Skip to main content
Log in

Intermediate filaments are important for astrocyte response to oxidative stress induced by oxygen–glucose deprivation and reperfusion

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

As a response to central nervous system injury, astrocytes become reactive. Two cellular hallmarks of reactive gliosis are hypertrophy of astrocyte processes and upregulation of intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP), vimentin, nestin, and synemin. Astrocytes in mice devoid of GFAP and vimentin (GFAP / Vim /) do not form cytoplasmic intermediate filaments. GFAP / Vim / mice develop larger infarcts after ischemic stroke (Li et al. in J Cereb Blood Flow Metab 28(3):468–481, 2008). Here, we attempted to analyze the underlying mechanisms using oxygen–glucose deprivation (OGD), an in vitro ischemia model, examining a potential link between astrocyte intermediate filaments and reactive oxygen species (ROS). We observed a reorganization of the intermediate filament network in astrocytes exposed to OGD. ROS accumulation was higher in GFAP / Vim / than wild-type astrocytes when exposed to OGD followed by reperfusion or when exposed to hydrogen peroxide. These results indicate that the elimination of ROS is impaired in the absence of the intermediate filament system. Compared to wild-type astrocytes, GFAP / Vim / astrocytes exposed to OGD and reperfusion exhibited increased cell death and conferred lower degree of protection to cocultured neurons. We conclude that the astrocyte intermediate filament system is important for the cell response to oxidative stress induced by OGD followed by reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acarin L, Peluffo H, Barbeito L, Castellano B, Gonzalez B (2005) Astroglial nitration after postnatal excitotoxic damage: correlation with nitric oxide sources, cytoskeletal, apoptotic and antioxidant proteins. J Neurotrauma 22(1):189–200

    Article  PubMed  Google Scholar 

  • Almeida A, Delgado-Esteban M, Bolanos JP, Medina JM (2002) Oxygen and glucose deprivation induces mitochondrial dysfunction and oxidative stress in neurones but not in astrocytes in primary culture. J Neurochem 81(2):207–217

    Article  PubMed  CAS  Google Scholar 

  • Anderson MF, Blomstrand F, Blomstrand C, Eriksson PS, Nilsson M (2003) Astrocytes and stroke: networking for survival? Neurochem Res 28(2):293–305

    Article  PubMed  CAS  Google Scholar 

  • Bondarenko A, Chesler M (2001) Rapid astrocyte death induced by transient hypoxia, acidosis, and extracellular ion shifts. Glia 34(2):134–142

    Article  PubMed  CAS  Google Scholar 

  • Chen SC, Huang B, Liu YC, Shyu KG, Lin PY, Wang DL (2008) Acute hypoxia enhances proteins’ S-nitrosylation in endothelial cells. Biochem Biophys Res Commun 377(4):1274–1278

    Article  PubMed  CAS  Google Scholar 

  • Cho KS, Yang L, Lu B, Feng Ma H, Huang X, Pekny M, Chen DF (2005) Re-establishing the regenerative potential of central nervous system axons in postnatal mice. J Cell Sci 118(Pt 5):863–872

    Article  PubMed  CAS  Google Scholar 

  • Clarkson AN, Huang BS, Macisaac SE, Mody I, Carmichael ST (2010) Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468(7321):305–309

    Article  PubMed  CAS  Google Scholar 

  • Colucci-Guyon E, Gimenez YRM, Maurice T, Babinet C, Privat A (1999) Cerebellar defect and impaired motor coordination in mice lacking vimentin. Glia 25(1):33–43

    Article  PubMed  CAS  Google Scholar 

  • Ding M, Eliasson C, Betsholtz C, Hamberger A, Pekny M (1998) Altered taurine release following hypotonic stress in astrocytes from mice deficient for GFAP and vimentin. Brain Res Mol Brain Res 62(1):77–81

    Article  PubMed  CAS  Google Scholar 

  • Eliasson C, Sahlgren C, Berthold CH, Stakeberg J, Celis JE, Betsholtz C, Eriksson JE, Pekny M (1999) Intermediate filament protein partnership in astrocytes. J Biol Chem 274(34):23996–24006

    Article  PubMed  CAS  Google Scholar 

  • Eriksson JE, Dechat T, Grin B, Helfand B, Mendez M, Pallari HM, Goldman RD (2009) Introducing intermediate filaments: from discovery to disease. J Clin Invest 119(7):1763–1771

    Article  PubMed  CAS  Google Scholar 

  • Herrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK, Korsak RA, Takeda K, Akira S, Sofroniew MV (2008) STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 28(28):7231–7243

    Article  PubMed  CAS  Google Scholar 

  • Jarlestedt K, Rousset CI, Faiz M, Wilhelmsson U, Stahlberg A, Sourkova H, Pekna M, Mallard C, Hagberg H, Pekny M (2010) Attenuation of reactive gliosis does not affect infarct volume in neonatal hypoxic-ischemic brain injury in mice. PLoS One 5 (4):e10397

    Google Scholar 

  • Jing R, Wilhelmsson U, Goodwill W, Li L, Pan Y, Pekny M, Skalli O (2007) Synemin is expressed in reactive astrocytes in neurotrauma and interacts differentially with vimentin and GFAP intermediate filament networks. J Cell Sci 120(Pt 7):1267–1277

    Article  PubMed  CAS  Google Scholar 

  • Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295(4):C849–C868

    Article  PubMed  CAS  Google Scholar 

  • Jones DP, Go YM (2010) Redox compartmentalization and cellular stress. Diabetes Obes Metab 12(Suppl 2):116–125

    Article  PubMed  CAS  Google Scholar 

  • Jones EV, Cook D, Murai KK (2011) A neuron-astrocyte co-culture system to investigate astrocyte-secreted factors in mouse neuronal development. Methods Mol Biol 814:341–352

    Article  Google Scholar 

  • Kaneko K, Nakamura A, Yoshida K, Kametani F, Higuchi K, Ikeda S (2002) Glial fibrillary acidic protein is greatly modified by oxidative stress in aceruloplasminemia brain. Free Radic Res 36(3):303–306

    Article  PubMed  CAS  Google Scholar 

  • Kinouchi R, Takeda M, Yang L, Wilhelmsson U, Lundkvist A, Pekny M, Chen DF (2003) Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin. Nat Neurosci 6(8):863–868

    Article  PubMed  CAS  Google Scholar 

  • Kraft AW, Hu X, Yoon H, Yan P, Xiao Q, Wang Y, Gil SC, Brown J, Wilhelmsson U, Restivo JL, Cirrito JR, Holtzman DM, Kim J, Pekny M, Lee JM (2013) Attenuating astrocyte activation accelerates plaque pathogenesis in APP/PS1 mice. Faseb J 27(1):187–198

    Article  PubMed  CAS  Google Scholar 

  • Lepekhin EA, Eliasson C, Berthold CH, Berezin V, Bock E, Pekny M (2001) Intermediate filaments regulate astrocyte motility. J Neurochem 79(3):617–625

    Article  PubMed  CAS  Google Scholar 

  • Leski ML, Bao F, Wu L, Qian H, Sun D, Liu D (2001) Protein and DNA oxidation in spinal injury: neurofilaments—an oxidation target. Free Radic Biol Med 30(6):613–624

    Article  PubMed  CAS  Google Scholar 

  • Li L, Lundkvist A, Andersson D, Wilhelmsson U, Nagai N, Pardo AC, Nodin C, Stahlberg A, Aprico K, Larsson K, Yabe T, Moons L, Fotheringham A, Davies I, Carmeliet P, Schwartz JP, Pekna M, Kubista M, Blomstrand F, Maragakis N, Nilsson M, Pekny M (2008) Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 28(3):468–481

    Article  PubMed  Google Scholar 

  • Lin JH, Weigel H, Cotrina ML, Liu S, Bueno E, Hansen AJ, Hansen TW, Goldman S, Nedergaard M (1998) Gap-junction-mediated propagation and amplification of cell injury. Nat Neurosci 1(6):494–500

    Article  PubMed  CAS  Google Scholar 

  • Lu YB, Iandiev I, Hollborn M, Korber N, Ulbricht E, Hirrlinger PG, Pannicke T, Wei EQ, Bringmann A, Wolburg H, Wilhelmsson U, Pekny M, Wiedemann P, Reichenbach A, Kas JA (2011) Reactive glial cells: increased stiffness correlates with increased intermediate filament expression. Faseb J 25(2):624–631

    Article  PubMed  CAS  Google Scholar 

  • Lundkvist A, Reichenbach A, Betsholtz C, Carmeliet P, Wolburg H, Pekny M (2004) Under stress, the absence of intermediate filaments from Muller cells in the retina has structural and functional consequences. J Cell Sci 117(Pt 16):3481–3488

    Article  PubMed  CAS  Google Scholar 

  • Macauley SL, Pekny M, Sands MS (2011) The role of attenuated astrocyte activation in infantile neuronal ceroid lipofuscinosis. J Neurosci 31(43):15575–15585

    Article  PubMed  CAS  Google Scholar 

  • Menet V, Prieto M, Privat A, Gimenez y Ribotta M (2003) Axonal plasticity and functional recovery after spinal cord injury in mice deficient in both glial fibrillary acidic protein and vimentin genes. Proc Natl Acad Sci USA 100(15):8999–9004

    Article  PubMed  CAS  Google Scholar 

  • Nakase T, Fushiki S, Naus CC (2003) Astrocytic gap junctions composed of connexin 43 reduce apoptotic neuronal damage in cerebral ischemia. Stroke 34(8):1987–1993

    Article  PubMed  Google Scholar 

  • Nakazawa T, Takeda M, Lewis GP, Cho KS, Jiao J, Wilhelmsson U, Fisher SK, Pekny M, Chen DF, Miller JW (2007) Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin. Invest Ophthalmol Vis Sci 48(6):2760–2768

    Article  PubMed  Google Scholar 

  • Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A, Iwamoto Y, Toyama Y, Okano H (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12(7):829–834

    Article  PubMed  CAS  Google Scholar 

  • Ouyang YB, Giffard RG (2003) Bcl-XL maintains mitochondrial function in murine astrocytes deprived of glucose. J Cereb Blood Flow Metab 23(3):275–279

    Article  PubMed  CAS  Google Scholar 

  • Pallari HM, Eriksson JE (2006) Intermediate filaments as signaling platforms. Sci STKE 2006 (366):pe53

  • Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A (2012) Glial cells in (patho)physiology. J Neurochem 121(1):4–27

    Article  PubMed  CAS  Google Scholar 

  • Pekna M, Pekny M, Nilsson M (2012) Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke 43(10):2819–2828

    Article  PubMed  Google Scholar 

  • Pekny M, Lane EB (2007) Intermediate filaments and stress. Exp Cell Res 313(10):2244–2254

    Article  PubMed  CAS  Google Scholar 

  • Pekny M, Nilsson M (2005) Astrocyte activation and reactive gliosis. Glia 50(4):427–434

    Article  PubMed  Google Scholar 

  • Pekny M, Pekna M (2004) Astrocyte intermediate filaments in CNS pathologies and regeneration. J Pathol 204(4):428–437

    Article  PubMed  CAS  Google Scholar 

  • Pekny M, Leveen P, Pekna M, Eliasson C, Berthold CH, Westermark B, Betsholtz C (1995) Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J 14(8):1590–1598

    PubMed  CAS  Google Scholar 

  • Pekny M, Eliasson C, Chien CL, Kindblom LG, Liem R, Hamberger A, Betsholtz C (1998) GFAP-deficient astrocytes are capable of stellation in vitro when cocultured with neurons and exhibit a reduced amount of intermediate filaments and an increased cell saturation density. Exp Cell Res 239(2):332–343

    Article  PubMed  CAS  Google Scholar 

  • Pekny M, Eliasson C, Siushansian R, Ding M, Dixon SJ, Pekna M, Wilson JX, Hamberger A (1999a) The impact of genetic removal of GFAP and/or vimentin on glutamine levels and transport of glucose and ascorbate in astrocytes. Neurochem Res 24(11):1357–1362

    Article  PubMed  CAS  Google Scholar 

  • Pekny M, Johansson CB, Eliasson C, Stakeberg J, Wallen A, Perlmann T, Lendahl U, Betsholtz C, Berthold CH, Frisen J (1999b) Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J Cell Biol 145(3):503–514

    Article  PubMed  CAS  Google Scholar 

  • Pekny M, Porrit M, de Pablo Y, Pekna M, Wilhelmsson U (2013) Reactive astrocytes, astrocyte intermediate filament proteins, and their role in the disease pathogenesis. In: Dernietzel R (ed) The cytoskeleton: imaging, isolation, and interaction, vol 79. Springer protocols, pp 299–319

  • Perry G, Raina AK, Nunomura A, Wataya T, Sayre LM, Smith MA (2000) How important is oxidative damage? Lessons from Alzheimer’s disease. Free Radic Biol Med 28(5):831–834

    Article  PubMed  CAS  Google Scholar 

  • Puschmann TB, Zanden C, De Pablo Y, Kirchhoff F, Pekna M, Liu J, Pekny M (2013) Bioactive 3D cell culture system minimizes cellular stress and maintains the in vivo-like morphological complexity of astroglial cells. Glia 61(3):432–440

    Article  PubMed  Google Scholar 

  • Rey-Funes M, Ibarra ME, Dorfman VB, Serrano J, Fernandez AP, Martinez-Murillo R, Martinez A, Coirini H, Rodrigo J, Loidl CF (2011) Hypothermia prevents nitric oxide system changes in retina induced by severe perinatal asphyxia. J Neurosci Res 89(5):729–743

    Article  PubMed  CAS  Google Scholar 

  • Rogers KR, Morris CJ, Blake DR (1989) Cytoskeletal rearrangement by oxidative stress. Int J Tissue React 11(6):309–314

    PubMed  CAS  Google Scholar 

  • Rogers KR, Morris CJ, Blake DR (1991) Oxidation of thiol in the vimentin cytoskeleton. Biochem J 275(Pt 3):789–791

    PubMed  CAS  Google Scholar 

  • Romero-Ramos M, Venero JL, Garcia-Rodriguez S, Ayala A, Machado A, Cano J (2003) Semichronic inhibition of glutathione reductase promotes oxidative damage to proteins and induces both transcription and translation of tyrosine hydroxylase in the nigrostriatal system. Free Radic Res 37(9):1003–1012

    Article  PubMed  CAS  Google Scholar 

  • Sahlgren CM, Pallari HM, He T, Chou YH, Goldman RD, Eriksson JE (2006) A nestin scaffold links Cdk5/p35 signaling to oxidant-induced cell death. EMBO J 25(20):4808–4819

    Article  PubMed  CAS  Google Scholar 

  • Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21(1):172–188

    Article  PubMed  Google Scholar 

  • Smith MA, Rudnicka-Nawrot M, Richey PL, Praprotnik D, Mulvihill P, Miller CA, Sayre LM, Perry G (1995) Carbonyl-related posttranslational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer’s disease. J Neurochem 64(6):2660–2666

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32(12):638–647

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    Article  PubMed  Google Scholar 

  • Spurny R, Abdoulrahman K, Janda L, Runzler D, Kohler G, Castanon MJ, Wiche G (2007) Oxidation and nitrosylation of cysteines proximal to the intermediate filament (IF)-binding site of plectin: effects on structure and vimentin binding and involvement in IF collapse. J Biol Chem 282(11):8175–8187

    Article  PubMed  CAS  Google Scholar 

  • Suarez I, Bodega G, Rubio M, Fernandez B (2009) Induction of NOS and nitrotyrosine expression in the rat striatum following experimental hepatic encephalopathy. Metab Brain Dis 24(3):395–408

    Article  PubMed  CAS  Google Scholar 

  • Sugawara T, Chan PH (2003) Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal 5(5):597–607

    Article  PubMed  CAS  Google Scholar 

  • Verardo MR, Lewis GP, Takeda M, Linberg KA, Byun J, Luna G, Wilhelmsson U, Pekny M, Chen DF, Fisher SK (2008) Abnormal reactivity of Muller cells after retinal detachment in mice deficient in GFAP and vimentin. Invest Ophthalmol Vis Sci 49(8):3659–3665

    Article  PubMed  Google Scholar 

  • Wang R, Zhang X, Zhang J, Fan Y, Shen Y, Hu W, Chen Z (2012) Oxygen–glucose deprivation induced glial scar-like change in astrocytes. PLoS One 7 (5):e37574

    Google Scholar 

  • Widestrand A, Faijerson J, Wilhelmsson U, Smith PL, Li L, Sihlbom C, Eriksson PS, Pekny M (2007) Increased neurogenesis and astrogenesis from neural progenitor cells grafted in the hippocampus of GFAP−/− Vim−/− mice. Stem Cells 25(10):2619–2627

    Article  PubMed  CAS  Google Scholar 

  • Wilhelmsson U, Li L, Pekna M, Berthold CH, Blom S, Eliasson C, Renner O, Bushong E, Ellisman M, Morgan TE, Pekny M (2004) Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J Neurosci 24(21):5016–5021

    Article  PubMed  CAS  Google Scholar 

  • Wilhelmsson U, Bushong EA, Price DL, Smarr BL, Phung V, Terada M, Ellisman MH, Pekny M (2006) Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci USA 103(46):17513–17518

    Article  PubMed  CAS  Google Scholar 

  • Wilhelmsson U, Faiz M, de Pablo Y, Sjoqvist M, Andersson D, Widestrand A, Potokar M, Stenovec M, Smith PL, Shinjyo N, Pekny T, Zorec R, Stahlberg A, Pekna M, Sahlgren C, Pekny M (2012) Astrocytes negatively regulate neurogenesis through the Jagged1-mediated Notch pathway. Stem Cells 30(10):2320–2329

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ulrika Wilhelmsson and Dr. Noriko Shinjyo for their comments on the manuscript and Anna Stokowska for help with the statistical analysis. This work was supported by the Swedish Medical Research Council (project 11548), AFA Research Foundation, ALF Göteborg (project 11392), Sten A. Olsson Foundation for Research and Culture, Söderberg Foundations, Hjärnfonden, the Swedish Stroke Foundation, the Swedish Society for Medical Research, the Free Mason Foundation, Amlöv’s Foundation, E. Jacobson’s Donation Fund, NanoNet COST Action (BM1002), the EU FP 7 Program EduGlia (237956), and the EU FP 7 Program TargetBraIn (279017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yolanda de Pablo or Milos Pekny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Pablo, Y., Nilsson, M., Pekna, M. et al. Intermediate filaments are important for astrocyte response to oxidative stress induced by oxygen–glucose deprivation and reperfusion. Histochem Cell Biol 140, 81–91 (2013). https://doi.org/10.1007/s00418-013-1110-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1110-0

Keywords

Navigation