Skip to main content
Log in

Mechanical Properties of Mouse Lung Cells and Their Effects on the Atomic Force Microscope Beam Vibrations

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In the present investigation, the mechanical properties of mouse normal and carcinomatous (LL/2) lung tissue cells were investigated using atomic force microscopy (AFM). The normal lung cells have been derived directly from C57BL mice. Initially, the elastic modulus of LL/2 cells was measured following chemotherapy with the anti-cancer drug Cisplatin and plasma treatment. MTT evaluation was used to determine the optimal dosages for 24- and 48-h incubations based on the IC50 cell viability concentration during chemotherapy treatment. After 24 and 48 h, the results demonstrated that Cisplatin-based chemotherapy increases the elastic modulus of LL/2 cells by 1.599 and 2.308 times compared to untreated cells. LL/2 cells were subsequently treated with plasma for 30 and 60 s for 24 and 48-h incubation. The plasma treatment decreased the LL/2 cell’s elastic modulus, and the time duration of plasma treatment increased the reduction amount of elastic modulus. During the second section of the study, theoretical (finite element analysis [FEM]) and experimental techniques were used to examine the resonant frequencies and magnitude of the frequency response function (FRF) of the AFM cantilever’s movements when applying normal and cancerous cells before and after chemo and plasma treatments as specimens. The results indicated that increasing the samples’ elastic modulus raises the resonant frequency, so the resonant frequency of treated cells as a sample is greater than untreated cells. In conclusion, the FEM and experimental results were compared and found to be in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Binning, G., Quate, C. F., & Gerber, C. (1986). Atomic force microscope. Physical Review Letters, 56(9), 930–933.

    Article  Google Scholar 

  2. Li, M., Dang, D., Liu, L., Xi, N., & Wang, Y. (2017). Atomic force microscopy in characterizing cell mechanics for biomedical applications: A review. IEEE Transactions on Nanobioscience, 16, 523–540.

    Article  PubMed  Google Scholar 

  3. Su, X., Zhang, L., Kang, H., Zhang, B., Bao, G., & Wang, J. (2019). Mechanical, nanomorphological and biological reconstruction of early-stage apoptosis in HeLa cells induced by cytochalasin B. Oncology Reports, 41, 928–938.

    CAS  PubMed  Google Scholar 

  4. Li, M., Dang, D., Xi, N., Wang, Y., & Liu, L. (2017). Nanoscale imaging and force probing of biomolecular systems using atomic force microscopy: From single molecules to living cells. Nanoscale, 9, 17643–17666.

    Article  CAS  PubMed  Google Scholar 

  5. Broders-Bondon, F., Ho-Bouldoires, T. H. N., Fernandez-Sanchez, M. E., & Farge, E. (2018). Mechanotransduction in tumor progression: The dark side of the force. Journal of Cell Biology, 217, 1571–1587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheong, L. Z., Zhao, W., Song, S., & Shen, C. (2019). Lab on a tip: Applications of functional atomic force microscopy for the study of electrical properties in biology. Acta Biomaterials, 99, 33–52.

    Article  CAS  Google Scholar 

  7. Rudzka, D. A., Spennati, G., McGarry, D. J., Chim, Y. H., Neilson, M., Ptak, A., Munro, J., Kalna, G., Hedley, A., & Moralli, D., et al. (2019). Migration through physical constraints is enabled by MAPK-induced cell softening via actin cytoskeleton re-organization. Journal of Cell Science, 132, 1–17.

    Article  Google Scholar 

  8. Chen, Y. Q., Lan, H. Y., Wu, Y. C., Yang, W. H., Chiou, A., & Yang, M. H. (2018). Epithelial-mesenchymal transition softens head and neck cancer cells to facilitate migration in 3D environments. Journal of Cellular and Molecular Medicine, 22, 3837–3846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Raudenska, M., Kratochvilova, M., Vicar, T., Gumulec, J., Balvan, J., Polanska, H., Pribyl, J., & Masarik, M. (2019). Cisplatin enhances cell stiffness and decreases invasiveness rate in prostate cancer cells by actin accumulation. Scientific Reports, 9, 1–11.

    Article  CAS  Google Scholar 

  10. Liu, L., Zhang, W., Li, L., Zhu, X., Liu, J., Wang, X., Song, Z., Xu, H., & Wang, Z. (2018). Biomechanical measurement and analysis of colchicine-induced effects on cells by nanoindentation using an atomic force microscope. Journal of Biomechanics, 67, 84–90.

    Article  PubMed  Google Scholar 

  11. Tavares, S., Vieira, A. F., Taubenberger, A. V., Araújo, M., Martins, N. P., Brás-Pereira, C., Polónia, A., Herbig, M., Barreto, C., & Otto, O., et al. (2017). Actin stress fiber organization promotes cell stiffening and proliferation of pre-invasive breast cancer cells. Nature Communications, 8, 15237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi, S., Friedrichs, J., Song, Y. H., Werner, C., Estroff, L. A., & Fischbach, C. (2019). Intrafibrillar, bone-mimetic collagen mineralization regulates breast cancer cell adhesion and migration. Biomaterials, 198, 95–106.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, T., Zhou, L., Yang, K., Iwasawa, K., Kadekaro, A. L., Takebe, T., Andl, T., & Zhang, Y. (2019). The β-catenin/YAP signaling axis is a key regulator of melanoma-associated fibroblasts. Signal Transduction and Targeted Therapy, 4, 63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eslami, S., & Jalili, N. (2012). A comprehensive modeling and vibration analysis of AFM microcantilevers subjected to nonlinear tip-sample interaction forces. Ultramicroscopy, 117, 31–45.

    Article  CAS  PubMed  Google Scholar 

  15. Payam, A. F. (2013). Sensitivity of flexural vibration mode of the rectangular atomic force microscope micro cantilevers in liquid to the surface stiffness variations. Ultramicroscopy, 135, 84–88.

    Article  Google Scholar 

  16. Korayem, M. H., Sharahi, H. J., & Korayem, A. H. (2012). Comparison of frequency response of atomic force microscopy cantilevers under tipsample interaction in air and liquids. Journal of Scientia Iranica, 19(1), 106–112.

    Article  CAS  Google Scholar 

  17. Korayem, M. H., & Damirchi, M. (2014). The effect of fluid properties and geometrical parameters of cantilever on the frequency response of atomic force microscopy. Precis Engineering, 38(2), 321–329.

    Article  Google Scholar 

  18. Rezaei, I., & Sadeghi, A. (2021). Vibrational behavior of atomic force microscope beam via different polymers and immersion environments. The European Physical Journal Plus, 72, 137–171.

    Google Scholar 

  19. Kochevar, J. (1990). Blockage of autonomous growth of ACHN cells by anti-renal cell carcinoma monoclonal antibody 5F4. Cancer Research, 50(10), 2968–2972.

    CAS  PubMed  Google Scholar 

  20. Anghel, S. D., Simon, A., & Frentiu, T. (2008). Spectroscopic investigations on a low power atmospheric pressure capacitively coupled helium plasma. Plasma Sources Science and Technology, 17(4), 045016.

    Article  Google Scholar 

  21. Weltmann, K. D., Brandenburg, R., Woedtke, T. V., Ehlbeck, J., Foest, R., Stieber, M., & Kindel, E. (2008). Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs). Journal of Physics D Applied Physics, 41(19), 194008.

    Article  Google Scholar 

  22. Gümbel, D., Sander Bekeschus, S., Gelbrich, N., Napp, M., Ekkernkamp, A., Axel Kramer, A., & Stope, M. B. (2017). Cold atmospheric plasma in the treatment of osteosarcoma. International Journal of Molecular Science, 18(9), 2004.

    Article  Google Scholar 

  23. Wende, K., Woedtke, T. V., Weltmann, K. D., & Bekeschus, S. (2018). Chemistry and biochemistry of cold physical plasma-derived reactive species in liquids. Biological Chemistry, 400(1), 19–38.

    Article  PubMed  Google Scholar 

  24. Kurita, H., Haruta, N., Uchihashi, Y., Seto, T., & Takashima, K. (2020). Strand breaks and chemical modification of intracellular DNA induced by cold atmospheric pressure plasma irradiation. PLOS One, 15, 0232724.

    Article  Google Scholar 

  25. Hua, D., Cai, D., Ning, M., Yu, L., Zhang, Z., Han, P., & Dai, X. (2021). Cold atmospheric plasma selectively induces G0/G1 cell cycle arrest and apoptosis in AR-independent prostate cancer cells. Cancer Journal, 12(9), 5977–5986.

    Article  CAS  Google Scholar 

  26. Toyokuni, S. (2016). The origin and future of oxidative stress pathology: from the recognition of carcinogenesis as an iron addiction with ferroptosis resistance to non‐thermal plasma therapy. Pathology International, 66(5), 245–259.

    Article  CAS  PubMed  Google Scholar 

  27. Hybertson, B. M., Gao, B., Bose, S. K., & McCord, J. M. (2011). Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Molecular Aspects of Medicine, 32, 234–246.

    Article  CAS  PubMed  Google Scholar 

  28. Uttara, B., Singh, A. V., Zamboni, P., & Mahajan, R. T. (2009). Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Current Neuropharmacology, 7(1), 65–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bogle, M. A., Arndt, K. A., & Dover, J. S. (2007). Evaluation of plasma skin regeneration technology in low-energy full-facial rejuvenation. Archives in Dermatological Research, 143(2), 168–174.

    Google Scholar 

  30. Elsaie, Mohamed, L., & Kammer, J. N. (2008). Evaluation of plasma skin regeneration technology for cutaneous remodeling. Cosmetic Dermatology, 7(4), 309–311.

    Article  PubMed  Google Scholar 

  31. Okazaki, Y., Wang, Y., Tanaka, H., Mizuno, M., Nakamura, K., Kajiyama, H., Kano, H., Uchida, K., Kikkawa, F., Hori, M., & Toyokuni, S. (2014). Direct exposure of non-equilibrium atmospheric pressure plasma confers simultaneous oxidative and ultraviolet modifications in biomolecules. Clinical Biochemistry and Nutrition, 55(3), 207–215.

    Article  CAS  Google Scholar 

  32. Bruggeman, P. J., Iza, F., & Brandenburg, R. (2017). Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Science and Technology, 26(12), 123002.

    Article  Google Scholar 

  33. Bekeschus, S., Seebauer, C., Wende, K., & Schmidt, A. (2018). Physical plasma and leukocytes–immune or reactive. Biological Chemistry, 400(1), 63–75.

    Article  PubMed  Google Scholar 

  34. Kalghatgi, S., Friedman, G., Fridman, A., & Clyne, A. M. (2010). Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Annals of Biomedical Engineering, 38, 748–757.

    Article  PubMed  Google Scholar 

  35. Xia, J., Zeng, W., Xia, Y., Wang, B., Xu, D., Liu, D., Kong, M. G., & Dong, Y. (2019). Cold atmospheric plasma induces apoptosis of melanoma cells via Sestrin2‐mediated nitric oxide synthase signaling. Biophotonics, 12(1), e201800046.

    Article  PubMed  Google Scholar 

  36. Fridman, G., Shereshevsky, A., Jost, M. M., Fridman, M., Gutsol, A., & Vasilets, V. (2007). Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chemistry and Plasma Processing, 27, 163–176.

    Article  CAS  Google Scholar 

  37. Joh, H. M., Kim, S. J., Chung, T. H., and Leem, S. H. (2013). Comparison of the characteristics of atmospheric pressure plasma jets using different working gases and applications to plasma-cancer cell interactions. AIP Advances, 3, 9.

  38. Hink, R., Pipa, A. V., Schäfer, J., Caspari, R., Weichwald, R., Foest, R., and Brandenburg R. (2020). Influence of dielectric thickness and electrode structure on the ion wind generation by micro fabricated plasma actuators. J Appl Physics D, 53, 40.

  39. Shimizu, Y., Kihara, T., Haghparast, S. M. A., Yuba, S., & Miyake, J. (2012). Simple display system of mechanical properties of cells and their dispersion. PLOS ONE J., 7(3), e34305.

    Article  CAS  Google Scholar 

  40. Rebelo, L. M., Sousa, J. S. D., Filho, J. M., & Radmacher, M. (2013). Comparison of the viscoelastic properties of cells from different kidney cancer phenotypes measured with atomic force microscopy. Nanotechnology J, 24, 055102.

    Article  CAS  Google Scholar 

  41. Almeida, N. D., Klein, A. L., Hogan, E. A., Terhaar, S. J., Kedda, J., Uppal, P., & Sherman, J. H. (2019). Cold atmospheric plasma as an adjunct to immunotherapy for glioblastoma multiforme. World Neurosurgery, .130, 369–376.

    Article  PubMed  Google Scholar 

  42. Gholizadeh Pasha, A. H., & Sadeghi, A. (2020). Experimental and theoretical investigations about the nonlinear vibrations of rectangular atomic force microscope cantilevers immersed in different liquids. Archive of Applied Mechanics, 90(9), 1893–1917.

    Article  Google Scholar 

  43. Timoshenko, S. P., & Goodier, J. N. (1951). Theory of elasticity. New York: McGraw- Hill.

    Google Scholar 

  44. Chen, G. Y., Warmack, R. J., Huang, A., & Thundat, T. (1995). Harmonic response of near-contact scanning force microscopy. Journal of Applied Physics, 78(3), 1465.

    Article  CAS  Google Scholar 

  45. Hosaka, K., Itao, & Kuroda, S. (1995). Damping characteristics of beam-shaped micro-oscillators. Sensors and Actuators A: Physical, 49(1-2), 87–95.

    Article  CAS  Google Scholar 

  46. Song, Y., & Bhushan, B. (2006). Simulation of dynamic modes of atomic force microscopy using a 3D finite element model. Ultramicroscopy, 106(8-9), 847–73.

    Article  CAS  Google Scholar 

  47. Derjaguin, B. V., Muller, V. M., & Toporov, Y. P. (1975). Adhesion of spheres: effect of contact deformations on the adhesion of particles. Journal of Colloid and Interface Science, 53(2), 314–326.

    Article  CAS  Google Scholar 

  48. Turner, J. A. (2004). Non-linear vibrations of a beam with cantilever- hertzian contact boundary conditions. Journal of Sound and Vibration, 275(1-2), 177–191.

    Article  Google Scholar 

  49. Reddy, J. N. (2005). An introduction to the finite element method. New York: McGraw-Hill.

    Google Scholar 

  50. Korayem, A. H., Alipour, A., & Younesian, D. (2018). Vibration suppression of atomic-force microscopy cantilevers covered by a piezoelectric layer with tensile force. Journal of Mechanical Science and Technology 32, 4135–4144.

    Article  Google Scholar 

  51. Rezaei, I., & Sadeghi, A. (2023). The effects of cetuximab and cisplatin anti-cancer drugs on the mechanical properties of the lung cancerous cells using atomic force microscope. Journal of Biochemistry and Cell Biology, 101(6), 1–7.

    Google Scholar 

  52. Lin, Y. H. (1994). Vibration analysis of Timoshenko beams traversed by moving loads. Journal of Marine Science and Technology, 2(1), 25–35.

    Article  Google Scholar 

  53. Graham, F. L., Smiley, J., Russell, W. C., & Nairn, R. (1977). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. Journal of General Virology, 36(1), 59–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N. Maleki Zadeh prepared the figures and tablas, A. Sadeghi write the paper and M. Lafouti worked on programming and software works. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ali Sadeghi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent for publication

All of the authors agree to publish their study in this journal.

Ethics

This paper does not involve human subjects related to a person or a group of persons.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Timoshenko Cantilever Inertia and Stiffness Matrices

Appendix A. Timoshenko Cantilever Inertia and Stiffness Matrices

The elements of inertia, stiffness have been written due to Timoshenko cantilever law as [52]:

$${[k]}_{e}=\frac{12}{({L}^{2}+12g)}\frac{EI}{L}\left[\begin{array}{cccc}1 & & & Sym\\ \frac{L}{2} & \frac{{L}^{2}}{3}+g & & \\ -1 & -\frac{L}{2} & 1 & \\ \frac{L}{2} & \frac{{L}^{2}}{6}-g & -\frac{L}{2} & \frac{{L}^{2}}{3}+g\end{array}\right]$$
(A1)
$${[m]}_{e}={[{m}_{t}]}_{e}+{[{m}_{r}]}_{e}$$
(A2)

\({[{m}_{t}]}_{e}\) and \({[{m}_{r}]}_{e}\) introduce the inertia matrix for shear inertia and rotatory inertia influences respectively.

$${[{m}_{t}]}_{e}=\frac{\rho AL}{{({L}^{2}+12g)}^{2}}\left[\begin{array}{cccc}{t}_{11} & & & Sym\\ {t}_{21} & {t}_{22} & & \\ {t}_{31} & {t}_{32} & {t}_{33} & \\ {t}_{41} & {t}_{42} & {t}_{43} & {t}_{44}\end{array}\right]$$
(A3)
$$\begin{array}{ll}{t}_{11}=(\frac{13}{35}{L}^{4}+\frac{42}{5}g{L}^{2}+48{g}^{2}),\,{t}_{21}=(\frac{11}{210}{L}^{4}+\frac{11}{10}g{L}^{2}+6{g}^{2})L,\\ {t}_{31}=(\frac{9}{7}{L}^{4}+\frac{18}{5}g{L}^{2}+24{g}^{2}),\,{t}_{32}=(\frac{13}{420}{L}^{4}+\frac{9}{10}g{L}^{2}+6{g}^{2})L,\\ {t}_{22}=(\frac{1}{105}{L}^{4}+\frac{1}{5}g{L}^{2}+\frac{6}{5}{g}^{2}){L}^{2},\,{t}_{42}=-(\frac{1}{140}{L}^{4}+\frac{1}{5}g{L}^{2}+\frac{6}{5}{g}^{2}){L}^{2},\\ {t}_{33}={t}_{11},\,{t}_{41}=-{t}_{32},\,{t}_{43}=-{t}_{21},\,{t}_{44}={t}_{22}\end{array}$$
(A4)
$${[{m}_{r}]}_{e}=\frac{\rho AL}{{({L}^{2}+12g)}^{2}}{\left(\frac{r}{L}\right)}^{2}\left[\begin{array}{cccc}{r}_{11} & & & Sym\\ {r}_{21} & {r}_{22} & & \\ {r}_{31} & {r}_{32} & {r}_{33} & \\ {r}_{41} & {r}_{42} & {r}_{43} & {r}_{44}\end{array}\right]$$
(A5)
$$\begin{array}{ll}{r}_{11}=\frac{6}{5}{L}^{4},\,{r}_{21}=(\frac{1}{10}{L}^{2}-6{g}^{2}){L}^{3},\,{r}_{22}=(\frac{2}{15}{L}^{4}+2g{L}^{2}+48{g}^{2}){L}^{2},\,{r}_{31}=-{r}_{11},\,{r}_{32}=-{r}_{21},\\ \,{r}_{33}={r}_{11},\,{r}_{41}={r}_{21},\,{r}_{43}=-{r}_{21},\,{r}_{44}={r}_{22},\,{r}_{42}=(\frac{-1}{30}{L}^{4}-2g{L}^{2}+24{g}^{2}){L}^{2}\end{array}$$
(A6)
$$g=\frac{EI}{kGA}\,and\,r=\sqrt{\frac{I}{A}}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadeh, N.M., Sadeghi, A. & Lafouti, M. Mechanical Properties of Mouse Lung Cells and Their Effects on the Atomic Force Microscope Beam Vibrations. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01259-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01259-z

Keywords

Navigation