Skip to main content
Log in

Knocking Down PIAS3 Reduces H2O2-induced Oxidative Stress Injury in HT22 Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Oxidative stress is involved in the pathological processes of many neurodegenerative diseases. Protein modification by small ubiquitin-like modifiers (SUMOs) has been implicated in oxidative stress injury. By conjugating SUMOs to their selective protein substrates, SUMO ligases play critical roles in regulating functions of proteins involved in oxidative stress injury. In this study, we screened siRNAs to knockdown the SUMO ligase PIAS3 to assess its role in H2O2-induced injury in HT22 cells. H2O2 stimulation increased total protein SUMOylation, facilitated intracellular reactive oxygen species (ROS) release, increased cleaved caspase-3 levels, promoted p38 and JNK activation (phosphorylation), upregulated apoptosis, and decreased cell viability. The siRNA against PIAS3 329-347 (siPIAS3-329) markedly downregulated the protein expression of PIAS3 and reversed these effects, whereas siNC (negative control) had no effect. Our findings demonstrate that PIAS3-mediated SUMOylation facilitates oxidative stress injury and p38/JNK-mediated cell apoptosis and that PIAS3 is a potential target to protect against oxidative stress injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SUMOs:

small ubiquitin-like modifiers

ROS:

reactive oxygen species

siPIAS3-329:

siRNA against PIAS3 329-347

siNC:

negative control siRNA

PIAS:

protein inhibitor of activated STAT

PBS:

phosphate-buffered saline

PI:

propidium iodide

SD:

standard deviation

References

  1. Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: a review. European Journal of Medicinal Chemistry, 97, 55–74.

    Article  CAS  PubMed  Google Scholar 

  2. Sies, H. (2015). Oxidative stress: a concept in redox biology and medicine. Redox Biology, 4, 180–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Singh, A., Kukreti, R., Saso, L., & Kukreti, S. (2019). Oxidative stress: a key modulator in neurodegenerative diseases. Molecules, 24, 1583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Teleanu, D. M., Niculescu, A. G., Lungu, I. I., Radu, C. I., Vladâcenco, O., Roza, E., Costăchescu, B., Grumezescu, A. M., & Teleanu, R. I. (2022). An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. International Journal of Molecular Sciences, 23, 5938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bai, R., Guo, J., Ye, X. Y., Xie, Y., & Xie, T. (2022). Oxidative stress: the core pathogenesis and mechanism of Alzheimer’s disease. Ageing Research Reviews, 77, 101619.

    Article  CAS  PubMed  Google Scholar 

  6. Kumar, A. & Ratan, RR. (2016). Oxidative stress and Huntingtons disease: the good, the bad, and the ugly. Journal Huntingtons Disease, 3, 217–237.

    Article  Google Scholar 

  7. Dionísio, P. A., Amaral, J. D., & Rodrigues, C. M. P. (2021). Oxidative stress and regulated cell death in Parkinson’s disease. Ageing Research Reviews, 67, 101263.

    Article  PubMed  Google Scholar 

  8. Bouayed, J., Rammal, H., & Soulimani, R. (2009). Oxidative stress and anxiety: relationship and cellular pathways. Oxidative Medicine and Cellular Longevity, 2, 63–67.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bhatt, S., Nagappa, A. N., & Patil, C. R. (2020). Role of oxidative stress in depression. Drug Discovery Today, 25, 1270–1276.

    Article  CAS  PubMed  Google Scholar 

  10. Chamorro, Á., Dirnagl, U., Urra, X., & Planas, A. M. (2016). Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurology, 15, 869–881.

    Article  CAS  PubMed  Google Scholar 

  11. Khatri, N., Thakur, M., Pareek, V., Kumar, S., Sharma, S., & Datusalia, A. K. (2018). Oxidative stress: major threat in traumatic brain injury. CNS Neurol Disord Drug Targets, 17, 689–695.

    Article  CAS  PubMed  Google Scholar 

  12. Henley, J. M., Carmichael, R. E., & Wilkinson, K. A. (2018). Extranuclear SUMOylation in neurons. Trends in Neurosciences, 41, 198–210.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, F. Y., Liu, Y. F., Yang, Y., Luo, Z. W., Xiang, J. W., Chen, Z. G., Qi, R. L., Yang, T. H., Xiao, Y., Qing, W. J., & Li, D. W. (2017). SUMOylation in neurological diseases. Current Molecular Medicine, 16, 893–899.

    Article  PubMed  Google Scholar 

  14. Sahin, U., de Thé, H., & Lallemand-Breitenbach, V. (2022). Sumoylation in physiology, pathology and therapy. Cells, 11, 814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yau, T. Y., Molina, O., & Courey, A. J. (2020). SUMOylation in development and neurodegeneration. Development, 147, dev175703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stankovic-Valentin, N., & Melchior, F. (2018). Control of SUMO and Ubiquitin by ROS: Signaling and disease implications. Molecular Aspects of Medicine, 63, 3–17.

    Article  CAS  PubMed  Google Scholar 

  17. Pandey, D., Chen, F., Patel, A., Wang, C. Y., Dimitropoulou, C., Patel, V. S., Rudic, R. D., Stepp, D. W., & Fulton, D. J. (2011). SUMO1 negatively regulates reactive oxygen species production from NADPH oxidases. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 1634–1642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chhunchha, B., Fatma, N., Kubo, E., & Singh, D. P. (2014). Aberrant sumoylation signaling evoked by reactive oxygen species impairs protective function of Prdx6 by destabilization and repression of its transcription. FEBS Journal, 281, 3357–3381.

    Article  CAS  PubMed  Google Scholar 

  19. Chhunchha, B., Kubo, E., Fatma, N., & Singh, D. P. (2017). Sumoylation-deficient Prdx6 gains protective function by amplifying enzymatic activity and stability and escapes oxidative stress-induced aberrant Sumoylation. Cell Death & Disease, 8, e2525.

    Article  CAS  Google Scholar 

  20. Kim, H. J., Yun, J., Lee, J., Hong, H., Jeong, J., Kim, E., Bae, Y. S., & Lee, K. J. (2011). SUMO1 attenuates stress-induced ROS generation by inhibiting NADPH oxidase 2. Biochemical and Biophysical Research Communications, 410, 555–562.

    Article  CAS  PubMed  Google Scholar 

  21. Creton, S., & Jentsch, S. (2010). SnapShot: the SUMO system. Cell, 143, e841.

    Article  Google Scholar 

  22. Wilkinson, K. A., Nakamura, Y., & Henley, J. M. (2010). Targets and consequences of protein SUMOylation in neurons. Brain Research Reviews, 64, 195–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Henley, J. M., Craig, T. J., & Wilkinson, K. A. (2014). Neuronal SUMOylation: mechanisms, physiology, and roles in neuronal dysfunction. Physiological Reviews, 94, 1249–1285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krumova, P., & Weishaupt, J. H. (2013). Sumoylation in neurodegenerative diseases. Cellular and Molecular Life Sciences, 70, 2123–2138.

    Article  CAS  PubMed  Google Scholar 

  25. Leitao, B. B., Jones, M. C., & Brosens, J. J. (2011). The SUMO E3-ligase PIAS1 couples reactive oxygen species-dependent JNK activation to oxidative cell death. FASEB Journal, 25, 3416–3425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martin, S., Nishimune, A., Mellor, J. R., & Henley, J. M. (2007). SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature, 447, 321–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghosh, H., Auguadri, L., Battaglia, S., Simone Thirouin, Z., Zemoura, K., Messner, S., Acuña, M. A., Wildner, H., Yévenes, G. E., Dieter, A., Kawasaki, H., Hottiger, O. M., Zeilhofer, H. U., Fritschy, J. M., & Tyagarajan, S. K. (2016). Several posttranslational modifications act in concert to regulate gephyrin scaffolding and GABAergic transmission. Nature Communications, 7, 13365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Du, C. P., Wang, M., Geng, C., Hu, B., Meng, L., Xu, Y., Cheng, B., Wang, N., Zhu, Q. J., & Hou, X. Y. (2020). Activity-induced SUMOylation of neuronal nitric oxide synthase is associated with plasticity of synaptic transmission and extracellular signal-regulated kinase 1/2 signaling. Antioxidants & Redox Signaling, 32, 18–34.

    Article  CAS  Google Scholar 

  29. Meng, L., Du, C. P., Lu, C. Y., Zhang, K., Li, L., Yan, J. Z., & Hou, X. Y. (2021). Neuronal activity-induced SUMOylation of Akt1 by PIAS3 is required for long-term potentiation of synaptic transmission. FASEB Journal, 35, e21769.

    Article  CAS  PubMed  Google Scholar 

  30. Thirouin, Z. S., Figueiredo, M., Hleihil, M., Gill, R., Bosshard, G., McKinney, R. A., & Tyagarajan, S. K. (2022). Trophic factor BDNF inhibits GABAergic signaling by facilitating dendritic enrichment of SUMO E3 ligase PIAS3 and altering gephyrin scaffold. Journal of Biological Chemistry, 298, 101840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jiang, Y., Hu, L., Wang, B., Zhang, B., Shao, M., Meng, L., Xu, Y., Chen, R., Li, M., & Du, C. (2024). Disrupting PIAS3-mediated SUMOylation of MLK3 ameliorates poststroke neuronal damage and deficits in cognitive and sensorimotor behaviors. Cellular and Molecular Life Sciences, 81, 119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang, Y., Wang, B. X., Xie, Y., Meng, L., Li, M., & Du, C. P. (2023). MLK3 localizes mainly to the cytoplasm and promotes oxidative stress injury via a positive feedback loop. Cell Biochemistry and Biophysics, 81, 469–479.

    Article  CAS  PubMed  Google Scholar 

  33. Kwak, A. W., Kim, W. K., Lee, S. O., Yoon, G., Cho, S. S., Kim, K. T., Lee, M. H., Choi, Y. H., Lee, J. Y., Park, J. W., & Shim, J. H. (2023). Licochalcone B induces ROS-dependent apoptosis in oxaliplatin-resistant colorectal cancer cells via p38/JNK MAPK Signaling. Antioxidants, 12, 656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95.

    Article  PubMed  Google Scholar 

  35. Bossis, G., & Melchior, F. (2006). Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Molecular Cell, 21, 349–357.

    Article  CAS  PubMed  Google Scholar 

  36. Stankovic-Valentin, N., Drzewicka, K., König, C., Schiebel, E., & Melchior, F. (2016). Redox regulation of SUMO enzymes is required for ATM activity and survival in oxidative stress. The EMBO Journal., 35, 1312–1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (32100769 and 82371401 to M.L. and 81100852 to C.-P.D.), the Natural Science Foundation of the Jiangsu Higher Education Institutions (20KJA310010 to C.-P.D.), and Xuzhou Medical University (D2020054 and JBGS202202 to M.L.).

Author information

Authors and Affiliations

Authors

Contributions

Baixue Wang performed biochemical research and analyzed data. Wenxin Qian and Kaiyue Chen assisted with cell culture and cell apoptotic detection. Meng Li and Caiping Du designed research, wrote the paper, and provided supervision and funding.

Corresponding authors

Correspondence to Meng Li or Caiping Du.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Qian, W., Chen, K. et al. Knocking Down PIAS3 Reduces H2O2-induced Oxidative Stress Injury in HT22 Cells. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01292-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01292-y

Keywords

Navigation