Skip to main content
Log in

Spin Probe Multi-Frequency EPR Study of Unprocessed Cotton Fibers

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Known since the ancient times, cotton continues to be one of the essential materials for the human civilization. Cotton fibers are almost pure cellulose and contain both crystalline and amorphous nanodomains with different physicochemical properties. While understanding of interactions between the individual cellulose chains within the crystalline phase is important from a perspective of mechanical properties, studies of the amorphous phase lead to characterization of the essential transport parameters, such as solvent diffusion, dyeing, drug release, and toxin absorption, as well as more complex processes of enzymatic degradation. Here, we describe the use of spin probe electron paramagnetic resonance methods to study local polarity and heterogeneous viscosity of two types of unprocessed cotton fibers, G. hirsutum and G. barbadense, harvested in the State of North Carolina, USA. These fibers were loaded with two small molecule nitroxide probes that differ in polarity—Tempo and its more hydrophilic derivative Tempol—using a series of polar and non-polar solvents. The electron paramagnetic resonance spectra of the nitroxide-loaded cotton fibers were analyzed both semi-empirically and by least-squares simulations using a rigorous stochastic theory of electron paramagnetic resonance spectra developed by Freed and coworkers. A software package and least-squares fitting protocols were developed to carry out automatic simulations of multi-component electron paramagnetic resonance spectra in both first-derivative and the absorption forms at multiple resonance frequencies such as X-band (9.5 GHz) and W-band (94.3 GHz). The results are compared with the preceding electron paramagnetic resonance spin probe studies of a commercial bleached cotton sheeting carried out by Batchelor and coworkers. One of the results of this study is a demonstration of a co-existence of cellulose nanodomains with different physicochemical properties such as polarity and microviscosity that are affected by solvents and temperature. Spin labeling studies also revealed a macroscopic heterogeneity in the domain distribution along the cotton fibers and a critical role the cuticular layer is playing as a barrier for spin probe penetration. Finally but not lastly, the simultaneous multi-component least-squares simulation method of electron paramagnetic resonance spectra acquired at different resonant frequencies and the display forms (e.g., absorption and first-derivative displays) and the strategy of spectral parameter sharing could be potentially applicable to other heterogeneous biological systems in addition to the cotton fibers studies here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brown, R. M. (1996). The biosynthesis of cellulose. Journal of Macromolecular Science: Pure and Applied Chemistry, A33, 1345–1373.

    Article  CAS  Google Scholar 

  2. Brown, R. M. (2004). Cellulose structure and biosynthesis: What is in store for the 21st century? Journal of Polymer Science Part A-Polymer Chemistry, 42, 487–495.

    Article  CAS  Google Scholar 

  3. Brett, C. T. (2000). Cellulose microfibrils in plants: Biosynthesis, deposition, and integration into the cell wall. In K. W. Jeon (Ed.), International review of cytology —A survey of cell biology (Vol. 199, pp. 161–199). New York, NY: Academic Press.

  4. Kuga, S., & Brown, R. M. (1988). Silver labeling of the reducing ends of bacterial cellulose. Carbohydrate Research, 180, 345–350.

    Article  CAS  Google Scholar 

  5. Canale-Parola, E. (1977). Physiology and evolution of spirochetes. Bacteriological Reviews, 41, 181–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nishiyama, Y., Sugiyama, J., Chanzy, H., & Langan, P. (2003). Crystal structure and hydrogen bonding system in cellulose 1(alpha), from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society, 125, 14300–14306.

    Article  CAS  PubMed  Google Scholar 

  7. Klemm, D., Philipp, B., Heinze, T., Heinze, U., & Wagenknecht, W. (2004). Introduction. In Comprehensive cellulose chemistry: Fundamentals and Analytical Methods, Vol. 1 (pp. 1–7). Weinheim, Federal Republic of Germany: Wiley-VCH Verlag GmbH & Co. KgaA.

  8. Hearle, J. W. S. (1958). A fringed fibril theory of structure in crystalline polymers. Journal of Polymer Science, 28, 432–435.

    Article  CAS  Google Scholar 

  9. Freywyssling, A. (1954). The fine structure of cellulose microfibrils. Science, 119, 80–82.

    Article  CAS  Google Scholar 

  10. Fink, H. P., Hofmann, D., & Purz, H. J. (1990). On the fibrillar structure of native cellulose. Acta Polymerica, 41, 131–137.

    Article  CAS  Google Scholar 

  11. Zhao, H. B., Kwak, J. H., Zhang, Z. C., Brown, H. M., Arey, B. W., & Holladay, J. E. (2007). Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydrate Polymers, 68, 235–241.

    Article  CAS  Google Scholar 

  12. Muller, M., Riekel, C., Vuong, R., & Chanzy, H. (2000). Skin/core micro-structure in viscose rayon fibres analysed by X-ray microbeam and electron diffraction mapping. Polymer, 41, 2627–2632.

    Article  CAS  Google Scholar 

  13. Arioli, T., Peng, L. C., Betzner, A. S., Burn, J., Wittke, W., Herth, W., Camilleri, C., Hofte, H., Plazinski, J., Birch, R., Cork, A., Glover, J., Redmond, J., & Williamson, R. E. (1998). Molecular analysis of cellulose biosynthesis in Arabidopsis. Science, 279, 717–720.

    Article  CAS  PubMed  Google Scholar 

  14. Ha, M. A., Apperley, D. C., Evans, B. W., Huxham, M., Jardine, W. G., Vietor, R. J., Reis, D., Vian, B., & Jarvis, M. C. (1998). Fine structure in cellulose microfibrils: NMR evidence from onion and quince. Plant Journal, 16, 183–190.

    Article  CAS  PubMed  Google Scholar 

  15. Newling, B., & Batchelor, S. N. (2003). Pulsed field gradient NMR study of the diffusion of H2O and polyethylene glycol polymers in the supramolecular structure of wet cotton. Journal of Physical Chemistry B, 107, 12391–12397.

    Article  CAS  Google Scholar 

  16. Abbott, L. C., Batchelor, S. N., Jansen, L., Oakes, J., Smith, J. R. L., & Moore, J. N. (2004). Spectroscopic studies of direct blue 1 in solution and on cellulose surfaces: Effects of environment on a bis-azo dye. New Journal of Chemistry, 28, 815–821.

    Article  CAS  Google Scholar 

  17. Smirnova, T. I., Voinov, M. A. & Smirnov, A. I. (2011). Spin probes and spin labels, In R. A. Meyers (Ed.), Encyclopedia of Analytical Chemistry (pp. 1595–1625). Chichester, West Sussex: Wiley.

  18. Batchelor, S. N. (1999). Free-radical and singlet-oxygen mobility in cotton probed by EPR spectroscopy. Journal of Physical Chemistry B, 103, 6700–6703.

    Article  CAS  Google Scholar 

  19. Scheuermann, R., Roduner, E., & Batchelor, S. N. (2001). Quantitative electron paramagnetic resonance study of the motion, adsorption, and aggregation of Tempol radicals in the nanopores of dry cotton. Journal of Physical Chemistry B, 105, 11474–11479.

    Article  CAS  Google Scholar 

  20. Frantz, S., Hubner, G. A., Wendland, O., Roduner, E., Mariani, C., Ottaviani, M. F., & Batchelor, S. N. (2005). Effect of humidity on the supramolecular structure of cotton, studied by quantitative spin probing. Journal of Physical Chemistry B, 109, 11572–11579.

    Article  CAS  Google Scholar 

  21. Frantz, S., Wendland, O., Roduner, E., Whiteoak, C. J., & Batchelor, S. N. (2007). Effect of charge on spin probe interaction and dynamics in the nanopores of cotton. Journal of Physical Chemistry C, 111, 14514–14520.

    Article  CAS  Google Scholar 

  22. Batchelor, S. N., & Shushin, A. I. (2001). Time-resolved EPR study of reactive radical motion in cotton: Effects of confinement. Journal of Physical Chemistry B, 105, 3405–3408.

    Article  CAS  Google Scholar 

  23. Batchelor, S. N., & Shushin, A. I. (2002). CIDEP spin probing of the nanopores in cotton. Applied Magnetic Resonance, 22, 47–60.

    Article  CAS  Google Scholar 

  24. Budil, D. E., Lee, S., Saxena, S., & Freed, J. H. (1996). Nonlinear-least-squares analysis of slow-motion EPR spectra in one and two dimensions using a modified Levenberg-Marquardt algorithm. Journal of Magnetic Resonance, Series A, 120, 155–189.

    Article  CAS  Google Scholar 

  25. Schneider, D. J., & Freed, J. H. (1989). Calculating slow motional magnetic resonance spectra. A user's guide. In L. J. Berliner &J. Reuben (Eds.), Spin labeling: Theory and applications, vol. 8: Biological magnetic resonance (pp. 1–76). New York, NY: Plenum Publishing Corporation.

  26. Wullschleger, S. D., & Oosterhuis, D. M. (1987). Electron microscope study of cuticular abrasion on cotton leaves in relation to water potential measurements. Journal of Experimental Botany, 38, 660–667.

    Article  Google Scholar 

  27. Bondada, B. R., & Oosterhuis, D. M. (2000). Comparative epidermal ultrastructure of cotton (Gossypium hirsutum L.) leaf, bract and capsule wall. Annals of Botany, 86, 1143–1152.

    Article  Google Scholar 

  28. Haigler, C. H. (2010). Physiological and anatomical factors determining fiber structure and utility. In J. M. Stewart, D. M. Oosterhuis, J. J. Heitholt & J. R. Mauney (Eds.), Physiology of cotton (pp. 33–47). Dordrecht: Springer.

  29. Liu, X., Zhao, B., Zheng, H.-J., Hu, Y., Lu, G., Yang, C.-Q., Chen, J.-D., Chen, J.-J., Chen, D.-Y., & Zhang, L. (2015). Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Science Report, 5, 14139.

    Article  CAS  Google Scholar 

  30. Degani, O., Gepstein, S., & Dosoretz, C. G. (2002). Potential use of cutinase in enzymatic scouring of cotton fiber cuticle. Applied Biochemistry and Biotechnology, 102, 277–289.

    Article  PubMed  Google Scholar 

  31. Smirnov, A. I., Smirnova, T. I., MacArthur, R. L., Good, J. A., & Hall, R. (2006). Cryogen-free superconducting magnet system for multifrequency electron paramagnetic resonance up to 12.1 T. Review of Scientific Instruments, 77, 035108.

    Article  Google Scholar 

  32. Nilges, M. J., Smirnov, A. I., Clarkson, R. B., & Belford, R. L. (1999). Electron paramagnetic resonance W-band spectrometer with a low-noise amplifier. Applied Magnetic Resonance, 16, 167–183.

    Article  CAS  Google Scholar 

  33. Oosterhuis, D. M. and Weir, B. L. (2010). Foliar fertilization of cotton. In J. M. Stewart, D. M. Oosterhuis, J. J. Heitholt & J. R. Mauney (Eds.), Physiology of cotton (pp. 272–288). Dordrecht: Springer.

  34. Smirnov, A. I., Smirnova, T. I., & Morse, P. D. (1995). Very high-frequency electron-paramagnetic-resonance of 2,2,6,6-tetramethyl-1-piperidinyloxy in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine liposomes—Partitioning and molecular-dynamics. Biophysical Journal, 68, 2350–2360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Smirnov, A. I., Golovina, H. A., Yakimchenko, O. E., Aksyonov, S. I., & Lebedev, Y. S. (1992). In vivo seed investigation by electron paramagnetic resonance spin probe technique. Journal of Plant Physiology, 140, 447–452.

    Article  CAS  Google Scholar 

  36. Guisinger, N. P., Elder, S. P., Yoder, N. L., & Hersam, M. C. (2007). Ultra-high vacuum scanning tunnelling microscopy investigation of free radical adsorption to the Si(111)-7 X 7 surface. Nanotechnology, 18, 044011.

    Article  Google Scholar 

  37. Yakimchenko, O. E., Smirnov, A. I., & Lebedev, Y. S. (1990). The spin probe technique in the EPR-imaging of structurally heterogeneous media. Applied Magnetic Resonance, 1, 1–19.

    Article  Google Scholar 

  38. Kawamura, T., Matsunami, S., & Yonezawa, T. (1967). Solvent effects on the g-value of di-t-butyl nitric oxide. Bulletin of the Chemical Society of Japan, 40, 1111–1115.

    Article  CAS  Google Scholar 

  39. Griffith, O. H., Dehlinger, P. J., & Van, S. P. (1974). Shape of the hydrophobic barrier of phospholipid bilayers (evidence for water penetration in biological membranes). The Journal of Membrane Biology, 15, 159–192.

    Article  CAS  PubMed  Google Scholar 

  40. Smirnov, A. I., & Smirnova, T. I. (2001). Resolving domains of interdigitated phospholipid membranes with 95 GHz spin labeling EPR. Applied Magnetic Resonance, 21, 453–467.

    Article  CAS  Google Scholar 

  41. Smirnova, T. I. and Smirnov, A. I. (2007). High-field ESR spectroscopy in membrane and protein biophysics. In M. A. Hemminga, & L. J. Berliner (Eds.), ESR spectroscopy in membrane biophysics, vol. 27: Biological magnetic resonance (pp. 165–251). New York: Springer US.

  42. Smirnova, T. I., Chadwick, T. G., Voinov, M. A., Poluektov, O., van Tol, J., Ozarowski, A., Schaaf, G., Ryan, M. M., & Bankaitis, V. A. (2007). Local polarity and hydrogen bonding inside the Sec14p phospholipid-binding cavity: High-field multi-frequency electron paramagnetic resonance studies. Biophysical Journal, 92, 3686–3695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Smirnov, A. I. (2008). Post-processing of EPR spectra by convolution filtering: Calculation of a Harmonics’ series and automatic separation of fast-motion components from spin-label EPR spectra. Journal of Magnetic Resonance, 190, 154–159.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, Z., Fleissner, M. R., Tipikin, D. S., Liang, Z., Moscicki, J. K., Earle, K. A., Hubbell, W. L., & Freed, J. H. (2010). Multifrequency electron spin resonance study of the dynamics of spin labeled T4 lysozyme. The Journal of Physical Chemistry B, 114, 5503–5521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smirnov, A. I., Belford, R., & Clarkson, R. (2002). Comparative spin label spectra at X-band and W-band. In L. J. Berliner (Ed.), Spin labeling: The next millennium, vol. 16: Biological magnetic resonance (pp. 83–107). New York: Plenum Press.

  46. Dzuba, S. A. (1996). Librational motion of guest spin probe molecules in glassy media. Physics Letters A, 213, 77–84.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. C. Haigler (Department of Crop Science, NCSU) for a gift of cotton balls of G. hirsutum and G. barbadense. The authors are also grateful to Prof. David E. Budil (Northeastern University, Boston, MA) for providing a computer code for simulations of slow-motion nitroxide EPR spectra. The X-band EPR experiments on loading of cotton fibers were carried out as a part of The Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the U.S. DOE, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001090. W-band EPR experiments and development of software for fitting multi-component EPR spectra and the final preparation of this manuscript was supported by U.S. DOE Contract DE-FG02-02ER15354 to AIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex I. Smirnov.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marek, A., Voinov, M.A. & Smirnov, A.I. Spin Probe Multi-Frequency EPR Study of Unprocessed Cotton Fibers. Cell Biochem Biophys 75, 211–226 (2017). https://doi.org/10.1007/s12013-017-0787-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-017-0787-4

Keywords

Navigation