Skip to main content
Log in

TPPU protects tau from H2O2-induced hyperphosphorylation in HEK293/tau cells by regulating PI3K/AKT/GSK-3β pathway

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Abstract

Neurofibrillary pathology of abnormally hyperphosphorylated tau is a hallmark of Alzheimer’s disease (AD) and other tauopathies. Phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase-3 beta (GSK-3β) signaling pathway is pivotal for tau phosphorylation. Inhibition of soluble epoxide hydrolase (sEH) metabolism has been shown to effectively increase the accumulation of epoxyeicosatrienoic acids (EETs), which are cytochrome P450 metabolites of arachidonic acid and have been demonstrated to have neuroprotective effects. However, little is known about the role of sEH in tau phosphorylation. The present study investigated the role of a sEH inhibitor, 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl] urea (TPPU), on H2O2-induced tau phosphorylation and the underlying signaling pathway in human embryonic kidney 293 (HEK293)/Tau cells. We found that the cell viability was increased after TPPU treatment compared to control in oxidative stress. Western blotting and immunofluorescence results showed that the levels of phosphorylated tau at Thr231 and Ser396 sites were increased in H2O2-treated cells but dropped to normal levels after TPPU administration. H2O2 induced an obvious decreased phosphorylation of GSK-3β at Ser9, an inactive form of GSK-3β, while there were no changes of phosphorylation of GSK-3β at Tyr216. TPPU pretreatment maintained GSK-3β Ser 9 phosphorylation. Moreover, Western blotting results showed that TPPU upregulated the expression of p-Akt. The protective effects of TPPU were found to be inhibited by wortmannin (WT, a specific PI3K inhibitor). In conclusion, these results suggested that the protective effect of TPPU on H2O2-induced oxidative stress is associated with PI3K/Akt/GSK-3β pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iqbal K, Grundke-Iqbal I, Zaidi T, et al. Defective brain microtubule assembly in Alzheimer’s disease. Lancet, 1986,2(8504):421–426

    Article  CAS  PubMed  Google Scholar 

  2. Moreno H, Morfini G, Buitrago L, et al. Tau pathology-mediated presynaptic dysfunction. Neuroscience, 2016,325:30–38

    Article  CAS  PubMed  Google Scholar 

  3. Wang Y, Yang R, Gu J, et al. Cross talk between pi3k-akt-gsk-3beta and pp2a pathways determines tau hyperphosphorylation. Neurobiol Aging, 2015,36(1):188–200

    Article  PubMed  Google Scholar 

  4. Campa VM, Kypta RM. Issues associated with the use of phosphospecific antibodies to localise active and inactive pools of gsk-3 in cells. Biol Direct, 2011,6:4

    Article  PubMed  PubMed Central  Google Scholar 

  5. Luo HB, Xia YY, Shu XJ, et al. Sumoylation at k340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination. Proc Natl Acad Sci USA, 2014,111(46):16586–16591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang XL, Zeng J, Yang Y, et al. Helicobacter pylori filtrate induces alzheimer-like tau hyperphosphorylation by activating glycogen synthase kinase-3beta. J Alzheimers Dis, 2015,43(1):153–165

    PubMed  Google Scholar 

  7. Peng JH, Zhang CE, Wei W, et al. Dehydroevodiamine attenuates tau hyperphosphorylation and spatial memory deficit induced by activation of glycogen synthase kinase-3 in rats. Neuropharmacology, 2007,52(7):1521–1527

    Article  CAS  PubMed  Google Scholar 

  8. Wang JZ, Liu F. Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol, 2008,85(2):148–175

    Article  CAS  PubMed  Google Scholar 

  9. Fang X, Kaduce TL, Weintraub NL, et al. Pathways of epoxyeicosatrienoic acid metabolism in endothelial cells. Implications for the vascular effects of soluble epoxide hydrolase inhibition. J Biol Chem, 2001,276(18):14867–14874

    CAS  PubMed  Google Scholar 

  10. Yang B, Graham L, Dikalov S, et al. Overexpression of cytochrome p450 cyp2j2 protects against hypoxiareoxygenation injury in cultured bovine aortic endothelial cells. Mol Pharmacol, 2001,60(2):310–320

    CAS  PubMed  Google Scholar 

  11. Qu YY, Yuan MY, Liu Y, et al. The protective effect of epoxyeicosatrienoic acids on cerebral ischemia/ reperfusion injury is associated with pi3k/akt pathway and atp-sensitive potassium channels. Neurochem Res, 2015,40(1):1–14

    Article  CAS  PubMed  Google Scholar 

  12. Crowe A, James MJ, Lee VM, et al. Aminothienopyridazines and methylene blue affect tau fibrillization via cysteine oxidation. J Biol Chem, 2013,288(16):11024–11037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ghosh D, Le Vault KR, Barnett AJ, et al. A reversible early oxidized redox state that precedes macromolecular ros damage in aging nontransgenic and 3xtg-ad mouse neurons. J Neurosci, 2012,32(17):5821–5832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Di Domenico F, Perluigi M, Butterfield DA. Redox proteomics in human biofluids: Sample preparation, separation and immunochemical tagging for analysis of protein oxidation. Methods Mol Biol, 2016,1303:391–403

    Article  PubMed  Google Scholar 

  15. Swomley AM, Butterfield DA. Oxidative stress in alzheimer disease and mild cognitive impairment: Evidence from human data provided by redox proteomics. Arch Toxicol, 2015,89(10):1669–1680

    Article  CAS  PubMed  Google Scholar 

  16. Case N, Thomas J, Sen B, et al. Mechanical regulation of glycogen synthase kinase 3beta (gsk3beta) in mesenchymal stem cells is dependent on akt protein serine 473 phosphorylation via mtorc2 protein. J Biol Chem, 2011,286(45):39450–39456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spector AA, Norris AW. Action of epoxyeicosatrienoic acids on cellular function. Am J Physiol Cell Physiol, 2007,292(3):C996–C1012

    Article  CAS  PubMed  Google Scholar 

  18. Chen X, Chen X, Huang X, et al. Soluble epoxide hydrolase inhibition provides multi-target therapeutic effects in rats after spinal cord injury. Mol Neurobiol, 2016,53(3):1565–1578

    Article  CAS  PubMed  Google Scholar 

  19. Liu Y, Wan Y, Fang Y, et al. Epoxyeicosanoid signaling provides multi-target protective effects on neurovascular unit in rats after focal ischemia. J Mol Neurosci, 2016,58(2):254–265

    Article  CAS  PubMed  Google Scholar 

  20. Christmas P. Role of cytochrome p450s in inflammation. Adv Pharmacol, 2015,74:163–192

    Article  PubMed  Google Scholar 

  21. Shao J, Wang H, Yuan G, et al. Involvement of the arachidonic acid cytochrome p450 epoxygenase pathway in the proliferation and invasion of human multiple myeloma cells. Peer J, 2016,4:e1925

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu W, Wang T, He X, et al. Cyp2j2 overexpression increases eets and protects against hfd-induced atherosclerosis in apoe-/-mice. Cardiovasc Phamacol, 2016,76(6):491–502

    Article  Google Scholar 

  23. Cronin A, Mowbray S, Durk H, et al. The n-terminal domain of mammalian soluble epoxide hydrolase is a phosphatase. Proc Natl Acad Sci USA, 2003,100(4):1552–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Daikh BE, Lasker JM, Raucy JL, et al. Regio-and stereoselective epoxidation of arachidonic acid by human cytochromes p450 2c8 and 2c9. J Pharmacol Exp Ther, 1994,271(3):1427–1433

    CAS  PubMed  Google Scholar 

  25. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med, 2010,48(6):749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gough DR, Cotter TG. Hydrogen peroxide: A jekyll and hyde signalling molecule. Cell Death Dis, 2011,2:e213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arai H, Ishiguro K, Ohno H, et al. Csf phosphorylated tau protein and mild cognitive impairment: A prospective study. Exp Neurol, 2000,166(1):201–203

    Article  CAS  PubMed  Google Scholar 

  28. Cho JH, Johnson GV. Glycogen synthase kinase 3 beta induces caspase-cleaved tau aggregation in situ. J Biol Chem, 2004,279(52):54716–54723

    Article  CAS  PubMed  Google Scholar 

  29. Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol, 2001,65(4):391–426

    Article  CAS  PubMed  Google Scholar 

  30. Gui MC, Chen B, Yu SS, et al. Effects of suppressed autophagy on mitochondrial dynamics and cell cycle of N2a cells. J Huazhong Univ Sci Technol [Med Sci], 2014,34(2):157–160

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-hua Liu  (刘幸华).

Additional information

This work was supported by grants from the National Natural Science Foundation of China (No. 81301000), and Postdoctoral Science Foundation of China (No. 2016M590696).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Es., Tang, Y., Liu, Xh. et al. TPPU protects tau from H2O2-induced hyperphosphorylation in HEK293/tau cells by regulating PI3K/AKT/GSK-3β pathway. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 36, 785–790 (2016). https://doi.org/10.1007/s11596-016-1662-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-016-1662-z

Keywords

Navigation