Skip to main content
Log in

Electron paramagnetic resonance W-band spectrometer with a low-noise amplifier

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The Mark II W-band (94 GHz) EPR spectrometer with a low-noise millimeter-wave amplifier is described. The microwave bridge is of a high-sensitivity homodyne design. Signal-to-noise ratios were measured for a number of detectors with and without the low-noise amplifier. The signal-to-noise ratio was determined not only by the type of detector but also how well it was matched. Without a microwave preamplifier, a hot-electron bolometer provides the best signal-to-noise ratio. Addition of a low-noise microwave preamplifier to the CW homodyne bridge gives a 10 dB improvement in the noise figure of the receiver at a modulation frequency of 100 kHz. A greater improvement in the signal-to-noise ratio is seen at low modulation frequencies (1–10 kHz), making the low-noise amplifier useful for systems with large linewidths. This allows larger modulation amplitudes to be used without causing significant cavity heating or microphonics. The W-band spectrometer is capable of rapid sweeps from 0 to 7 T, as well as narrower (0.1 T) high-resolution sweeps. It is suitable for a wide variety of samples including liquids and samples cooled to sub-liquid-helium temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lebedev Ya.S. in: Modern Pulsed and Continuous-Wave Spin Resonance (Kevan L., Bowman M.K., eds.), pp. 69–91. New York: Wiley 1990.

    Google Scholar 

  2. Clarkson R.B., Smirnov A.I., Smirnova T.I., Kang H., Belford R.L., Earle K.A., Freed J.H.: Mol. Phys.95, 1325–1332 (1998)

    ADS  Google Scholar 

  3. Smirnova T.I., Smirnov A.I., Clarkson R.B., Belford R.L.: J. Am. Chem. Soc.120, 5060–5072 (1998)

    Article  Google Scholar 

  4. Earle K.A., Budil D.E., Freed J.H.: J. Phys. Chem.97, 13289–13297 (1993)

    Article  Google Scholar 

  5. Hirshon J.M., Frankel G.K.: Rev. Sci. Instrum.26, 34–41 (1955)

    Article  ADS  Google Scholar 

  6. Hyde J.S. in: Handbook of Microwave Technology (Ishii T.K., ed.), vol. 2, chap. 13. New York: Academic Press 1995.

    Google Scholar 

  7. The New IEEE Standard Dictionary of Electrical and Electronic Terms (Booth C.K., ed.). New York: IEEE Inc. 1993.

    Google Scholar 

  8. Armstrong E.H.: Proc. IRE9, 3–11 (1921)

    Article  Google Scholar 

  9. Armstrong E.H.: Proc. IRE12, 539–552 (1924)

    Article  Google Scholar 

  10. Teaney D.T., Klein M.P., Portis A.M.: Rev. Sci. Instrum.32, 721 (1961)

    Article  ADS  Google Scholar 

  11. Rinard G.A., Quine R.W., Ghim B.T., Eaton S.E., Eaton G.R.: J. Magn. Reson. A.122, 58–63 (1996)

    Article  Google Scholar 

  12. Prisner T.F., Rohrer M., Mobius K.: Appl. Magn. Reson.7, 167–183 (1994)

    Article  Google Scholar 

  13. Wang W., Belford R.L., Clarkson R.B., Davis P.H., Forrer J., Nilges M.J., Timken M.D., Walczak T., Thurnauer M.C., Norris J.R., Morris A.L., Zhang Y.: Appl. Magn. Reson.6, 195–215 (1994)

    Article  Google Scholar 

  14. Clarkson R.B., Wang W., Nilges M.J., Belford R.L. in: Processing and Utilization of High-Sulfur Coal (Markuszewski R., Wheelock T.D., eds.), pp. 67–77. Amsterdam: Elsevier 1990.

    Google Scholar 

  15. Iwasa Y.: Case Studies in Superconducting Magnets. Design and Operational Issues. New York: Plenum Press 1994.

    Google Scholar 

  16. Wang W., Ng G.I., Lai R.: IEE Proceedings — Microwave Antennas & Propagation143, 361–366 (1996)

    Article  Google Scholar 

  17. Hewlett Packard Application Note 57-1 “Fundamentals of RF and Microwave Noise Figure Measurement” (1983)

  18. Weber R.T., Disselhorst J.A.J.M., Prevo L.J., Schmidt J., Wenckebach W.Th.: J. Magn. Reson.81, 129–144 (1989)

    Google Scholar 

  19. Hoentzsch Ch., Niklas J.R., Spaeth J.M.: Rev. Sci. Instrum.49, 1100–1102 (1978)

    Article  ADS  Google Scholar 

  20. Hyde J.S., Newton M.E., Strangeway R.A., Camenisch T.G.: Rev. Sci. Instrum.62, 2969–2975 (1991)

    Article  ADS  Google Scholar 

  21. Grampp G.: Rev. Sci. Instrum.56, 2050–2051 (1985)

    Article  ADS  Google Scholar 

  22. Dexheimer S.L., Klein M.P.: Rev. Sci. Instrum.59, 764–766 (1988)

    Article  ADS  Google Scholar 

  23. Meinhardt S.W., Gennis R.B., Ohnishi T.: Biochim. Biophys. Acta975, 175–184 (1989)

    Article  Google Scholar 

  24. Prisner T.F., Un S., Griffen R.G.: Isr. J. Chem.32, 357–363 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilges, M.J., Smirnov, A.I., Clarkson, R.B. et al. Electron paramagnetic resonance W-band spectrometer with a low-noise amplifier. Appl. Magn. Reson. 16, 167–183 (1999). https://doi.org/10.1007/BF03161932

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03161932

Keywords

Navigation