Skip to main content

Advertisement

Log in

The Effect of Dexmedetomidine Post-treatment on the Inflammatory Response of Astrocyte Induced by Lipopolysaccharide

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

To explore the effect of dexmedetomidine (DEX) post-treatment on the inflammatory response of astrocyte induced by lipopolysaccharide (LPS). The astrocytes of neonatal mice were primarily cultured in vitro. After purification and identification, the cells were divided into five groups: group C: control group; group L: astrocytes were treated with 1 μg/ml LPS for 24 h; group D1, D2, and D3: astrocytes were pretreated with 1 μg/ml for 24 h LPS, and then cultured with low (0.1 μM), medium (1 μM), high (10 μM) concentration of DEX for 30 min, respectively. The cell survival rate was detected by cell counting kit. The expressions of inducible nitric oxide synthase (iNOS) mRNA, tumor necrosis gactor-α (TNF-α) mRNA, and interleukin-1β (IL-1β) mRNA were measured by RT-PCR in cell lysis solution of every group. The concentration of nitric oxide (NO) was detected by Griess method. The concentrations of IL-1β and TNF-α were measured, respectively, by enzyme-linked immuno sorbent assay. Compared with the group C, the expressions of iNOS mRNA, TNF-α mRNA, and IL-1βm RNA were significantly up-regulated, the release of NO, TNF-α, and IL-1β was significantly increased in group L (P < 0.05). Compared with group L, mRNA levels of inflammation-related factors and release of inflammatory factors were significantly down-regulated in group D2 and D3 (P < 0.05). There was no statistical difference between group D1 and group L. Pre-treatment with medium and high concentration of DEX can inhibit the LPS-induced inflammatory response of astrocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Choi, J. W., Gardell, S. E., Herr, D. R., et al. (2011). FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proceedings of the National Academy of Sciences, 108(2), 751–756.

    Article  CAS  Google Scholar 

  2. Allen, N. J., Bennett, M. L., Foo, L. C., et al. (2012). Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature, 486(7403), 410–414.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. De Pablo, Y., Nilsson, M., Pekna, M., et al. (2013). Intermediate filaments are important for astrocyte response to oxidative stress induced by oxygen-glucose deprivation and reperfusion. Histochemistry and Cell Biology, 140(1), 81–91.

    Article  PubMed  Google Scholar 

  4. Fulmer, C. G., VonDran, M. W., Stillman, A. A., et al. (2014). Astrocyte-derived BDNF supports myelin protein synthesis after Cuprizone-induced demyelination. The Journal of Neuroscience, 34(24), 8186–8196.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Abbott, N. J., Rönnbäck, L., & Hansson, E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience, 7(1), 41–53.

    Article  CAS  PubMed  Google Scholar 

  6. Haydon, P. G., & Carmignoto, G. (2006). Astrocyte control of synaptic transmission and neurovascular coupling. Physiological Reviews, 86(3), 1009–1031.

    Article  CAS  PubMed  Google Scholar 

  7. Seifert, G., Schilling, K., & Steinhäuser, C. (2006). Astrocyte dysfunction in neurological disorders: A molecular perspective. Nature Reviews Neuroscience, 7(3), 194–206.

    Article  CAS  PubMed  Google Scholar 

  8. Tan, J. A., & Ho, K. M. (2010). Use of dexmedetomidine as a sedative and analgesic agent in critically ill adult patients: A meta-analysis. Intensive Care Medicine, 36(6), 926–939.

    Article  CAS  PubMed  Google Scholar 

  9. Riker, R. R., Shehabi, Y., Bokesch, P. M., et al. (2009). Dexmedetomidine vs midazolam for sedation of critically ill patients: A randomized trial. JAMA, 301(5), 489–499.

    Article  CAS  PubMed  Google Scholar 

  10. Pandharipande, P. P., Pun, B. T., Herr, D. L., et al. (2007). Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: The MENDS randomized controlled trial. JAMA, 298(22), 2644–2653.

    Article  CAS  PubMed  Google Scholar 

  11. Yildiz, M., Tavlan, A., Tuncer, S., et al. (2006). Effect of dexmedetomidine on haemodynamic responses to laryngoscopy and intubation. Drugs in R & D, 7(1), 43–52.

    Article  CAS  Google Scholar 

  12. Jakob, S. M., Ruokonen, E., Grounds, R. M., et al. (2012). Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: Two randomized controlled trials. JAMA, 307(11), 1151–1160.

    Article  CAS  PubMed  Google Scholar 

  13. Gurbet, A., Basagan-Mogol, E., Turker, G., et al. (2006). Intraoperative infusion of dexmedetomidine reduces perioperative analgesic requirements. Canadian Journal of Anesthesia, 53(7), 646–652.

    Article  PubMed  Google Scholar 

  14. Arain, S. R., Ruehlow, R. M., Uhrich, T. D., et al. (2004). The efficacy of dexmedetomidine versus morphine for postoperative analgesia after major inpatient surgery. Anesthesia and Analgesia, 98(1), 153–158.

    Article  CAS  PubMed  Google Scholar 

  15. Shehabi, Y., Ruettimann, U., Adamson, H., et al. (2004). Dexmedetomidine infusion for more than 24 hours in critically ill patients: Sedative and cardiovascular effects. Intensive Care Medicine, 30(12), 2188–2196.

    Article  PubMed  Google Scholar 

  16. Hofer, R. E., Sprung, J., Sarr, M. G., et al. (2005). Anesthesia for a patient with morbid obesity using dexmedetomidine without narcotics. Canadian Journal of Anesthesia, 52(2), 176–180.

    Article  PubMed  Google Scholar 

  17. Can, M., Gul, S., Bektas, S., et al. (2009). Effects of dexmedetomidine or methylprednisolone on inflammatory responses in spinal cord injury. Acta Anaesthesiologica Scandinavica, 53(8), 1068–1072.

    Article  CAS  PubMed  Google Scholar 

  18. Memiş, D., Hekimoğlu, S., Vatan, I., et al. (2007). Effects of midazolam and dexmedetomidine on inflammatory responses and gastric intramucosal pH to sepsis, in critically ill patients. British Journal of Anaesthesia, 98(4), 550–552.

    Article  PubMed  Google Scholar 

  19. Paris, A., Mantz, J., Tonner, P. H., et al. (2006). The effects of dexmedetomidine on perinatal excitotoxic brain injury are mediated by the α2A-adrenoceptor subtype. Anesthesia and Analgesia, 102(2), 456–461.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, X., Wang, J., Qian, W., et al. (2014). Dexmedetomidine inhibits tumor necrosis factor-alpha and interleukin 6 in lipopolysaccharide-stimulated astrocytes by suppression of c-Jun N-terminal kinases. Inflammation, 37(3), 942–949.

    Article  CAS  PubMed  Google Scholar 

  21. Font-Nieves, M., et al. (2012). Induction of COX-2 enzyme and down-regulation of COX-1 expression by lipopolysaccharide (LPS) control prostaglandin E2 production in astrocytes. Journal of Biological Chemistry, 287(9), 6454–6468.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Gu, L., Hertz, L., & Peng, L. (2013). Dexmedetomidine causes neuroprotection via astrocytic α2-adrenergic receptor stimulation and HB-EGF release. Journal of Anesthesiology and Clinical Research, 2(1), 6–14.

    Article  Google Scholar 

  23. Ayoglu, H., Gul, S., Hanci, V., et al. (2010). The effects of dexmedetomidine dosage on cerebral vasospasm in a rat subarachnoid haemorrhage model. Journal of Clinical Neuroscience, 17(6), 770–773.

    Article  CAS  PubMed  Google Scholar 

  24. Bélanger, M., Allaman, I., & Magistretti, P. J. (2011). Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metabolism, 14(6), 724–738.

    Article  PubMed  Google Scholar 

  25. Chorney, S. R., Gooch, M. E., Oberdier, M. T., et al. (2012). The safety and efficacy of dexmedetomidine for postoperative sedation in the cardiac surgery intensive care unit. HSR proceedings in intensive care & cardiovascular anesthesia, 5(1), 17–24.

    Google Scholar 

  26. Roberson, D. B., & Riddle, J. D. (2013). The impact of intra-operative dexmedetomidine infusion on immediate postoperative pain: A systematic review protocol. The JBI Database of Systematic Reviews and Implementation Reports, 11(10), 42–54.

    Article  Google Scholar 

  27. Huang, Y., Lu, Y., Zhang, L., et al. (2014). Perineural dexmedetomidine attenuates inflammation in rat sciatic nerve via the NF-κB pathway. International Journal of Molecular Sciences, 15(3), 4049–4059.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Xiang, H., Hu, B., Li, Z., et al. (2014). Dexmedetomidine controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Inflammation, 37(5), 1763–1770.

  29. Yi, J. W., Lee, B. J., Choi, I. Y., et al. (2013). Dexmedetomidine alleviates short-term memory impairment through inhibiting apoptosis in the hippocampus following transient cerebral ischemia in gerbils: 7AP3-2. European Journal of Anaesthesiology (EJA), 30, 107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenzhou He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, C., Wang, Z., Tang, J. et al. The Effect of Dexmedetomidine Post-treatment on the Inflammatory Response of Astrocyte Induced by Lipopolysaccharide. Cell Biochem Biophys 71, 407–412 (2015). https://doi.org/10.1007/s12013-014-0213-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0213-0

Keywords

Navigation