize to efficiently direct epithelial differentiation of human embryonic stem cells. Stem Cells, 26(2), 372–380.

    Article  PubMed  CAS  Google Scholar 

  47. Menendez, L., Kulik, M. J., Page, A. T., et al. (2013). Directed differentiation of human pluripotent cells to neural crest stem cells. Nature Protocols, 8(1), 203–212.

    Article  PubMed  CAS  Google Scholar 

  48. Ibarretxe, G., Alvarez, A., Canavate, M. L., et al. (2012). Cell reprogramming, IPS limitations, and overcoming strategies in dental bioengineering. Stem Cells International, 2012, 365932.

    PubMed  PubMed Central  Google Scholar 

  49. Zhao, T., Zhang, Z. N., Rong, Z., & Xu, Y. (2011). Immunogenicity of induced pluripotent stem cells. Nature, 474(7350), 212–215.

    Article  PubMed  CAS  Google Scholar 

  50. Araki, R., Uda, M., Hoki, Y., et al. (2013). Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature, 494(7435), 100–104.

    Article  PubMed  CAS  Google Scholar 

  51. Guha, P., Morgan, J. W., Mostoslavsky, G., Rodrigues, N. P., & Boyd, A. S. (2013). Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell, 12(4), 407–412.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Dajiang Qin for discussion. This work was funded by the grants from Ministry of Science and Technology 973 Program (2011CB965204, 2010CB944800), the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA01020401, XDA01020202), 863 Program (2011AA020109), Ministry of Science and Technology International Technology Cooperation Program (2012DFH30050), Science and Technology Planning Project of Guangdong Province (2011A060901019) and Open Project of Key Laboratory of Regenerative Biology, Chinese Academy of Sciences (KLRB201217).

Conflict of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinglei Cai or Duanqing Pei.

Additional information

Yanmei Zhang and Shubin Chen are contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1471 kb)

ESM 2

(PDF 639 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Zhang, Y., Chen, S. et al. Application of iPS Cells in Dental Bioengineering and Beyond. Stem Cell Rev and Rep 10, 663–670 (2014). https://doi.org/10.1007/s12015-014-9531-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9531-2

Keywords

Navigation