Skip to main content
Log in

Chemoresistance to Temozolomide in Human Glioma Cell Line U251 is Associated with Increased Activity of O 6-methylguanine-DNA Methyltransferase and Can be Overcome by Metronomic Temozolomide Regimen

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Temozolomide (TMZ) is a novel cytotoxic alkylating agent for chemotherapy of malignant gliomas. However, intrinsic or acquired resistance to TMZ often defines poor efficacy of chemotherapy in malignant gliomas. A growing number of studies indicate that expression of O 6-methylguanine-DNA methyltransferase (MGMT) is one of the principal mechanisms responsible for this chemoresistance. In the present study, we evaluated the relationship between expression of MGMT and resistance to TMZ. We generated a TMZ-resistant cell line, U251/TR, by stepwise (8 months) exposure of parental U251 cells to TMZ. The resistance to TMZ was quantified using SRB assay. MGMT expression was evaluated at mRNA (RT-PCR) and protein (Western blot) levels. U251/TR cells showed increased (~ sevenfold) resistance to TMZ. The MGMT expression (both mRNA and protein) was significantly (P < 0.01) increased in U251/TR cells compared with parental U251 cells. Further, MGMT expression fluctuated during exposure of U251/TR cells to TMZ. The resistance of U251/TR cells to TMZ could be overcome by application of elevated doses of TMZ when MGMT expression was at the lowest level. In conclusion, our results demonstrate that the primary mechanism responsible for resistance of U251/TR cells to TMZ is associated with increased expression of MGMT. Resistance of malignant gliomas to TMZ can be overcome by synchronizing metronomic TMZ regimen with MGMT expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ohgaki, H., & Kleihues, P. (2005). Epidemiology and etiology of gliomas. Acta Neuropathologica, 109, 93–108. doi:10.1007/s00401-005-0991-y.

    Article  PubMed  Google Scholar 

  2. Palanichamy, K., Erkkinen, M., & Chakravarti, A. (2006). Predictive and prognostic markers in human glioblastomas. Current Treatment Options in Oncology, 7, 490–504.

    Article  PubMed  Google Scholar 

  3. Grauer, O. M., Wesseling, P., & Adema, G. J. (2009). Immunotherapy of diffuse gliomas: Biological background, current status and future developments. Brain Pathology, 19, 674–693. doi:10.1111/j.1750-3639.2009.00315.x.

    Article  PubMed  CAS  Google Scholar 

  4. Gao, S., Yang, X. J., Zhang, W. G., et al. (2009). Mechanism of thalidomide to enhance cytotoxicity of temozolomide in U251-MG glioma cells in vitro. Chinese Medical Journal (English Edition), 122, 1260–1266.

    CAS  Google Scholar 

  5. Ma, J., Murphy, M., O’Dwyer, P. J., et al. (2002). Biochemical changes associated with a multidrug-resistant phenotype of a human glioma cell line with temozolomide-acquired resistance. Biochemical Pharmacology, 63, 1219–1228.

    Article  PubMed  CAS  Google Scholar 

  6. Middleton, M. R., Grob, J. J., Aaronson, N., et al. (2000). Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. Journal of Clinical Oncology, 18, 158–166.

    PubMed  CAS  Google Scholar 

  7. Hammond, L. A., Eckardt, J. R., Baker, S. D., et al. (1999). Phase I and pharmacokinetic study of temozolomide on a daily-for-5-days schedule in patients with advanced solid malignancies. Journal of Clinical Oncology, 17, 2604–2613.

    PubMed  CAS  Google Scholar 

  8. Hegi, M. E., Diserens, A. C., Godard, S., et al. (2004). Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clinical Cancer Research, 10, 1871–1874.

    Article  PubMed  CAS  Google Scholar 

  9. Lee, S. M., Lee, E. J., Ko, Y. H., et al. (2009). Prognostic significance of O6-methylguanine DNA methyltransferase and p57 methylation in patients with diffuse large B-cell lymphomas. APMIS, 117, 87–94. doi:10.1111/j.1600-0463.2008.00017.x.

    Article  PubMed  CAS  Google Scholar 

  10. Glas, M., Happold, C., Rieger, J., et al. (2009). Long-term survival of patients with glioblastoma treated with radiotherapy and lomustine plus temozolomide. Journal of Clinical Oncology, 27, 1257–1261. doi:10.1200/JCO.2008.19.2195.

    Article  PubMed  CAS  Google Scholar 

  11. Criniere, E., Kaloshi, G., Laigle-Donadey, F., et al. (2007). MGMT prognostic impact on glioblastoma is dependent on therapeutic modalities. Journal of Neuro-oncology, 83, 173–179. doi:10.1007/s11060-006-9320-0.

    Article  PubMed  Google Scholar 

  12. Hegi, M. E., Diserens, A. C., Gorlia, T., et al. (2005). MGMT gene silencing and benefit from temozolomide in glioblastoma. New England Journal of Medicine, 352, 997–1003. doi:10.1056/NEJMoa043331.

    Article  PubMed  CAS  Google Scholar 

  13. Idbaih, A., Omuro, A., Ducray, F., et al. (2007). Molecular genetic markers as predictors of response to chemotherapy in gliomas. Current Opinion in Oncology, 19, 606–611. doi:10.1097/CCO.0b013e3282f075f3.

    Article  PubMed  CAS  Google Scholar 

  14. Ishii, D., Natsume, A., Wakabayashi, T., et al. (2007). Efficacy of temozolomide is correlated with 1p loss and methylation of the deoxyribonucleic acid repair gene MGMT in malignant gliomas. Neurologia Medico-Chirurgica (Tokyo), 47, 341–349.

    Article  Google Scholar 

  15. Martinez, R., Schackert, G., Yaya-Tur, R., et al. (2007). Frequent hypermethylation of the DNA repair gene MGMT in long-term survivors of glioblastoma multiforme. Journal of Neuro-oncology, 83, 91–93. doi:10.1007/s11060-006-9292-0.

    Article  PubMed  CAS  Google Scholar 

  16. Paz, M. F., Yaya-Tur, R., Rojas-Marcos, I., et al. (2004). CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clinical Cancer Research, 10, 4933–4938. doi:10.1158/1078-0432.CCR-04-0392.

    Article  PubMed  CAS  Google Scholar 

  17. Chinot, O. L., Barrie, M., Fuentes, S., et al. (2007). Correlation between O6-methylguanine-DNA methyltransferase and survival in inoperable newly diagnosed glioblastoma patients treated with neoadjuvant temozolomide. Journal of Clinical Oncology, 25, 1470–1475. doi:10.1200/JCO.2006.07.4807.

    Article  PubMed  CAS  Google Scholar 

  18. Capper, D., Mittelbronn, M., Meyermann, R., et al. (2008). Pitfalls in the assessment of MGMT expression and in its correlation with survival in diffuse astrocytomas: Proposal of a feasible immunohistochemical approach. Acta Neuropathologica, 115, 249–259. doi:10.1007/s00401-007-0310-x.

    Article  PubMed  CAS  Google Scholar 

  19. Bobola, M. S., Silber, J. R., Ellenbogen, R. G., et al. (2005). O6-methylguanine-DNA methyltransferase, O6-benzylguanine, and resistance to clinical alkylators in pediatric primary brain tumor cell lines. Clinical Cancer Research, 11, 2747–2755. doi:10.1158/1078-0432.CCR-04-2045.

    Article  PubMed  CAS  Google Scholar 

  20. Hermisson, M., Klumpp, A., Wick, W., et al. (2006). O6-methylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human malignant glioma cells. Journal of Neurochemistry, 96, 766–776. doi:10.1111/j.1471-4159.2005.03583.x.

    Article  PubMed  CAS  Google Scholar 

  21. Kanzawa, T., Germano, I. M., Komata, T., et al. (2004). Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death and Differentiation, 11, 448–457. doi:10.1038/sj.cdd.4401359.

    Article  PubMed  CAS  Google Scholar 

  22. Skehan, P., Storeng, R., Scudiero, D., et al. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. Journal of the National Cancer Institute, 82, 1107–1112.

    Article  PubMed  CAS  Google Scholar 

  23. Rodriguez, F. J., Thibodeau, S. N., Jenkins, R. B., et al. (2008). MGMT immunohistochemical expression and promoter methylation in human glioblastoma. Applied Immunohistochemistry & Molecular Morphology, 16, 59–65. doi:10.1097/PAI.0b013e31802fac2f.

    CAS  Google Scholar 

  24. Hampson, R., Humbert, O., Macpherson, P., et al. (1997). Mismatch repair defects and O6-methylguanine-DNA methyltransferase expression in acquired resistance to methylating agents in human cells. Journal of Biological Chemistry, 272, 28596–28606.

    Article  PubMed  CAS  Google Scholar 

  25. Balana, C., Carrato, J., Ramirez, J., et al. (2008). Concordance and clinical value of the MGMT promoter methylation pattern in tissue with paired serum and MGMT protein expression in a series of glioblastoma (GB) patients. Journal of Clinical Oncology, 26, 2037.

    Google Scholar 

  26. Paus, C., Murat, A., Stupp, R., et al. (2007). Role of MGMT and clinical applications in brain tumours. Bull Cancer, 94, 769–773.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (grants no. 30571904 and 30772228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-jun Yang.

Additional information

Qiang Pan and Xue-jun Yang are contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Q., Yang, Xj., Wang, Hm. et al. Chemoresistance to Temozolomide in Human Glioma Cell Line U251 is Associated with Increased Activity of O 6-methylguanine-DNA Methyltransferase and Can be Overcome by Metronomic Temozolomide Regimen. Cell Biochem Biophys 62, 185–191 (2012). https://doi.org/10.1007/s12013-011-9280-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9280-7

Keywords

Navigation