Skip to main content
Log in

Copper (II) Ions Affect Escherichia coli Membrane Vesicles’ SH-Groups and a Disulfide-Dithiol Interchange Between Membrane Proteins

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The SH-groups in Escherichia coli membrane vesicles, prepared from cells grown in fermentation conditions on glucose at slightly alkaline pH, have a role in the F0F1-ATPase operation. The changes in the number of these groups by ATP are observed under certain conditions. In this study, copper ions (Cu2+) in concentration of 0.1 mM were shown to increase the number of SH-groups in 1.5- to 1.6-fold independent from K+ ions, and the suppression of the increased level of SH-groups by ATP was determined for Cu2+ in the presence of K+. Moreover, the increase in the number of SH-groups by Cu2+ was absent as well as the inhibition in ATP-dependent increasing SH-groups number by Cu2+ lacked when vesicles were treated with N-ethylmaleimide (NEM), specific thiol-reagent. Such an effect was not observed with zinc (Zn2+), cobalt (Co2+), or Cu+ ions. The increased level of SH-groups was observed in the hycE or hyfR mutants with defects in hydrogenases 3 or 4, whereas the ATP-dependent increase in the number of these groups was determined in hycE not in hyfR mutants. Both changes in SH-groups number disappeared in the atp or hyc mutants deleted for the F0F1-ATPase or hydrogenase 3 (no activity of hydrogenase 4 was detected in the hyc mutant used). A direct effect of Cu2+ but not Cu+ on the F0F1-ATPase is suggested to lead to conformational changes or damaging consequences, increasing accessible SH-groups number and disturbing disulfide-dithiol interchange within a protein–protein complex, where this ATPase works with K+ uptake system or hydrogenase 4 (Hyd-4); breaks in disulfides are not ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iwaarden, P. R., Driessen, A. J. M., & Konings, W. N. (1992). What we can learn from the effects of thiol reagents on transport proteins. Biochimica et Biophysica Acta, 1113, 161–170.

    PubMed  Google Scholar 

  2. Kadokura, H., Katzen, F., & Beckwith, J. (2003). Protein disulfide bond formation in prokaryotes. Annual Review of Biochemistry, 72, 111–135.

    Article  PubMed  CAS  Google Scholar 

  3. Trchounian, A. (2004). Escherichia coli proton-translocating F0F1-ATP synthase and its association with solute secondary transpopters and/or enzymes of anaerobic oxidation-reduction under fermentation. Biochemical and Biophysical Research Communications, 315, 1051–1057.

    Article  PubMed  CAS  Google Scholar 

  4. Mnatsakanyan, N., Poladian, A., Bagramyan, K., & Trchounian, A. (2003). The number of accessible SH-groups in Escherichia coli membrane vesicles is increased by ATP and by formate. Biochemical and Biophysical Research Communications, 308, 655–659.

    Article  PubMed  CAS  Google Scholar 

  5. Martirosov, S. M. (1990). Direct transfer of energy by dithiol-disulfide interconversion. Journal of Theoretical Biology, 144, 69–73.

    Article  CAS  Google Scholar 

  6. Poladyan, A., & Trchounian, A. (2006). The increase in the number of accessible SH-groups in the Enterococcal membrane vesicles by ATP and nicotinamide adenine dinucleotides. Current Microbiology, 52, 300–304.

    Article  PubMed  CAS  Google Scholar 

  7. Bagramyan, K., Galstyan, A., & Trchounian, A. (2000). Redox potential is a determinant in the Escherichia coli anaerobic growth and survival: Effect of impermeable oxidant. Bioelectrochemistry, 51, 151–156.

    Article  PubMed  CAS  Google Scholar 

  8. Kirakosyan, G., Bagramyan, K., & Trchounian, A. (2004). Redox sensing by Escherichia coli: Effects of dithiothreitol, a redox reagent reducing disulphides, on bacterial growth. Biochemical and Biophysical Research Communications, 325, 803–806.

    Article  PubMed  CAS  Google Scholar 

  9. Kirakosyan, G., & Trchounian, A. (2007). Redox sensing by Escherichia coli: Effects of copper ions as oxidizers on proton-coupled membrane transport. Bioelectrochemistry, 70, 58–63.

    Article  PubMed  CAS  Google Scholar 

  10. Lebedev, V. S., Volodina, L. A., Deinega, E. Yu., & Fedorov, Yu. I. (2005). Structural modifications of the surface of Escherichia coli bacteria and copper-induced permeability of plasma membrane. Biofizika, 50, 107–113 (in Russian).

    PubMed  CAS  Google Scholar 

  11. Rosen, B. P. (2002). Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 133, 689–693.

    Article  Google Scholar 

  12. Rensing, C., & Grass, G. (2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiology Reviews, 27, 197–213.

    Article  PubMed  CAS  Google Scholar 

  13. Klionsky, D. J., Brusilow, W. S. A., & Simoni, R. D. (1984). In vivo evidence for the role of an epsilon subunit as an inhibitor of the proton-translocating ATPase pf Escherichia coli. Journal of Bacteriology, 160, 1055–1060.

    PubMed  CAS  Google Scholar 

  14. Mnatsakanyan, N., Bagramyan, K., Vassilian, A., Nakamoto, R. K., & Trchounian, A. (2002). F0 cysteine, bCys21, in the Escherichia coli ATP synthase is involved in regulation of potassium uptake and molecular hydrogen production in anaerobic conditions. Bioscience Reports, 22, 421–430.

    Article  PubMed  CAS  Google Scholar 

  15. Sauter, M., Both, R., & Bock, A. (1992). Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Molecular Microbiology, 6, 1523–1532.

    Article  PubMed  CAS  Google Scholar 

  16. Bagramyan, K., Mnatsakanyan, N., Poladian, A., Vassilian, A., & Trchounian, A. (2002). The roles of hydrogenases 3 and 4, and the F0F1-ATPase in H2 production by Escherichia coli at alkaline and acidic pH. FEBS Letters, 16, 172–178.

    Article  Google Scholar 

  17. Trchounian, A., & Vassilian, A. (1994). Relationship between the F0F1 ATPase and the K+ transport system within the membrane of anaerobically grown Escherichia coli. N,N′-dicyclohexylcarbodiimide-sensitive ATPase activity in trk mutants. Journal of Bioenergetics and Biomembranes, 26, 563–571.

    Article  PubMed  CAS  Google Scholar 

  18. Adler, L. W., & Rosen, B. P. (1977). Functional mosaicism of membrane proteins in vesicles of Escherichia coli. Journal of Bacteriology, 129, 959–966.

    PubMed  CAS  Google Scholar 

  19. Bagramyan, K., Mnatsakanyan, N., & Trchounian, A. (2003). Formate increases the F0F1-ATPase activity in Escherichia coli growing on glucose under anaerobic conditions at slightly alkaline pH. Biochemical and Biophysical Research Communications, 306, 361–365.

    Article  PubMed  CAS  Google Scholar 

  20. Riddles, P. W., Blakeley, R. L., & Zerner, B. (1983). Reassessment of Ellman’s reagent. Methods in Enzymology, 91, 49–60.

    Article  PubMed  CAS  Google Scholar 

  21. Hollenbach, A. D., Dickson, K. A., & Washabaugh, M. W. (2002). Thiamine transport in Escherichia coli: The mechanism of inhibition by the sulfhydryl-specific modifier N-ethylmaleimide. Biochimica et Biophysica Acta, 1564, 421–428.

    Article  PubMed  CAS  Google Scholar 

  22. Letelier, M. E., Lepe, A. M., Faundez, M., Salazar, J., Marin, R., Aracena, P., & Speisky, H. (2005). Possible mechanisms underlaying copper-induced damage in biological membranes leading to cellular toxicity. Chemico-biological Interactions, 151, 71–82.

    Article  PubMed  CAS  Google Scholar 

  23. Chen, P., Onana, P., Shaw, F., & Petering, D. H. (1996). Characterization of calf liver Cu, Zn-metallothionein: Naturally variable Cu and Zn stoichiometries. Biochemical Journal, 317, 389–394.

    PubMed  CAS  Google Scholar 

  24. Lowry, O. H., Rosenbrough, N. J., Farr, A. C., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    PubMed  CAS  Google Scholar 

  25. Jun, Y., Yi, L., Peng, L., Huigang, L., Ming, S., Songsheng, Q., & Ziniu, Y. (2003). Study of the thermokinetic properties of copper (II) on Escherichia coli growth. Biological Trace Element Research, 92, 61–70.

    Article  PubMed  Google Scholar 

  26. Riondet, C., Cachon, R., Wache, Y., Alcaraz, G., & Divies, C. (2000). Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. Journal of Bacteriology, 182, 620–626.

    Article  PubMed  CAS  Google Scholar 

  27. Bald, D., Noji, H., Yoshida, M., Hirono-Hara, Y., & Hisabori, T. (2001). Redox regulation of the rotation of F1-ATPase synthase. Journal of Biological Chemistry, 276, 39505–39507.

    Article  PubMed  CAS  Google Scholar 

  28. Hakobyan, M., Sargsyan, H., & Bagramyan, K. (2005). Proton translocation coupled to formate oxidation in anaerobically grown fermenting Escherichia coli. Biophysical Chemistry, 115, 55–61.

    Article  PubMed  CAS  Google Scholar 

  29. Brown, D. C., & Collins, K. D. (1991). Dihydroorotase from Escherichia coli. Substitution of Co(II) to the active site Zn(II). Journal of Biological Chemistry, 266, 1597–1604.

    PubMed  CAS  Google Scholar 

  30. Zavitz, K. H., & Marians, K. J. (1993). Helicase-deficient cysteine to glycine substitution mutants of Escherichia coli replication protein PriA retain single-stranded DNA-dependent ATPase activity. Zn2+ stimulation of mutant PriA helicase and primosome assemble activities. Journal of Biological Chemistry, 268, 4337–4346.

    PubMed  CAS  Google Scholar 

  31. Sharma, R., Rensing, C., Rosen, B. P., & Mitra, B. (2000). The ATP hydrolytic activity of purified ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli. Journal of Biological Chemistry, 275, 3873–3878.

    Article  PubMed  CAS  Google Scholar 

  32. Mitra, B., & Sharma, R. (2001). The cysteine-rich amino-terminal domain of ZntA, a Pb(II)/Cd(II)/ Zn(II)-translocating ATPase from Escherichia coli, is not essential for its function. Biochemistry, 26, 7694–7699.

    Article  CAS  Google Scholar 

  33. Shi, Y. Y., Tang, W., Hao, S. F., & Wang, C. C. (2005). Contributions of cysteine residues in Zn2+ to zinc fingers and thiol-disulfide oxidoreductases activities of chaperone DnaJ. Biochemistry, 44, 1683–1689.

    Article  PubMed  CAS  Google Scholar 

  34. Wei, Y., & Fu, D. (2006). Binding and transport of metal ions at the dimer interface of the Escherichia coli metal transporter YiiP. Journal of Biological Chemistry, 281, 23492–23502.

    Article  PubMed  CAS  Google Scholar 

  35. Riondet, C., Cachon, R., Wache, Y., Sanyiol, I., Bert, E., Gbaguidi, P., Alcaraz, G., & Divies, C. (2000). Combined action of redox potential and pH on heat resistance and growth recovery of sublethally heat-damaged Escherichia coli. Applied Microbiology and Biotechnology, 53, 476–479.

    Article  PubMed  CAS  Google Scholar 

  36. Lippe, G., Di Pancrazio, F., Bortolotti, N., Bauerlein, E., Mavelli, I., & Dabbeni-Sala, F. (1998). Redox properties of iron in the binding site(s) of F1ATPase from mammalian mitochondria and thermophilic bacterium PS3: A comparative study. Free Radical Research, 28, 229–239.

    Article  PubMed  CAS  Google Scholar 

  37. Roossien, F. F., & Robillard, G. T. (1984). Vicinal dithiol-disulfide distribution in the Escherichia coli mannitol specific carrier enzyme IImtl. Biochemistry, 17, 211–215.

    Article  Google Scholar 

Download references

Acknowledgment

The study was supported by the grant (#0167) from the Ministry of Education and Science of the Republic of Armenia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armen Trchounian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirakosyan, G., Trchounian, K., Vardanyan, Z. et al. Copper (II) Ions Affect Escherichia coli Membrane Vesicles’ SH-Groups and a Disulfide-Dithiol Interchange Between Membrane Proteins. Cell Biochem Biophys 51, 45–50 (2008). https://doi.org/10.1007/s12013-008-9014-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-008-9014-7

Keywords

Navigation