Skip to main content
Log in

Effects of NMDA-Receptor Antagonist on the Expressions of Bcl-2 and Bax in the Subventricular Zone of Neonatal Rats with Hypoxia–Ischemia Brain Damage

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Neonatal hypoxia–ischemia brain damage is an important cause of death by affecting prognosis of neural diseases. It is difficult to find effective methods of prevention and treatment due to the complexity of its pathogenesis. N-methyl-d-aspartate (NMDA), as an excitotoxicity amino acids, has proven to play an important role in hypoxic–ischemic. However, the exact effects of the NMDA subunits, NR2A and NR2B, during hypoxic–ischemic have not been investigated in detail. Therefore, we sought to study whether the NMDA receptor antagonist could confer neuroprotective effects in a neonatal rat hypoxia–ischemia model. The effects of intraperitoneal injections of different drugs, namely MK-801 (0.5 mg/kg), NVP-AAM077 (5 mg/kg), and Ro25-6981 (5 mg/kg), on the expressions of anti-apoptotic protein Bcl-2 and apoptosis protein Bax in the subventricular zone were analyzed by immunohistochemical staining to explore the roles of NMDA subunits (NR2A and NR2B) in hypoxic–ischemic. We found that the NR2B antagonist (Ro25-6981) could inhibit hypoxic–ischemic with the increasing Bcl-2 expression. NR2A antagonists (NVP-AAM077) can increase cerebral hypoxia–ischemia in neonatal rats, promoting the expression of apoptotic protein Bax.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abend, N. S., & Licht, D. J. (2008). Predicting outcome in children with hypoxic ischemic encephalopathy. Pediatric Critical Care Medicine, 9, 32–39.

    PubMed  Google Scholar 

  2. Abrous, D. N., Koehl, M., & Le Moal, M. (2005). Adult neurogenesis: From precursors to network and physiology. Physiological Reviews, 85, 523–569.

    Article  CAS  PubMed  Google Scholar 

  3. Brewer, L. D., Thibault, O., Staton, J., Thibault, V., Rogers, J. T., Garcia-Ramos, G., et al. (2007). Increased vulnerability of hippocampal neurons with age in culture: Temporal association with increases in NMDA receptor current, NR2A subunit expression and recruitment of L-type calcium channels. Brain Research, 1151, 20–31.

    Article  CAS  PubMed  Google Scholar 

  4. Chao, C. P., Zaleski, C. G., & Patton, A. C. (2006). Neonatal hypoxic-ischemic encephalopathy: multimodality imaging findings. Radiographics, 26, S159–S172.

    Article  PubMed  Google Scholar 

  5. Chen, M., Lu, T. J., Chen, X. J., Zhou, Y., Chen, Q., Feng, X. Y., et al. (2008). Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance. Stroke, 39, 3042–3048.

    Article  CAS  PubMed  Google Scholar 

  6. Chipuk, J. E., & Green, D. R. (2008). How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends in Cell Biology, 18, 157–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Choi, D. W. (1992). Excitotoxic cell death. Journal of Neurobiology, 23, 1261–1276.

    Article  CAS  PubMed  Google Scholar 

  8. Choi, D. W. (1995). Calcium : Still center-stage in hypoxic-ischemic neuronal death. Trends in Neurosciences, 18, 58–60.

    Article  CAS  PubMed  Google Scholar 

  9. Choi, D. W., & Koh, J. Y. (1998). Zinc and brain injury. Annual Review of Neuroscience, 21, 347–375.

    Article  CAS  PubMed  Google Scholar 

  10. Cooper, D. J. (2011). Induced hypothermia for neonatal hypoxic-ischemic encephalopathy: Pathophysiology, current treatment, and nursing considerations. Neonatal. Netw., 30, 29–35.

    Article  PubMed  Google Scholar 

  11. Ghibelli, L., & Diederich, M. (2010). Multistep and multitask Bax activation. Mitochondrion, 10, 604–613.

    Article  CAS  PubMed  Google Scholar 

  12. Greer, D. M. (2006). Mechanisms of injury in hypoxic-ischemic encephalopathy: Implications to therapy. Seminars in Neurology, 26, 373–379.

    Article  PubMed  Google Scholar 

  13. Kinnally, K. W., & Antonsson, B. (2007). A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis, 12, 857–868.

    Article  CAS  PubMed  Google Scholar 

  14. Lam, M., Dubyak, G., Chen, L., Nuñez, G., Miesfeld, R. L., & Distelhorst, C. W. (1994). Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes. Proceedings of the National Academy of Sciences of the United States of America, 91, 6569–6573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, J. M., Zipfel, G. J., & Choi, D. W. (1999). The changing landscape of ischaemic brain injury mechanisms. Nature, 399, A7–A14.

    Article  CAS  PubMed  Google Scholar 

  16. Levison, S. W., Rothstein, R. P., Romanko, M. J., Snyder, M. J., Meyers, R. L., & Vannucci, S. J. (2001). Hypoxia-ischemia depletes the rat perinatal subventricular zone of oligodendrocyte progenitors and neural stem cells. Devel. Neurosci., 23, 234–247.

    Article  CAS  Google Scholar 

  17. Li, Y. Z., Lu, D. Y., Tan, W. Q., Wang, J. X., & Li, P. F. (2008). p53 initiates apoptosis by transcriptionally targeting the antiapoptoic protein ARC. Molecular and Cellular Biology, 28, 564–574.

    Article  CAS  PubMed  Google Scholar 

  18. Liu, Y., Wong, T. P., Aarts, M., Rooyakkers, A., Liu, L., Lai, T. W., et al. (2007). Nmda receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. Journal of Neuroscience, 27, 2846–2857.

    Article  CAS  PubMed  Google Scholar 

  19. Luo, C., Zhu, C., Jiang, J., Lu, Y., Zhang, G., Yuan, G., et al. (1999). Alterations of bcl-2, bcl-x and bax protein expression in area CA-3 of rat hippocampus following fluid percussion brain injury. Chin. J. Traumatol., 2, 101–104.

    CAS  PubMed  Google Scholar 

  20. Martin, H. G., & Wang, Y. T. (2010). Blocking the deadly effects of the NMDA receptor in stroke. Cell, 140, 174–176.

    Article  CAS  PubMed  Google Scholar 

  21. Olney, J. W. (2003). Excitotoxicity, apoptosis and neuropsychiatric disorders. Current Opinion in Pharmacology, 3, 101–109.

    Article  CAS  PubMed  Google Scholar 

  22. Racay, P., Tatarkova, Z., Chomova, M., Hatok, J., Kaplan, P., & Dobrota, D. (2009). Mitochondrial calcium transport and mitochondrial dysfunction after global brain ischemia in rat hippocampus. Neurochemical Research, 34, 1469–1478.

    Article  CAS  PubMed  Google Scholar 

  23. Rothman, S. M., & Olney, J. W. (1995). Excitotoxicity and the NMDA receptor-still lethal after eight years. Trends in Neurosciences, 18, 57–58.

    CAS  PubMed  Google Scholar 

  24. Savignon, T., Costa, E., Tenorio, F., Manhães, A. C., & Barradas, P. C. (2012). Prenatal hypoxic-ischemic insult changes the distribution and number of NADPH-diaphorase cells in the cerebellum. PLoS ONE, 7(4), e35786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Scott, I., & Youle, R. J. (2010). Mitochondrial fission and fusion. essays. Biochem., 47, 85–98.

    CAS  Google Scholar 

  26. Sheng, M., & Kim, M. J. (2002). Postsynaptic signaling and plasticity mechanisms. Science, 298, 776–780.

    Article  CAS  PubMed  Google Scholar 

  27. Siesjo, B. K. (1989). Calcium and cell death. Magnesium, 8, 223–237.

    CAS  PubMed  Google Scholar 

  28. Vannucci, R. C. (2000). Hypoxic-ischemic encephalopathy. American Journal of Perinatology, 17, 112–113.

    Article  Google Scholar 

  29. Vannucci, R. C., & Vannucci, S. J. (2005). Perinatal hypoxic-ischemic brain damage: Evolution of an animal model. Developmental Neuroscience, 27, 81–86.

    Article  CAS  PubMed  Google Scholar 

  30. Walls, K. C., Ghosh, A. P., Ballestas, M. E., Klocke, B. J., & Roth, K. A. (2009). Bcl-2/Adenovirus E1B19-kd interacting protein 3(BNIP3) regulates hypoxia-induced neural precursor cell death. Journal of Neuropathology and Experimental Neurology, 68, 1326–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wiswedel, I., Gardemann, A., Storch, A., Peter, D., & Schild, L. (2010). Degradation of phospholipids by oxidative stress-exceptional significance of cardiolipin. Free. Radic. Res., 44, 135–145.

    Article  CAS  PubMed  Google Scholar 

  32. Zarch, A. V., Toroudi, H. P., Soleimani, M., Bakhtiarian, A., Katebi, M., & Djahanguiri, B. (2009). Neuroprotective effects of diazoxide and its antagonism by glibenclamide in pyramidal neurons of rat hippocampus subjected to ischemia-reperfusion-induced injury. International Journal of Neuroscience, 119(9), 1346–1361.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, M. Y., Fan, S. J., Li, L. P., Wu, B. Y., & Wang, Y. (2011). The anti-injury effect of breviscapine injection on the hypoxic ischemic brain damage of neonatal rats and the expression of Bcl-2 and Bax. Chinese Journal of Applied Physiology, 27, 196–200.

    PubMed  Google Scholar 

  34. Zhang, R., Xue, Y. Y., Lu, S. D., Wang, Y., Zhang, L. M., Huang, Y. L., et al. (2006). Bcl-2 enhances neurogenesis and inhibits apoptosis of newborn neurons in adult rat brain following a transient middle cerebral artery occlusion. Neurobio. Dis., 24, 345–356.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 81171141 to Tiejun Xu); this project was funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoxing Yin or Tiejun Xu.

Additional information

Hongbin Fan and Xiaoquan Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Li, X., Wang, W. et al. Effects of NMDA-Receptor Antagonist on the Expressions of Bcl-2 and Bax in the Subventricular Zone of Neonatal Rats with Hypoxia–Ischemia Brain Damage. Cell Biochem Biophys 73, 323–330 (2015). https://doi.org/10.1007/s12013-015-0586-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0586-8

Keywords

Navigation