Skip to main content

Dental Stem Cells in Regenerative Medicine: Clinical and Pre-clinical Attempts

  • Chapter
  • First Online:
Dental Stem Cells

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 846 Accesses

Abstract

Dental stem cells (DSCs) are derived from embryonic ectodermal tissues. Five types of DSCs have been isolated from adult and embryonic-like dental tissues. The principal aim of this book chapter is to shed light on and summarize the results obtained from clinical studies of DSCs. However, our search of scientific literature demonstrated that to date, the vast majority of in vivo applications have been performed on animal models, and very few clinical trials have been or are being attempted. Results revealed that DSCs are a suitable adult stem cell source, mostly employed for dental and bone tissue regeneration but their potential has not fully been exploited yet. The reasons for this delayed clinical translation are that a common protocol to isolate and characterize DSCs is largely lacking, and many researchers are still using animal derivatives for stem cell isolation and culture, causing some concerns related to pathogenic, toxic or immunogenic contaminants. In addition, traditional cell culture methods are still widely used, leading to reduced DSC selection reliability and repeatability, and thus their clinical trial usage. Moreover, since it is generally accepted that clinical trials are long, difficult and expensive processes compromising many hurdles that could discourage even the most committed researcher, it might be helpful to simplify and standardize the procedures to favor clinical trials. However, along with our efforts to translate stem cell therapy from the bench to the bed-side, we must ensure that these therapies are safe by performing lots of in vitro and in vivo works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mikkola ML (2007) Genetic basis of skin appendage development. Semin Cell Dev Biol 18:225–236

    Article  CAS  PubMed  Google Scholar 

  2. Pispa J, Thesleff I (2003) Mechanisms of ectodermal organogenesis. Dev Biol 262:195–205

    Article  CAS  PubMed  Google Scholar 

  3. Morsczeck C, Schmalz G, Reichert TE et al (2008) Somatic stem cells for regenerative dentistry. Clin Oral Invest 12:113–118

    Article  Google Scholar 

  4. Gronthos S, Mankani M, Brahim J et al (2000) Postnatal human dental pulp stem cells (DPSC) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tecles O, Laurent P, Zygouritsas S et al (2005) Activation of human dental pulp progenitor/stem cells in response to odontoblast injury. Arch Oral Biol 50:103–108

    Article  CAS  PubMed  Google Scholar 

  6. Kaukua N, Shahidi MK, Konstantinidou C et al (2014) Glial origin of mesenchymal stem cells in a tooth model system. Nature 513:551–554

    Article  CAS  PubMed  Google Scholar 

  7. Miura M, Gronthos S, Zhao M et al (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100:5807–5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kerkis I, Kerkis A, Dozortsev D et al (2006) Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 184:105–116

    Article  CAS  PubMed  Google Scholar 

  9. Ferro F, Spelat R, D’Aurizio F et al (2012) Dental pulp stem cells differentiation reveals new insights in Oct4A dynamics. PLoS One 7, e41774. doi:10.1371/journal.pone.0041774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang AH, Chen YK, Lin LM et al (2008) Isolation and characterization of dental pulp stem cells from a supernumerary tooth. J Oral Pathol Med 37:571–574

    Article  PubMed  Google Scholar 

  11. Honda MJ, Imaizumi M, Tsuchiya S et al (2010) Dental follicle stem cells and tissue engineering. J Oral Sci 52:541–552

    Article  PubMed  Google Scholar 

  12. Sonoyama W, Liu Y, Fang D et al (2006) Mesenchymal stem cell-mediated functional tooth regeneration in Swine. PLoS One 1:e79

    Google Scholar 

  13. Huang GT, Sonoyama W, Liu Y et al (2008) The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod 34:645–651

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sonoyama W, Liu Y, Yamaza T et al (2008) Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 34:166–171

    Article  PubMed  PubMed Central  Google Scholar 

  15. Seo BM, Miura M, Sonoyama W et al (2005) Recovery of stem cells from cryopreserved periodontal ligament. J Dent Res 84:907–912

    Article  PubMed  Google Scholar 

  16. Laino G, Carinci F, Graziano A et al (2006) In vitro bone production using stem cells derived from human dental pulp. J Craniofac Surg 17:511–515

    Article  PubMed  Google Scholar 

  17. Zhang W, Walboomers XF, Shi S et al (2006) Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng 12:2813–2823

    Article  CAS  PubMed  Google Scholar 

  18. Ferro F, Spelat R, Beltrami AP et al (2012) Media containing low human serum as clinical grade substitute for bovine serum. PLoS One 7(11), e48945. doi:10.1371/journal.pone.0048945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bojic S, Volarevic V, Ljujic B et al (2014) Dental stem cells-characteristics and potential. Histol Histopathol 29:699–706

    CAS  PubMed  Google Scholar 

  20. Huang GTJ, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. Dent Res 88:792–806

    Article  CAS  Google Scholar 

  21. Morsczeck C, Vollner F, Saugspier M et al (2009) Comparison of human dental follicle cells (DFCs) and stem cells from human exfoliated deciduous teeth (SHED) after neural differentiation in vitro. Clin Oral Invest 14:433–440

    Article  Google Scholar 

  22. d'Aquino R, Graziano A, Sampaolesi M et al (2007) Human postnatal dental pulp cells codifferentiateinto osteoblasts and endotheliocytes: a pivotalsynergy leading to adult bone tissue formation. Cell Death Differ 14:1162–1171

    Article  PubMed  Google Scholar 

  23. Ishkitiev N, Yaegaki K, Calenic B et al (2010) Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro. J Endod 36:469–474

    Article  PubMed  Google Scholar 

  24. Ishkitiev N, Yaegaki K, Imai T et al (2012) High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium. J Endod 38:475–480

    Article  PubMed  Google Scholar 

  25. Yan X, Qin H, Qu C et al (2010) iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev 19:469–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Siqueira da Fonseca SA, Abdelmassih S, de Mello Cintra Lavagnolli T et al (2009) Human immature dental pulp stem cells’ contribution to developing mouse embryos: production of human/mouse preterm chimaeras. Cell Prolif 42:132–140

    Article  CAS  PubMed  Google Scholar 

  27. Tomic S, Djokic J, Vasilijic S et al (2011) Immunomodulatory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by toll-like receptor agonists. Stem Cells Dev 20:695–708

    Article  CAS  PubMed  Google Scholar 

  28. Wada N, Menicanin D, Shi S et al (2009) Imunnunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol 219:667–676

    Article  CAS  PubMed  Google Scholar 

  29. Yamaza T, Kentaro A, Chen C et al (2010) Immunomodulatory properties of stem cells from human exfoliated deciduous teeth. Stem Cell Res Ther 1:5

    Article  PubMed  PubMed Central  Google Scholar 

  30. Prescott RS, Alsanea R, Fayad MI et al (2008) In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice. J Endod 34:421–426

    Article  PubMed  PubMed Central  Google Scholar 

  31. Huang GT, Yamaza T, Shea LD et al (2010) Stem/progeni tor cel l-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A 16:605–615

    Article  CAS  PubMed  Google Scholar 

  32. Iohara K, Nakashima M, Ito M et al (2004) Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res 83:590–595

    Article  CAS  PubMed  Google Scholar 

  33. Iohara K, Zheng L, Wake H et al (2008) A novel stem cell source for vasculogenesis in ischemia: subfraction of side population cells from dental pulp. Stem Cells 26:2408–2418

    Article  PubMed  Google Scholar 

  34. Graziano A, d’Aquino R, Laino G et al (2008) CD34+ stem cells produce bone nodules in vivo. Cell Prolif 41:1–11

    Article  CAS  PubMed  Google Scholar 

  35. de Mendonça CA, Bueno DF, Martins MT et al (2008) Reconstruction of large cranial defects in nonimmunosuppressed experimental design with human dental pulp stem cells. J Craniofac Surg 19:204–210

    Google Scholar 

  36. d’Aquino R, De Rosa A, Lanza V et al (2009) Human mandible bone defect repair by the grafting of dental pulp stem / progenitor cells and collagen sponge. Eur Cell Mater 12:75–83

    Google Scholar 

  37. Giuliani A, Manescu A, Langer M et al (2013) Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cells Transl Med 2:316–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. NIH (2015) ClinicalTrials. https://clinicaltrials.gov/ct2/show/NCT01932164?term=dental+stem+cells&rank=1. Accessed 4 Apr 2015

  39. NIH (2015) ClinicalTrials. https://clinicaltrials.gov/ct2/show/NCT01814436?term=dental+stem+cells&rank=3. Accessed 4 Apr 2015

  40. Gandia C, Arminan A, Garcia-Verdugo JM et al (2008) Human dental pulp stem cells improve left ventricular function, induce angiogenesis and reduce infarct size in rats with acute myocardial infarction. Stem Cells 26:638–645

    Article  PubMed  Google Scholar 

  41. Iohara K, Zheng L, Ito M et al (2009) Regeneration of dental pulp after pulpotomy by transplantation of CD31(-)/CD146(-) side population cells from a canine tooth. Regen Med 4:377–385

    Article  CAS  PubMed  Google Scholar 

  42. Kerkis I, Ambrosio CE, Kerkis A et al (2008) Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: Local or systemic? J Transl Med 6:35. doi:10.1186/1479-5876-6-35

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gomes JA, Geraldes Monterio B, Melo GB et al (2010) Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci 1:1408–1414

    Article  Google Scholar 

  44. Mead B, Logan A, Berry M et al (2013) Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci 54:7544–7556

    Article  CAS  PubMed  Google Scholar 

  45. Sakai K, Yamamoto A, Matsubara K et al (2012) Human dental pulp-derived stem cells promote locomotor recovery after complete transaction of the rat spinal cord by multiple neuro regenerative mechanism. J Clin Invest 122:80–90

    CAS  PubMed  Google Scholar 

  46. de Almeida FM, Marques SA, Bdos RS et al (2011) Human dental pulp cells: a new source of cell therapy in a mouse model of compressive spinal cord injury. J Neurotrauma 28:1939–1949

    Article  PubMed  Google Scholar 

  47. Király M, Kádár K, Horváthy DB et al (2011) Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo. Neurochem Int 59:371–381

    Article  PubMed  Google Scholar 

  48. Chadipiralla K, Yochim JM, Bahuleyan B et al (2010) Osteogenic differentiation of stem cells derived from human periodontal ligaments and pulp of human exfoliated deciduous teeth. Cell Tissue Res 340:323–333

    Article  PubMed  Google Scholar 

  49. Menicanin D, Mrozik KM, Wada N et al (2014) Periodontal-ligament-derived stem cells exhibit the capacity for long-term survival, self-renewal, and regeneration of multiple tissue types in vivo. Stem Cells Dev 23:1001–1011

    Article  CAS  PubMed  Google Scholar 

  50. NIH (2015) ClinicalTrials. https://clinicaltrials.gov/ct2/show/record/NCT01357785. Accessed 6 Apr 2015

  51. Stanko P, Kaiserova K, Altanerova V et al (2014) Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 158:373–377. doi:10.5507/bp.2013.078

    PubMed  Google Scholar 

  52. Karaoz E, Demircan PC, Saglam O et al (2011) Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochem Cell Biol 136:455–473

    Article  PubMed  Google Scholar 

  53. Mead B, Logan A, Berry M et al (2014) Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One 9:e109305. doi:10.1371/journal.pone.0109305

    Google Scholar 

  54. Iohara K, Murakami M, Takeuchi N et al (2013) A novel combinatorial therapy with pulp stem cells and granulocyte colony-stimulating factor for total pulp regeneration. Stem Cells Transl Med 2:521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rosa V, Zhang Z, Grande RH et al (2013) Dental pulp tissue engineering in full-length human root canals. J Dent Res 92:970–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li MD, Atkins H, Bubela T (2014) The global landscape of stem cell clinical trials. Regen Med 9:27–39. doi:10.2217/rme.13.80

    Article  CAS  PubMed  Google Scholar 

  57. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  PubMed  Google Scholar 

  58. Regulation (EC) N. 1394/2007 of the European Parliament and of the Council of 13 November 2007 on advanced therapy medicinal products and amending Directive 2001/83/EC and Regulation (EC) N. 726/2004

    Google Scholar 

  59. European Commission. Detailed guidance on the request to the competent authorities for authorisation of a clinical trial on a medicinal product for human use, the notification of substantial amendments and the declaration of the end of the trial (CT-1). Official Journal of the European Union 2010/C 82/01

    Google Scholar 

  60. Imperial College London (2015) http://www3.imperial.ac.uk/clinicalresearchgovernanceoffice/researchgovernance/goodclinicalpractice. Accessed 4 Apr 2015

  61. EudraLex (2010). Volume 4: Good manufacturing practice (GMP) Guidelines for medicinal products for human and veterinary use, laid down in Commission Directives 91/356/EEC, as amended by Directive 2003/94/EC, and 91/412/EEC. Brussels, SANCO/C8/AM/sl/ares(2010)1064597. Accessed 4 Apr 2015

    Google Scholar 

  62. Stevens W (2003) Good Clinical Laboratory Practice (GCLP): The need for a hybrid of Good Laboratory Practice and Good Clinical Practice guidelines/standards for medical testing laboratories conducting clinical trials in developing countries. Quality Assurance 10:83–89

    CAS  PubMed  Google Scholar 

  63. Torre ML, Lucarelli E, Guidi S et al (2014) Ex vivo expanded mesenchymal stromal cell minimal quality requirements for clinical application. Stem Cells Dev 24(6):677–685

    Article  Google Scholar 

  64. Ulloa-Montoya F, Verfaillie CM, Hu WS (2005) Culture systems for pluripotent stem cells. J Biosci Bioeng 100:12–27

    Article  CAS  PubMed  Google Scholar 

  65. Eloit M (1999) Risks of virus transmission associated with animal sera or substitutes and methods of control. Dev Biol Stand 99:9–16

    CAS  PubMed  Google Scholar 

  66. Shah G (1999) Why do we still use serum in the production of biopharmaceuticals? Dev Biol Stand 99:17–22

    CAS  PubMed  Google Scholar 

  67. Van der Valka J, Mellorb D, Brandsc R (2004) The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture. Toxic in Vitro 18:1–12

    Article  Google Scholar 

  68. Wessman SJ, Levings RL (1999) Benefits and risks due to animal serum used in cell culture production. Dev Biol Stand 99:3–8

    CAS  PubMed  Google Scholar 

  69. Asher DM (1999) Bovine sera used in the manufacture of biologicals: current concerns and policies of the US. Food and drug administration regarding the transmissible spongiform encephalopathies. Dev Biol Stand 99:41–44

    CAS  PubMed  Google Scholar 

  70. Tarle SA, Shi S, Kaigler D (2011) Development of a serum-free system to expand dental-derived stem cells: PDLSCs and SHEDs. J Cell Physiol 226:66–73

    Article  CAS  PubMed  Google Scholar 

  71. Lee JY, Nam H, Park YJ et al (2011) The effects of platelet-rich plasma derived from human umbilical cord blood on the osteogenic differentiation of human dental stem cells. In Vitro Cell Dev Biol Anim 47:157–164

    Article  PubMed  Google Scholar 

  72. Berz D, McCormack EM, Winer ES et al (2007) Cryopreservation of hematopoietic stem cells. Am J Hematol 82:463–472

    Article  PubMed  PubMed Central  Google Scholar 

  73. Adler S, Pellizer C, Paparella M et al (2006) The effects of solvents on embryonic stem cell differentiation. Toxicol In Vitro 20:265–271

    Article  CAS  PubMed  Google Scholar 

  74. Iwatani M, Ikegami K, Kremenska Y et al (2006) Dimethyl sulphoxide has an impact on epigenetic profile in mouse embryoid body. Stem Cells 24:2549–2556

    Article  CAS  PubMed  Google Scholar 

  75. Hunt CJ, Armitage SE, Pegg DE (2003) Cryopreservation of umbilical cord blood: 2. tolerance of CD34+ cells to multimolar dimethyl sulphoxide and the effect of cooling rate on the recovery after freezing and thawing. Cryobiology 46:76–87

    Article  CAS  PubMed  Google Scholar 

  76. Woods EJ, Liu J, Pollok K et al (2003) A theoretically-optimised method for cord blood stem cell cryopreservation. J Hematother Stem Cell Res 12:341–350

    Article  CAS  PubMed  Google Scholar 

  77. Thirumala S, Wu X, Gimble JM et al (2010) Evaluation of polyvinylpyrrolidone as a cryoprotectant for adipose tissue-derived adult stem cells. Tissue Eng Part C Methods 16:783–792

    Article  CAS  PubMed  Google Scholar 

  78. Thirumala S, Wu X, Gimble JM (2010) Evaluation of methylcellulose and dimethyl sulphoxide as cryoprotectants in a serum-free freezing media for the cryopreservation of adipose derived adult stem cells. Stem Cells Dev 19:513–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gioventù S, Andriolo G, Bonino F et al (2012) A novel method for banking dental pulp stem cells. Transfus Apher Sci 47:199–206. doi:10.1016/j.transci.2012.06.005

    Article  PubMed  Google Scholar 

  80. Soncin S, Lo Cicero V, Astori G et al (2009) A practical approach for the validation of sterility, endotoxin and potency testing of bone marrow mononucleated cells used in cardiac regeneration in compliance with good manufacturing practice. J Transl Med 7:78

    Article  PubMed  PubMed Central  Google Scholar 

  81. Joannides A, Fiore-Heriche C, Westmore K et al (2006) Automated mechanical passaging: a novel and efficient method for human embryonic stem cell expansion. Stem Cells 24:230–235

    Article  PubMed  Google Scholar 

  82. Kami D, Watakabe K, Yamazaki-Inoue M et al (2013) Large-scale cell production of stem cells for clinical application using the automated cell processing machine. BMC Biotechnol 13:102. doi:10.1186/1472-6750-13-102

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kino-Oka M, Ogawa N, Umegaki R et al (2005) Bioreactor design for successive culture of anchorage-dependent cells operated in an automated manner. Tissue Eng 11:535–545

    Article  CAS  PubMed  Google Scholar 

  84. Koike H, Kubota K, Sekine K et al (2012) Establishment of automated culture system for murine induced pluripotent stem cells. BMC Biotechnol 12:81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Terstegge S, Laufenberg I, Pochert J et al (2007) Automated maintenance of embryonic stem cell cultures. Biotechnol Bioeng 96:195–201

    Article  CAS  PubMed  Google Scholar 

  86. Thomas RJ, Chandra A, Liu Y et al (2007) Manufacture of a human mesenchymal stem cell population using an automated cell culture platform. Cytotechnology 55:31–39

    Article  PubMed  PubMed Central  Google Scholar 

  87. Thomas RJ, Anderson D, Chandra A et al (2009) Automated, scalable culture of human embryonic stem cells in feeder-free conditions. Biotechnol Bioeng 102:1636–1644

    Article  CAS  PubMed  Google Scholar 

  88. La Noce M, Paino F, Spina A et al (2014) Dental pulp stem cells: state of the art and suggestions for a true translation of research into therapy. J Dent 42:761–768

    Article  PubMed  Google Scholar 

  89. Heslop JA, Hammond TG, Santeramo I et al (2015) Concise review: workshop review: understanding and assessing the risks of stem cell-based therapies. Stem Cells Transl Med 4:389–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Martin-Padura I, Gregato G, Marighetti P et al (2012) The white adipose tissue used in lipotransfer procedures is a rich reservoir of CD34+ progenitors able to promote cancer progression. Cancer Res 72:325–334. doi:10.1158/0008-5472.CAN-11-1739

    Article  CAS  PubMed  Google Scholar 

  91. Jonsson TB, Larzon T, Arfvidsson B et al (2012) Adverse events during treatment of critical limb ischemia with autologous peripheral blood mononuclear cell implant. Int Angiol 31:77–84

    CAS  PubMed  Google Scholar 

  92. Alderazi YJ, Coons SW, Chapman K (2012) Catastrophic demyelinating encephalomyelitis after intrathecal and intravenous stem cell transplantation in a patient with multiple sclerosis. J Child Neurol 27:632–635. doi:10.1177/0883073811422831

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thanks Prof. Anthony Sloan for his kindly assistance in manuscript writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferro Federico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Federico, F., Spelat, R. (2016). Dental Stem Cells in Regenerative Medicine: Clinical and Pre-clinical Attempts. In: Åžahin, F., DoÄŸan, A., Demirci, S. (eds) Dental Stem Cells. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-28947-2_13

Download citation

Publish with us

Policies and ethics