Skip to main content

Dental Stem Cells vs. Other Mesenchymal Stem Cells: Their Pluripotency and Role in Regenerative Medicine

  • Chapter
  • First Online:
Dental Stem Cells

Abstract

The field of regenerative medicine has been growing rapidly by identification of various mesenchymal stem cell (MSC) sources and development of cell-based technologies. To increase success rate in MSC therapy, determining the optimum cell source having satisfied differentiation potential for a particular restoration approach is the most crucial step. Although each MSC type has a specific capacity for regenerative cell therapies under certain conditions, dental stem cells (DSCs) are claimed to be superior to many others due to having easy isolation procedure, plasticity and multipotency. DSCs, with their neural crest origin, are a valuable option for regenerative medicine as they express remarkable levels of pluripotency markers, have the ability to differentiate into several cell lineages and lack of ethical considerations associated with embryonic stem cells. Although their adipogenic and chondrogenic transformation ability relatively remain weak compared to other widely studied MSCs, they display superior odontogenic, osteogenic and neurogenic differentiation potentials. Taking numerous advantageous of DSCs into consideration, additional attempts such as external growth factor application and gene modifications might cover imperfections of DSCs for specific tissue regeneration applications. Although various reports have compared DSCs with other famous MSCs, there is not any systemic study to elucidate advantages and limitations of DSCs in tissue regeneration applications. Before realizing use of DSCs in clinics, additional works are highly warranted to elucidate full-potential, and molecular mechanisms regulating stem cell maintenance and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Estrela C, Alencar AHG, Kitten GT, Vencio EF, Gava E (2011) Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration. Braz Dent J 22(2):91–98

    PubMed  Google Scholar 

  2. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625–13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100(10):5807–5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Seo B-M, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. The Lancet 364(9429):149–155

    Article  CAS  Google Scholar 

  5. Morsczeck C, Götz W, Schierholz J, Zeilhofer F, Kühn U, Möhl C, Sippel C, Hoffmann K (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24(2):155–165

    Article  CAS  PubMed  Google Scholar 

  6. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo B-M, Zhang C, Liu H, Gronthos S, Wang C-Y, Shi S (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 1(1):e79

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yalvac M, Ramazanoglu M, Rizvanov A, Sahin F, Bayrak O, Salli U, Palotas A, Kose G (2010) Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: implications in neo-vascularization, osteo-, adipo-and neurogenesis. Pharmacogenomics J 10(2):105–113

    Article  CAS  PubMed  Google Scholar 

  8. Huang G-J, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481(7381):295–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dreisch H (1891) Entwicklungsmechanische Studien I. Der Wert der ersten beiden Furchungszellen in der Echinodermenentwickelung. Experimentelle Erzeugung von Teil und Doppelbildungen. Z Wiss Zool 53:160–183

    Google Scholar 

  11. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    Article  CAS  PubMed  Google Scholar 

  12. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  14. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49

    Article  CAS  PubMed  Google Scholar 

  15. Verfaillie CM (2002) Adult stem cells: assessing the case for pluripotency. Trends Cell Biol 12(11):502–508

    Article  CAS  PubMed  Google Scholar 

  16. Riekstina U, Cakstina I, Parfejevs V, Hoogduijn M, Jankovskis G, Muiznieks I, Muceniece R, Ancans J (2009) Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev 5(4):378–386

    Article  CAS  PubMed  Google Scholar 

  17. Nekanti U, Rao VB, Bahirvani AG, Jan M, Totey S, Ta M (2010) Long-term expansion and pluripotent marker array analysis of Wharton’s jelly-derived mesenchymal stem cells. Stem Cells Dev 19(1):117–130

    Article  CAS  PubMed  Google Scholar 

  18. Kögler G, Sensken S, Wernet P (2006) Comparative generation and characterization of pluripotent unrestricted somatic stem cells with mesenchymal stem cells from human cord blood. Exp Hematol 34(11):1589–1595

    Article  PubMed  Google Scholar 

  19. Salingcarnboriboon R, Yoshitake H, Tsuji K, Obinata M, Amagasa T, Nifuji A, Noda M (2003) Establishment of tendon-derived cell lines exhibiting pluripotent mesenchymal stem cell-like property. Exp Cell Res 287(2):289–300

    Article  CAS  PubMed  Google Scholar 

  20. Kuznetsov SA, Mankani MH, Robey PG (2000) Effect of serum on human bone marrow stromal cells: ex vivo expansion and in vivo bone formation. Transplantation 70(12):1780–1787

    Article  CAS  PubMed  Google Scholar 

  21. Hirata TM, Ishkitiev N, Yaegaki K, Calenic B, Ishikawa H, Nakahara T, Mitev V, Tanaka T, Haapasalo M (2010) Expression of multiple stem cell markers in dental pulp cells cultured in serum-free media. J Endod 36(7):1139–1144

    Article  PubMed  Google Scholar 

  22. Morito A, Kida Y, Suzuki K, Inoue K, Kuroda N, Gomi K, Arai T, Sato T (2009) Effects of basic fibroblast growth factor on the development of the stem cell properties of human dental pulp cells. Arch Histol Cytol 72(1):51–64

    Article  CAS  PubMed  Google Scholar 

  23. Kawanabe N, Murata S, Fukushima H, Ishihara Y, Yanagita T, Yanagita E, Ono M, Kurosaka H, Kamioka H, Itoh T (2012) Stage-specific embryonic antigen-4 identifies human dental pulp stem cells. Exp Cell Res 318(5):453–463

    Article  CAS  PubMed  Google Scholar 

  24. Ronay V, Belibasakis G, Schmidlin P, Bostanci N (2012) Infected periodontal granulation tissue contains cells expressing embryonic stem cell markers. A pilot study. Schweiz Monatsschr Zahnmed 123(1):12–16

    Google Scholar 

  25. Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi S, Pereira LV, Caplan AI, Cerruti HF (2006) Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 184(3–4):105–116

    Article  CAS  PubMed  Google Scholar 

  26. Ferro F, Spelat R, D'Aurizio F, Puppato E, Pandolfi M, Beltrami AP, Cesselli D, Falini G, Beltrami CA, Curcio F (2012) Dental pulp stem cells differentiation reveals new insights in Oct4A dynamics. PLoS One 7(7):e41774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ikeda E, Yagi K, Kojima M, Yagyuu T, Ohshima A, Sobajima S, Tadokoro M, Katsube Y, Isoda K, Kondoh M (2008) Multipotent cells from the human third molar: feasibility of cell‐based therapy for liver disease. Differentiation 76(5):495–505

    Article  CAS  PubMed  Google Scholar 

  28. Koyama N, Okubo Y, Nakao K, Bessho K (2009) Evaluation of pluripotency in human dental pulp cells. J Oral Maxillofac Surg 67(3):501–506

    Article  PubMed  Google Scholar 

  29. Liu L, Wu L, Wei X, Ling J (2014) Induced overexpression of Oct4A in human dental pulp cells enhances pluripotency and multilineage differentiation capability. Stem Cells Dev 24(8):962–972

    Article  Google Scholar 

  30. Atari M, Barajas M, Hernández-Alfaro F, Gil C, Fabregat M, Ferres Padro E, Giner L, Casals N (2011) Isolation of pluripotent stem cells from human third molar dental pulp. Histol Histopathol 26(7):1057–1070

    CAS  PubMed  Google Scholar 

  31. Atari M, Gil-Recio C, Fabregat M, García-Fernández D, Barajas M, Carrasco MA, Jung H-S, Alfaro FH, Casals N, Prosper F (2012) Dental pulp of the third molar: a new source of pluripotent-like stem cells. J Cell Sci 125(14):3343–3356

    Article  CAS  PubMed  Google Scholar 

  32. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  33. Cui X, Chen L, Xue T, Yu J, Liu J, Ji Y, Cheng L (2015) Human umbilical cord and dental pulp-derived mesenchymal stem cells: Biological characteristics and potential roles in vitro and in vivo. Mol Med Rep 11(5):3269–3278

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hilkens P, Gervois P, Fanton Y, Vanormelingen J, Martens W, Struys T, Politis C, Lambrichts I, Bronckaers A (2013) Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells. Cell Tissue Res 353(1):65–78

    Article  CAS  PubMed  Google Scholar 

  35. Karamzadeh R, Eslaminejad MB, Aflatoonian R (2012) Isolation, characterization and comparative differentiation of human dental pulp stem cells derived from permanent teeth by using two different methods. J Vis Exp 69:e4372

    Google Scholar 

  36. Davies O, Smith A, Cooper P, Shelton R, Scheven B (2014) The effects of cryopreservation on cells isolated from adipose, bone marrow and dental pulp tissues. Cryobiology 69(2):342–347

    Article  CAS  PubMed  Google Scholar 

  37. Shi S, Robey P, Gronthos S (2001) Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone 29(6):532–539

    Article  CAS  PubMed  Google Scholar 

  38. Yamada Y, Fujimoto A, Ito A, Yoshimi R, Ueda M (2006) Cluster analysis and gene expression profiles: a cDNA microarray system-based comparison between human dental pulp stem cells (hDPSCs) and human mesenchymal stem cells (hMSCs) for tissue engineering cell therapy. Biomaterials 27(20):3766–3781

    Article  CAS  PubMed  Google Scholar 

  39. Ramamoorthi M, Bakkar M, Jordan J, Tran SD (2015) Osteogenic potential of dental mesenchymal stem cells in preclinical studies: a systematic review using modified ARRIVE and CONSORT guidelines. Stem Cells Int 2015:1–28

    Google Scholar 

  40. Yu J, Wang Y, Deng Z, Tang L, Li Y, Shi J, Jin Y (2007) Odontogenic capability: bone marrow stromal stem cells versus dental pulp stem cells. Biol Cell 99(8):465–474

    Article  CAS  PubMed  Google Scholar 

  41. Davies O, Cooper P, Shelton R, Smith A, Scheven B (2014) A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp. J Bone Miner Metab. doi:10.1007/s00774-014-0601-y

    Google Scholar 

  42. Lee SH, Ryu J-S, Lee J-W, Kwak DH, Ko K, Choo Y-K (2010) Comparison of ganglioside expression between human adipose-and dental pulp-derived stem cell differentiation into osteoblasts. Arch Pharm Res 33(4):585–591

    Article  CAS  PubMed  Google Scholar 

  43. Hung C-N, Mar K, Chang H-C, Chiang Y-L, Hu H-Y, Lai C-C, Chu R-M, Ma CM (2011) A comparison between adipose tissue and dental pulp as sources of MSCs for tooth regeneration. Biomaterials 32(29):6995–7005

    Article  CAS  PubMed  Google Scholar 

  44. Yu B-H, Zhou Q, Wang Z-L (2014) Periodontal ligament versus bone marrow mesenchymal stem cells in combination with Bio-Oss scaffolds for ectopic and in situ bone formation: a comparative study in the rat. J Biomater Appl 29(2):243–253

    Article  CAS  PubMed  Google Scholar 

  45. Park S-Y, Park J-C, Kim M-S, Lee S-E, Kim K-J, Jung B-J, Park W, Jeon D-W, Cho K-S, Kim C-S (2014) Differential effect of water-soluble chitin on collagen synthesis of human bone marrow stem cells and human periodontal ligament stem cells. Tissue Eng Part A. doi:10.1089/ten.tea.2014.0156

    Google Scholar 

  46. Liu W, Konermann A, Guo T, Jäger A, Zhang L, Jin Y (2014) Canonical Wnt signaling differently modulates osteogenic differentiation of mesenchymal stem cells derived from bone marrow and from periodontal ligament under inflammatory conditions. Biochim Biophys Acta 1840(3):1125–1134

    Article  CAS  PubMed  Google Scholar 

  47. Park B-W, Kang E-J, Byun J-H, Son M-G, Kim H-J, Hah Y-S, Kim T-H, Kumar BM, Ock S-A, Rho G-J (2012) In vitro and in vivo osteogenesis of human mesenchymal stem cells derived from skin, bone marrow and dental follicle tissues. Differentiation 83(5):249–259

    Article  CAS  PubMed  Google Scholar 

  48. Morsczeck C, Schmalz G, Reichert TE, Völlner F, Saugspier M, Viale-Bouroncle S, Driemel O (2009) Gene expression profiles of dental follicle cells before and after osteogenic differentiation in vitro. Clin Oral Investig 13(4):383–391

    Article  PubMed  Google Scholar 

  49. Ponnaiyan D, Jegadeesan V (2014) Comparison of phenotype and differentiation marker gene expression profiles in human dental pulp and bone marrow mesenchymal stem cells. Eur J Dent 8(3):307–313

    Article  PubMed  PubMed Central  Google Scholar 

  50. Song DS, Park JC, Jung IH, Choi SH, Cho KS, Kim CK, Kim CS (2011) Enhanced adipogenic differentiation and reduced collagen synthesis induced by human periodontal ligament stem cells might underlie the negative effect of recombinant human bone morphogenetic protein‐2 on periodontal regeneration. J Periodontal Res 46(2):193–203

    Article  CAS  PubMed  Google Scholar 

  51. Lee Y-M, Shin S-Y, Jue S-S, Kwon I-K, Cho E-H, Cho E-S, Park S-H, Kim E-C (2013) The role of PIN1 on odontogenic and adipogenic differentiation in human dental pulp stem cells. Stem Cells Dev 23(6):618–630

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dong R, Yao R, Du J, Wang S, Fan Z (2013) Depletion of histone demethylase KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of stem cells from apical papilla. Exp Cell Res 319(18):2874–2882

    Article  CAS  PubMed  Google Scholar 

  53. Kim D, Kim J, Hyun H, Kim K, Roh S (2014) A nanoscale ridge/groove pattern arrayed surface enhances adipogenic differentiation of human supernumerary tooth-derived dental pulp stem cells in vitro. Arch Oral Biol 59(8):765–774

    Article  CAS  PubMed  Google Scholar 

  54. Alge DL, Zhou D, Adams LL, Wyss BK, Shadday MD, Woods EJ, Chu G, Goebel WS (2010) Donor‐matched comparison of dental pulp stem cells and bone marrow‐derived mesenchymal stem cells in a rat model. J Tissue Eng Regen Med 4(1):73–81

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C, Alviano F, Fossati V (2005) Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80(6):836–842

    Article  PubMed  Google Scholar 

  56. Yu S, Long J, Yu J, Du J, Ma P, Ma Y, Yang D, Fan Z (2013) Analysis of differentiation potentials and gene expression profiles of mesenchymal stem cells derived from periodontal ligament and Wharton’s jelly of the umbilical cord. Cells Tissues Organs 197(3):209–223

    Article  CAS  PubMed  Google Scholar 

  57. Nemeth CL, Janebodin K, Yuan AE, Dennis JE, Reyes M, Kim D-H (2014) Enhanced chondrogenic differentiation of dental pulp stem cells using nanopatterned PEG-GelMA-HA hydrogels. Tissue Eng Part A 20(21–22):2817–2829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Choi S, Cho T-J, Kwon S-K, Lee G, Cho J (2013) Chondrogenesis of periodontal ligament stem cells by transforming growth factor-β 3 and bone morphogenetic protein-6 in a normal healthy impacted third molar. Int J Oral Sci 5(1):7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Foudah D, Monfrini M, Donzelli E, Niada S, Brini AT, Orciani M, Tredici G, Miloso M (2014) Expression of neural markers by undifferentiated mesenchymal-like stem cells from different sources. J Immunol Res 2014(1–16)

    Google Scholar 

  60. Xiao L, Tsutsui T (2013) Human dental mesenchymal stem cells and neural regeneration. Hum Cell 26(3):91–96

    Article  CAS  PubMed  Google Scholar 

  61. Karaöz E, Demircan PC, Sağlam Ö, Aksoy A, Kaymaz F, Duruksu G (2011) Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochem Cell Biol 136(4):455–473

    Article  PubMed  Google Scholar 

  62. Aanismaa R, Hautala J, Vuorinen A, Miettinen S, Narkilahti S (2012) Human dental pulp stem cells differentiate into neural precursors but not into mature functional neurons. Stem Cell Discov 2(3):85–91

    Article  CAS  Google Scholar 

  63. Kiraly M, Porcsalmy B, Pataki A, Kadar K, Jelitai M, Molnar B, Hermann P, Gera I, Grimm W-D, Ganss B (2009) Simultaneous PKC and cAMP activation induces differentiation of human dental pulp stem cells into functionally active neurons. Neurochem Int 55(5):323–332

    Article  CAS  PubMed  Google Scholar 

  64. Song M, Jue SS, Cho YA, Kim EC (2015) Comparison of the effects of human dental pulp stem cells and human bone marrow‐derived mesenchymal stem cells on ischemic human astrocytes in vitro. J Neurosci Res 93(6):973–983

    Article  CAS  PubMed  Google Scholar 

  65. Kim J-J, Kim S-J, Kim Y-S, Kim S-Y, Park S-H, Kim E-C (2012) The role of SIRT1 on angiogenic and odontogenic potential in human dental pulp cells. J Endod 38(7):899–906

    Article  PubMed  Google Scholar 

  66. Amin HD, Olsen I, Knowles J, Dard M, Donos N (2014) A tyrosine-rich amelogenin peptide promotes neovasculogenesis in vitro and ex vivo. Acta Biomater 10(5):1930–1939

    Article  CAS  PubMed  Google Scholar 

  67. d'Aquino R, Graziano A, Sampaolesi M, Laino G, Pirozzi G, De Rosa A, Papaccio G (2007) Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ 14(6):1162–1171

    Article  PubMed  Google Scholar 

  68. Sakai V, Zhang Z, Dong Z, Neiva K, Machado M, Shi S, Santos C, Nör J (2010) SHED differentiate into functional odontoblasts and endothelium. J Dent Res 89(8):791–796

    Article  CAS  PubMed  Google Scholar 

  69. Marchionni C, Bonsi L, Alviano F, Lanzoni G, Di Tullio A, Costa R, Montanari M, Tazzari P, Ricci F, Pasquinelli G (2009) Angiogenic potential of human dental pulp stromal (stem) cells. Int J Immunopathol Pharmacol 22(3):699–706

    CAS  PubMed  Google Scholar 

  70. Saghiri MA, Asatourian A, Sorenson CM, Sheibani N (2015) Role of angiogenesis in endodontics: contributions of stem cells and proangiogenic and antiangiogenic factors to dental pulp regeneration. J Endod. doi:10.1016/j.joen.2014.12.019

    Google Scholar 

  71. Yeasmin S, Ceccarelli J, Vigen M, Carrion B, Putnam AJ, Tarle SA, Kaigler D (2013) Stem cells derived from tooth periodontal ligament enhance functional angiogenesis by endothelial cells. Tissue Eng Part A 20(7–8):1188–1196

    PubMed  PubMed Central  Google Scholar 

  72. Hilkens P, Fanton Y, Martens W, Gervois P, Struys T, Politis C, Lambrichts I, Bronckaers A (2014) Pro-angiogenic impact of dental stem cells in vitro and in vivo. Stem Cell Res 12(3):778–790

    Article  CAS  PubMed  Google Scholar 

  73. Ishizaka R, Hayashi Y, Iohara K, Sugiyama M, Murakami M, Yamamoto T, Fukuta O, Nakashima M (2013) Stimulation of angiogenesis, neurogenesis and regeneration by side population cells from dental pulp. Biomaterials 34(8):1888–1897

    Article  CAS  PubMed  Google Scholar 

  74. Janebodin K, Zeng Y, Buranaphatthana W, Ieronimakis N, Reyes M (2013) VEGFR2-dependent angiogenic capacity of pericyte-like dental pulp stem cells. J Dent Res 92(6):524–531

    Article  CAS  PubMed  Google Scholar 

  75. Doğan A, Demirci S, Şahin F (2015) In vitro differentiation of human tooth germ stem cells into endothelial‐and epithelial‐like cells. Cell Biol Int 39(1):94–103

    Article  PubMed  Google Scholar 

  76. Nam H, Lee G (2009) Identification of novel epithelial stem cell-like cells in human deciduous dental pulp. Biochem Biophys Res Commun 386(1):135–139

    Article  CAS  PubMed  Google Scholar 

  77. Stevens A, Zuliani T, Olejnik C, LeRoy H, Obriot H, Kerr-Conte J, Formstecher P, Bailliez Y, Polakowska RR (2008) Human dental pulp stem cells differentiate into neural crest-derived melanocytes and have label-retaining and sphere-forming abilities. Stem Cells Dev 17(6):1175–1184

    Article  PubMed  Google Scholar 

  78. Ishkitiev N, Yaegaki K, Kozhuharova A, Tanaka T, Okada M, Mitev V, Fukuda M, Imai T (2013) Pancreatic differentiation of human dental pulp CD117+ stem cells. Regen Med 8(5):597–612

    Article  CAS  PubMed  Google Scholar 

  79. Lee JS, An SY, Kwon IK, Heo JS (2014) Transdifferentiation of human periodontal ligament stem cells into pancreatic cell lineage. Cell Biochem Funct 32(7):605–611

    Article  CAS  PubMed  Google Scholar 

  80. Ishkitiev N, Yaegaki K, Imai T, Tanaka T, Fushimi N, Mitev V, Okada M, Tominaga N, Ono S, Ishikawa H (2014) Novel management of acute or secondary biliary liver conditions using hepatically differentiated human dental pulp cells. Tissue Eng Part A 31(3–4):586–593

    Google Scholar 

  81. Ishkitiev N, Calenic B, Aoyama I, Ii H, Yaegaki K, Imai T (2012) Hydrogen sulfide increases hepatic differentiation in tooth-pulp stem cells. J Breath Res 6(1):1142–1150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selami Demirci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Demirci, S., Doğan, A., Şahin, F. (2016). Dental Stem Cells vs. Other Mesenchymal Stem Cells: Their Pluripotency and Role in Regenerative Medicine. In: Şahin, F., Doğan, A., Demirci, S. (eds) Dental Stem Cells. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-28947-2_6

Download citation

Publish with us

Policies and ethics