Stem Cell Reviews and Reports

, Volume 10, Issue 5, pp 663–670 | Cite as

Application of iPS Cells in Dental Bioengineering and Beyond

  • Pengfei Liu
  • Yanmei Zhang
  • Shubin Chen
  • Jinglei CaiEmail author
  • Duanqing PeiEmail author


The stem-cell-based tissue-engineering approaches are widely applied in establishing functional organs and tissues for regenerative medicine. Successful generation of induced pluripotent stem cells (iPS cells) and rapid progress of related technical platform provide great promise in the development of regenerative medicine, including organ regeneration. We have previously reported that iPS cells could be an appealing stem cells source contributing to tooth regeneration. In the present paper, we mainly review the application of iPS technology in dental bioengineering and discuss the challenges for iPS cells in the whole tooth regeneration.


iPS cells Dental bioengineering Tooth regeneration 



We are grateful to Prof. Dajiang Qin for discussion. This work was funded by the grants from Ministry of Science and Technology 973 Program (2011CB965204, 2010CB944800), the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA01020401, XDA01020202), 863 Program (2011AA020109), Ministry of Science and Technology International Technology Cooperation Program (2012DFH30050), Science and Technology Planning Project of Guangdong Province (2011A060901019) and Open Project of Key Laboratory of Regenerative Biology, Chinese Academy of Sciences (KLRB201217).

Conflict of Interest

The authors declare no potential conflicts of interest.

Supplementary material

12015_2014_9531_MOESM1_ESM.pdf (1.4 mb)
ESM 1 (PDF 1471 kb)
12015_2014_9531_MOESM2_ESM.pdf (640 kb)
ESM 2 (PDF 639 kb)


  1. 1.
    Chavez-Munoz, C., Nguyen, K. T., Xu, W., et al. (2013). Transdifferentiation of adipose-derived stem cells into keratinocyte-like cells: engineering a stratified epidermis. Plos One, 8(12), e80587.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Takebe, T., Sekine, K., Enomura, M., et al. (2013). Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 499(7459), 481–484.PubMedCrossRefGoogle Scholar
  3. 3.
    Shiba, Y., Fernandes, S., Zhu, W. Z., et al. (2012). Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature, 489(7415), 322–325.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kriks, S., Shim, J. W., Piao, J., et al. (2011). Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature, 480(7378), 547–551.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Daadi, M. M., Grueter, B. A., Malenka, R. C., Redmond, D. E., Jr., & Steinberg, G. K. (2012). Dopaminergic neurons from midbrain-specified human embryonic stem cell-derived neural stem cells engrafted in a monkey model of Parkinson’s disease. PloS One, 7(7), e41120.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Niapour, A., Karamali, F., Nemati, S., et al. (2012). Cotransplantation of human embryonic stem cell-derived neural progenitors and schwann cells in a rat spinal cord contusion injury model elicits a distinct neurogenesis and functional recovery. Cell Transplantation, 21(5), 827–843.PubMedCrossRefGoogle Scholar
  7. 7.
    Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.PubMedCrossRefGoogle Scholar
  8. 8.
    Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.PubMedCrossRefGoogle Scholar
  9. 9.
    Yamanaka, S. (2012). Induced pluripotent stem cells: past, present, and future. Cell Stem Cell, 10(6), 678–684.PubMedCrossRefGoogle Scholar
  10. 10.
    Maherali, N., Sridharan, R., Xie, W., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1(1), 55–70.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhao, X. Y., Li, W., Lv, Z., et al. (2009). iPS cells produce viable mice through tetraploid complementation. Nature, 461(7260), 86–90.PubMedCrossRefGoogle Scholar
  12. 12.
    Spence, J. R., Mayhew, C. N., Rankin, S. A., et al. (2011). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 470(7332), 105–109.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Hargus, G., Cooper, O., Deleidi, M., et al. (2010). Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proceedings of the National Academy of Sciences of the United States of America, 107(36), 15921–15926.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Soldner, F., Laganiere, J., Cheng, A. W., et al. (2011). Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell, 146(2), 318–331.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Sebastiano, V., Maeder, M. L., Angstman, J. F., et al. (2011). In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells, 29(11), 1717–1726.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Volponi, A. A., Pang, Y., & Sharpe, P. T. (2010). Stem cell-based biological tooth repair and regeneration. Trends in Cell Biology, 20(12), 715–722.PubMedCrossRefGoogle Scholar
  17. 17.
    Huang, G. T., Gronthos, S., & Shi, S. (2009). Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. Journal of Dental Research, 88(9), 792–806.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13625–13630.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Miura, M., Gronthos, S., Zhao, M., et al. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 5807–5812.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Seo, B. M., Miura, M., Gronthos, S., et al. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 364(9429), 149–155.PubMedCrossRefGoogle Scholar
  21. 21.
    Huang, G. T., Sonoyama, W., Liu, Y., et al. (2008). The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. Journal of Endodontics, 34(6), 645–651.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Morsczeck, C., Gotz, W., Schierholz, J., et al. (2005). Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biology, 24(2), 155–165.PubMedCrossRefGoogle Scholar
  23. 23.
    Yamada, Y., Nakamura, S., Ito, K., et al. (2010). A feasibility of useful cell-based therapy by bone regeneration with deciduous tooth stem cells, dental pulp stem cells, or bone-marrow-derived mesenchymal stem cells for clinical study using tissue engineering technology. Tissue Engineering. Part A, 16(6), 1891–1900.PubMedCrossRefGoogle Scholar
  24. 24.
    Ning, F., Guo, Y., Tang, J., et al. (2010). Differentiation of mouse embryonic stem cells into dental epithelial-like cells induced by ameloblasts serum-free conditioned medium. Biochemical and Biophysical Research Communications, 394(2), 342–347.PubMedCrossRefGoogle Scholar
  25. 25.
    Arakaki, M., Ishikawa, M., Nakamura, T., et al. (2012). Role of epithelial-stem cell interactions during dental cell differentiation. Journal of Biological Chemistry, 287(13), 10590–10601.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Li, L., Wang, Y., Lin, M., et al. (2013). Augmented BMPRIA-mediated BMP signaling in cranial neural crest lineage leads to cleft palate formation and delayed tooth differentiation. PloS One, 8(6), e66107.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Komada, Y., Yamane, T., Kadota, D., et al. (2012). Origins and properties of dental, thymic, and bone marrow mesenchymal cells and their stem cells. PloS One, 7(11), e46436.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Rothova, M., Peterkova, R., & Tucker, A. S. (2012). Fate map of the dental mesenchyme: dynamic development of the dental papilla and follicle. Developmental Biology, 366(2), 244–254.PubMedCrossRefGoogle Scholar
  29. 29.
    Otsu, K., Kishigami, R., Oikawa-Sasaki, A., et al. (2012). Differentiation of induced pluripotent stem cells into dental mesenchymal cells. Stem Cells and Development, 21(7), 1156–1164.PubMedCrossRefGoogle Scholar
  30. 30.
    Wen, Y., Wang, F., Zhang, W., et al. (2012). Application of induced pluripotent stem cells in generation of a tissue-engineered tooth-like structure. Tissue Engineering. Part A, 18(15–16), 1677–1685.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Cai, J., Cho, S. W., Kim, J. Y., et al. (2007). Patterning the size and number of tooth and its cusps. Developmental Biology, 304(2), 499–507.PubMedCrossRefGoogle Scholar
  32. 32.
    Nakao, K., Morita, R., Saji, Y., et al. (2007). The development of a bioengineered organ germ method. Nature Methods, 4(3), 227–230.PubMedCrossRefGoogle Scholar
  33. 33.
    Sterneckert, J., Hoing, S., & Scholer, H. R. (2012). Concise review: Oct4 and more: the reprogramming expressway. Stem Cells, 30(1), 15–21.PubMedCrossRefGoogle Scholar
  34. 34.
    Jerabek, S., Merino, F., Scholer, H. R., & Cojocaru, V. (2014). OCT4: Dynamic DNA binding pioneers stem cell pluripotency. Biochimica et Biophysica Acta, 1839(3), 138–154.PubMedCrossRefGoogle Scholar
  35. 35.
    Onichtchouk, D. (2012). Pou5f1/oct4 in pluripotency control: insights from zebrafish. Genesis, 50(2), 75–85.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang, X., & Dai, J. (2010). Concise review: isoforms of OCT4 contribute to the confusing diversity in stem cell biology. Stem Cells, 28(5), 885–893.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Cai, J., Zhang, Y., Liu, P., et al. (2013). Generation of tooth-like structures from integration-free human urine induced pluripotent stem cells. Cell Regeneration, 2, 6.CrossRefGoogle Scholar
  38. 38.
    Ravindran, S., Zhang, Y., Huang, C. C., & George, A. (2014). Odontogenic induction of dental stem cells by extracellular matrix-inspired three-dimensional scaffold. Tissue Engineering. Part A, 20(1–2), 92–102.PubMedCrossRefGoogle Scholar
  39. 39.
    Lin, D., Huang, Y., He, F., et al. (2007). Expression survey of genes critical for tooth development in the human embryonic tooth germ. Developmental Dynamics, 236(5), 1307–1312.PubMedCrossRefGoogle Scholar
  40. 40.
    Bei, M., & Maas, R. (1998). FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development. Development, 125(21), 4325–4333.PubMedGoogle Scholar
  41. 41.
    Tucker, A. S., Yamada, G., Grigoriou, M., Pachnis, V., & Sharpe, P. T. (1999). Fgf-8 determines rostral-caudal polarity in the first branchial arch. Development, 126(1), 51–61.PubMedGoogle Scholar
  42. 42.
    Yoshizaki, K., Yamamoto, S., Yamada, A., et al. (2008). Neurotrophic factor neurotrophin-4 regulates ameloblastin expression via full-length TrkB. Journal of Biological Chemistry, 283(6), 3385–3391.PubMedCrossRefGoogle Scholar
  43. 43.
    Kiyoshima, T., Fujiwara, H., Nagata, K., et al. (2014). Induction of dental epithelial cell differentiation marker gene expression in non-odontogenic human keratinocytes by transfection with thymosin beta 4. Stem Cell Research, 12(1), 309–322.PubMedCrossRefGoogle Scholar
  44. 44.
    Ikeda, E., Morita, R., Nakao, K., et al. (2009). Fully functional bioengineered tooth replacement as an organ replacement therapy. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13475–13480.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kappeler, L., & Epelbaum, J. (2005). Biological aspects of longevity and ageing. Revue d’Épidémiologie et de Santé Publique, 53(3), 235–241.PubMedCrossRefGoogle Scholar
  46. 46.
    Metallo, C. M., Ji, L., de Pablo, J. J., & Palecek, S. P. (2008). Retinoic acid and bone morphogenetic protein signaling synergize to efficiently direct epithelial differentiation of human embryonic stem cells. Stem Cells, 26(2), 372–380.PubMedCrossRefGoogle Scholar
  47. 47.
    Menendez, L., Kulik, M. J., Page, A. T., et al. (2013). Directed differentiation of human pluripotent cells to neural crest stem cells. Nature Protocols, 8(1), 203–212.PubMedCrossRefGoogle Scholar
  48. 48.
    Ibarretxe, G., Alvarez, A., Canavate, M. L., et al. (2012). Cell reprogramming, IPS limitations, and overcoming strategies in dental bioengineering. Stem Cells International, 2012, 365932.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Zhao, T., Zhang, Z. N., Rong, Z., & Xu, Y. (2011). Immunogenicity of induced pluripotent stem cells. Nature, 474(7350), 212–215.PubMedCrossRefGoogle Scholar
  50. 50.
    Araki, R., Uda, M., Hoki, Y., et al. (2013). Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature, 494(7435), 100–104.PubMedCrossRefGoogle Scholar
  51. 51.
    Guha, P., Morgan, J. W., Mostoslavsky, G., Rodrigues, N. P., & Boyd, A. S. (2013). Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell, 12(4), 407–412.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.CAS Key Laboratory of Regenerative Biology and Guangdong Provincial Key Laboratory of Stem Cell Biology and Regenerative MedicineSouth China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouPeople’s Republic of China
  2. 2.Department of Regeneration Medicine, School of Pharmaceutical ScienceJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations