Skip to main content
Log in

Shape of the hydrophobic barrier of phospholipid bilayers (Evidence for water penetration in biological membranes)

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Previous work has shown that there is a small solvent effect on the electron spin resonance spectra of nitroxide spin labels. The aim of this paper is to develop a semiquantitative treatment of the solvent effects and to use this treatment to estimate the shape of the hydrophobic barrier (i.e., polarity profile) of lipid bilayers.

In this semiquantitative treatment of solvent effects, the total effect on the isotropic14N coupling constant, ΔA, is expressed as a sum of terms associated with van der Waals interactions, hydrogen bonding, the charged double layer of phospholipid polar groups and the membrane potential. The magnitude of ΔA as a function of the electric field is estimated with Hückel molecular orbital theory and, independently, using the Onsager model. With these relations, estimates of the relative importance of the various solvent effect terms are obtained from accurate ESR measurements on dilute solutions of di-t-butyl nitroxide in thirty-three solvents and calculations of the electric field produced by the charged double layer and the membrane potential.

To estimate the shape of the hydrophobic barrier of lipid bilayers, fatty acids andl-α-lecithins with doxyl (i.e., 4′, 4′-dimethyloxazolidine-N-oxyl) labels bonded to various positions along the lipid chains were diffused into phospholipid vesicles and membranes (from the calf liver microsomal fraction). The shape of the hydrophobic barrier is plotted as a polarity index operationally defined in terms of the ΔA of the lipid spin labels. The effect of the charged double layers is less important than water penetration except when the spin label is within a few Angstroms of the charged groups. Any effects of a membrane potential on ΔA are insignificant. A comparison of ESR spectra indicates that significant water penetration into the bilayer occurs in both the pure lipid bilayers and in the membrane preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayscough, P. B., Sargent, F. P. 1966. Electron spin resonance studies of radicals and radical-ions in solution. Part V. Solvent effects on the spectra of mono- and di-phenyl nitric oxide.J. Chem. Soc. (London) B. 1966:907

    Google Scholar 

  • Berliner, L. J. 1970. Refinement and location of hydrogen atoms in nitroxide 2,2,6,6-tetramethyl-4-piperidinol-1-oxyl.Acta Cryst. B26:1198

    Google Scholar 

  • Birrell, G. B., Van, S. P., Griffith, O. H. 1973. Electron spin resonance of spin labels in organic inclusion crystals. Models for anisotropic motion in biological membranes.J. Amer. Chem. Soc. 95:2451

    Google Scholar 

  • Boeyens, J. C. A., Kruger, G. J. 1970. Remeasurements of the structure of potassium 2,2,5,5-tetramethyl-3-carboxypyrroline-1-oxyl.Acta Cryst. B26:668

    Google Scholar 

  • Branton, D., Deamer, D. W. 1972. Membrane Structure. Springer-Verlag, New York

    Google Scholar 

  • Briere, R., Lemaire, H., Rassat, A. 1965. Nitroxydes. XV. Synthese et etude de radicaux libres stables piperidiniques et pyrrolidinique.Bull. Soc. Chim. France 32:3273

    Google Scholar 

  • Briere, R., Rassat, A., Rey, P., Tchoubar, B. 1966. Nitroxydes. XXI. Mise en evidence par resonance paramagnetique electronique de l'effet specifique des sels sur la solvation des radicaux nitroxydes.J. Chim. Phys. 63:1575

    Google Scholar 

  • Brown, D. G., Maier, T., Drago, R. S. 1971. Cobalt (II) complexes of the free-radical ligand di-tert-butyl nitroxide.Inorg. Chem. 10:2804

    Google Scholar 

  • Capiomont, A. 1972. Structure cristalline du radical nitroxyde: suberate de di-tetramethyl-2,2,6,6-piperidinyl-4-oxyle 1.Acta Cryst. B28:2298

    Google Scholar 

  • Caspar, D. L. D., Kirschner, D. A. 1971. Myelin membrane structure at 10 Å resolution.Nature, New Biol. 231:46

    Google Scholar 

  • Cohen, A. H., Hoffman, B. M. 1973. Hyperfine interactions in perturbed nitroxides.J. Amer. Chem. Soc. 95:2061

    Google Scholar 

  • Daudel, R., Lefebvre, R., Moser, C. 1959. Quantum Chemistry, Methods and Applications. Wiley-Interscience, New York

    Google Scholar 

  • Davson, H., Danielli, J. F. 1943. The Permeability of Natural Membranes. Cambridge University Press, New York

    Google Scholar 

  • Eichberg, J., Whittaker, V. P., Dawson, R. M. C. 1964. Distribution of lipids in subcellular particles of guinea-pig brain.Biochem. J. 92:91

    PubMed  Google Scholar 

  • Folch, J., Lees, M., Stanley, G. H. S. 1957. A simple method for the isolation and purification of total lipids from animal tissues.J. Biol. Chem. 226:497

    PubMed  Google Scholar 

  • Griffith, O. H. 1965. ESR and electronic structure of the RCHOR' ether radicals.J. Chem. Phys. 42:2651

    Google Scholar 

  • Griffith, O. H., Libertini, L. J., Birrell, G. B. 1971. The role of lipid spin labels in membrane biophysics.J. Phys. Chem. 75:3417

    PubMed  Google Scholar 

  • Hall, J. E., Meade, C. A., Szabo, G. 1973. A barrier model for current flow in lipid bilayer membranes.J. Membrane Biol. 11:75

    Google Scholar 

  • Hubbell, W. L., McConnell, H. M. 1968. Spin-label studies of the excitable membranes of nerve and muscle.Proc. Nat. Acad. Sci. 61:12

    PubMed  Google Scholar 

  • Hubbell, W. L., McConnell, H. M. 1971. Molecular motion in spin-labeled phospholipids and membranes.J. Amer. Chem. Soc. 93:314

    Google Scholar 

  • Jost, P. C., Griffith, O. H., Capaldi, R. A., Vanderkooi, G. 1973. Evidence for boundary lipid in membranes.Proc. Nat. Acad. Sci. 70:480

    PubMed  Google Scholar 

  • Jost, P., Libertini, L. J., Hebert, V. C., Griffith, O. H. 1971a. Lipid spin labels in lecithin multilayers. A study of motion along fatty acid chains.J. Mol. Biol. 59:77

    Article  PubMed  Google Scholar 

  • Jost, P., Waggoner, A. S., Griffith, O. H. 1971b. Spin labeling and membrane structure.In: The Structure and Function of Biological Membranes. L. I. Rothfield, editor. Ch. 3, p. 84. Academic Press Inc., New York

    Google Scholar 

  • Kabankin, A. S., Zhidomirov, G. M., Buchachenko, A. L. 1973. Structure of complexes of radicals with organic ligands.J. Magn. Reson. 9:199

    Google Scholar 

  • Karplus, M., Fraenkel, G. K. 1961. Theoretical interpretation of carbon-13 hyperfine interactions in electron spin resonance spectra.J. Chem. Phys. 35:1312

    Google Scholar 

  • Kawamura, T., Matsunami, S., Yonezawa, T. 1967. Solvent effects on theg-value of di-t-butyl nitric oxide.Bull. Chem. Soc. Japan 40:1111

    Google Scholar 

  • Lajzerowicz-Bonneteau, J. 1968. Structure du radical nitroxide tetramethyl-2,2,6,6-piperidinol-4-oxyle-1.Acta Cryst. B24:196

    Google Scholar 

  • Lemaire, H., Rassat, A. 1964. Structure hyperfine due a l'azote dans les radicaux nitroxydes.J. Chim. Phys. 61:1580

    Google Scholar 

  • Libertini, L. J., Griffith, O. H. 1970. Orientation dependence of the electron spin resonance spectrum of di-t-butyl nitroxide.J. Chem. Phys. 53:1359

    Google Scholar 

  • Libertini, L. J., Waggoner, A. S., Jost, P. C., Griffith, O. H. 1969. Orientation of lipid spin labels in lecithin multilayers.Proc. Nat. Acad. Sci. 64:13

    PubMed  Google Scholar 

  • Lim, Y. Y., Drago, R. S. 1971. Donor properties of a free-radical base.J. Amer. Chem. Soc. 93:891

    Google Scholar 

  • McConnell, H. M., McFarland, B. G. 1972. The flexibility gradient in biological membranes.Ann. N.Y. Acad. Sci. 195:207

    PubMed  Google Scholar 

  • Murata, Y., Mataga, N. 1971. ESR and optical studies on the EDA complexes of di-t-butyl N-oxide radical.Bull. Chem. Soc. Japan 44:354

    Google Scholar 

  • Mysels, K. J. 1959. Introduction to Colloid Chemistry. Ch. 15. Wiley-Interscience, New York

    Google Scholar 

  • Neumcke, B., Läuger, P. 1969. Nonlinear electrical effects in lipid bilayer membranes. II. Integration of the generalized Nernst-Planck equations.Biophys. J. 9:1160

    PubMed  Google Scholar 

  • Omura, T., Siekevitz, P., Palade, G. E. 1967. Turnover of constitutents of the endoplasmic reticulum membranes of rat hepatocytes.J. Biol. Chem. 242:2389

    PubMed  Google Scholar 

  • Onsager, L. 1936. Electric moments of molecules in liquids.J. Amer. Chem. Soc. 58:1486

    Google Scholar 

  • Pauling, L. 1960. The Nature of the Chemical Bond, Third Edition. p. 90. Cornell University Press, Ithaca, New York

    Google Scholar 

  • Perrin, D. D. 1963. Buffers of low ionic strength for spectrophotometric pK determinations.Aust. J. Chem. 16:572

    Google Scholar 

  • Rottem, S., Hubbell, W. J., Hayflick, L., McConnell, H. M. 1970. Motion of fatty acid spin labels in the plasma membrane of mycoplasma.Biochim. Biophys. Acta 219:104

    PubMed  Google Scholar 

  • Rozantsev, E. G. 1970. Free Nitroxyl Radicals. Plenum Press, New York

    Google Scholar 

  • Rozantsev, E. G., Sholle, V. D. 1971. Progress in the chemistry of nitroxyl radicals.Uspekhi Khimii 40:417. Eng. trans.:Russ. Chem. Rev. 40:233

    Google Scholar 

  • Seelig, J. 1970. Spin label studies of oriented smectic liquid crystals (A model system for bilayer membranes).J. Amer. Chem. Soc. 92:3881

    Google Scholar 

  • Seelig, J., Limacher, H., Bader, P. 1972. Molecular architecture of liquid crystalline bilayers.J. Amer. Chem. Soc. 94:6364

    Google Scholar 

  • Selinger, Z., Lapidot, Y. 1966. Synthesis of fatty acid anhydrides by reaction with dicyclohexylcarbodiimide.J. Lipid Res. 7:174

    PubMed  Google Scholar 

  • Singer, S. J. 1971. The molecular organization of biological membranes.In: The Structure and Function of Biological Membranes. L. I. Rothfield, editor. Ch. 4, p. 146. Academic Press Inc., New York

    Google Scholar 

  • Singer, S. J., Nicolson, G. L. 1972. The fluid mosaic model of the structure of cell membranes.Science 175:720

    PubMed  Google Scholar 

  • Steck, T. L., Fairbanks, G. F., Wallach, D. F. H. 1971. Disposition of the major proteins in the isolated erythrocyte membrane. Proteolytic dissection.Biochemistry 10:2617

    PubMed  Google Scholar 

  • Streitwieser, A. 1961. Molecular Orbital Theory. p. 47. John Wiley & Sons (Wiley-Interscience), New York

    Google Scholar 

  • Sysoeva, N. A., Stepanyants, A. U., Buchachenko, A. L. 1968. Paramagnetic shift of solvent protons in the presence of organic radicals.Z. Struk. Khimii 9:311. Eng. trans.:J. Struct. Chem. 9:248

    Google Scholar 

  • Thompson, T. E., Henn, F. A. 1970. Experimental phospholipid model membranes.In: Membranes of Mitochondria and Chloroplasts. E. Racker, editor. Ch. 1, p. 1. Van Nostrand Reinhold Co., New York

    Google Scholar 

  • Vanderkooi, G., Green, D. W. 1971. New insights into biological membrane structure.Bio Science 21:409

    Google Scholar 

  • Vasserman, A. M., Buchachenko, A. L. 1966. The EPR spectra and electronic structure of nitric oxide radicals.Z. Struk. Khimii 7:673. Eng. trans.:J. Struct. Chem. 7:633

    Google Scholar 

  • Waggoner, A. S., Griffith, O. H., Christensen, C. R. 1967. Magnetic resonance of nitroxide probes in micelle-containing solutions.Proc. Nat. Acad. Sci. 57:1198

    Google Scholar 

  • Waggoner, A. S., Keith, A. D., Griffith, O. H. 1968. ESR of solubilized long-chain nitroxides.J. Phys. Chem. 72:4129

    Google Scholar 

  • Waggoner, A. S., Kingzett, T. J., Rottschaefer, S., Griffith, O. H., Keith, A. D. 1969. A spin-labeled lipid for probing biological membranes.Chem. Phys. Lipids 3:245

    PubMed  Google Scholar 

  • Weast, R. C., editor. 1972. Handbook of Chemistry and Physics, 53rd Edition. The Chemical Rubber Co., Cleveland Ohio

    Google Scholar 

  • Wertz, J. E., Bolton, J. R. 1972. Electron Spin Resonance. p. 125. McGraw-Hill Book Co., Inc., New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffith, O.H., Dehlinger, P.J. & Van, S.P. Shape of the hydrophobic barrier of phospholipid bilayers (Evidence for water penetration in biological membranes). J. Membrain Biol. 15, 159–192 (1974). https://doi.org/10.1007/BF01870086

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870086

Keywords

Navigation