Skip to main content
Log in

Relationship between the F0F1-ATPase and the K+-transport system within the membrane of anaerobically grownEscherichia coli. N,N′-dicyclohexylcarbodiimide-sensitive ATPase activity in mutants with defects in K+-transport

  • Original Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

A considerable (2-fold) stimulation of the DCCD-sensitive ATPase activity by K+ or Rb+, but not by Na+, over the range of zero to 100mM was shown in the isolated membranes ofE. coli grown anaerobically in the presence of glucose. This effect was observed only in parent and in thetrkG, but not in thetrkA, trkE, ortrkH mutants. ThetrkG or thetrkH mutant with anunc deletion had a residual ATPase activity not sensitive to DCCD. A stimulation of the DCCD-sensitive ATPase activity by K+ was absent in the membranes from bacteria grown anaerobically in the presence of sodium nitrate. Growth of thetrkG, but not of othertrk mutants, in the medium with moderate K+ activity did not depend on K+ concentration. Under upshock, K+ accumulation was essentially higher in thetrkG mutant than in the othertrk mutant. The K+-stimulated DCCD-sensitive ATPase activity in the membranes isolated from anaerobically grownE. coli has been shown to depend absolutely on both the F0F1 and theTrk system and can be explained by a direct interaction between these transport systems within the membrane of anaerobically grown bacteria with the formation of a single supercomplex functioning as a H+-K+ pump. ThetrkG gene is most probably not functional in anaerobically grown bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altendorf, K., Epstein, W., and Lohmann, A. (1986).J. Bacteriol. 166, 334–337.

    Google Scholar 

  • Bagramyan, K. A., and Martirosov, S. M. (1989).FEBS Lett. 246, 149–152.

    Google Scholar 

  • Bakker, E. P., Kroll, R. G., and Booth, I. R. (1984).FEMS Microbiol. Lett. 23, 293–297.

    Google Scholar 

  • Bragg, P. D., (1979).Methods Enzymol. 55, 787–799.

    Google Scholar 

  • Dean, D. A., Davidson, A. L., and Nikaido, H. (1988).Proc. Natl. Acad. Sci. USA. 86, 9134–9138.

    Google Scholar 

  • Dean, D. A., Fikes, J. D., Gehring, K., Bussford, P. J., and Nikaido, H. (1989).J. Bacteriol. 171, 503–510.

    Google Scholar 

  • Dosch, D. C., Helmer, G. L., Sutton, S. H., Salvacion, F. F., and Epstein, W. (1991).J. Bacteriol. 173, 687–696.

    Google Scholar 

  • Durgaryan, S. S., and Martirosov, S. M. (1978).Bioelectrochem. Bioenerg. 5, 567–573.

    Google Scholar 

  • Epstein, W., and Davies, M. (1970).J. Bacteriol. 108, 836–843.

    Google Scholar 

  • Fillingame, R. H., Oldenburg, M., and Fraga, D. (1991).J. Biol. Chem. 266, 20934–20939.

    Google Scholar 

  • Gibson, F. (1983).Biochem. Soc. Trans. 11, 229–240.

    Google Scholar 

  • Gibson, F., and Cox, G. B. (1977).Biochem. J. 162, 665–670.

    Google Scholar 

  • Guffanti, A. A., and Krulwich, T. (1988).J. Biol. Chem. 263, 14748–14752.

    Google Scholar 

  • Guffanti, A. A., and Krulwich, T. (1992).J. Biol. Chem. 267, 9580–9588.

    Google Scholar 

  • Guffanti, A. A., Fuchs, T., Schemer, M., Chiu, E., and Krulwich, T. (1984).J. Biol. Chem. 259, 2971–2975.

    Google Scholar 

  • Jorgensen, P., and Petersen, J. (1982).Biochim. Biophys. Acta 705, 38–47.

    Google Scholar 

  • Kaback, H. R. (1971).Methods Enzymol. 22, 99–120.

    Google Scholar 

  • Kalachev, I. Ya., Umyarov, A. M., and Bourd, G. I. (1981).Biokhimiya 46, 732–743.

    Google Scholar 

  • Konings, W. N., and Kaback, H. R. (1973).Proc. Natl. Acad. Sci. USA 70, 3376–3381.

    Google Scholar 

  • La Roe, D. J., and Vik, S. B. (1992).J. Bacteriol. 174, 633–637.

    Google Scholar 

  • Leimgruber, R. M., Jensen, C., and Abrams, A. (1981).J. Bacteriol. 147, 363–372.

    Google Scholar 

  • Martirosov, S. M., and Trchounian, A. A. (1981a).Bioelectrochem. Bioenerg. 8, 25–32.

    Google Scholar 

  • Martirosov, S. M., and Trchounian, A. A. (1981b).Bioelectrochem. Bioenerg. 8, 597–603.

    Google Scholar 

  • Martirosov, S. M., and Trchounian, A. A. (1981c).Bioelectrochem. Bioenerg. 8, 605–611.

    Google Scholar 

  • Martirosov, S. M., and Trchounian, A. A. (1982).Bioelectrochem. Bioenerg. 9, 459–467.

    Google Scholar 

  • Martirosov, S. M., and Trchounian, A. A. (1983).Bioelectrochem. Bioenerg. 11, 29–36.

    Google Scholar 

  • Martirosov, S. M., and Trchounian, A. A. (1986).Bioelectrochem. Bioenerg. 15, 419–427.

    Google Scholar 

  • Martirosov, S. M., Ogandjanian, E. S., and Trchounian, A. A. (1988).Bioelectrochem. Bioenerg. 19, 353–357.

    Google Scholar 

  • Nelson, N., Chibovsky, R., and Gutnick, D. L. (1979).Methods Enzymol. 55, 338–361.

    Google Scholar 

  • Rhoads, D. B., and Epstein, W. (1977).J. Biol. Chem. 252, 1394–1403.

    Google Scholar 

  • Rhoads, D. B., Waters, F. B., and Epstein, W. (1976).J. Gen. Physiol. 67, 325–341.

    Google Scholar 

  • Schlosser, A., Hamann, A., Bossemeyer, D., Schneider, E., and Bakker, E. P. (1993).Mol. Microbiol. 9, 533–543.

    Google Scholar 

  • Trchounian, A. A. (1984).Bioelectrochem. Bioenerg. 13, 231–232.

    Google Scholar 

  • Trchounian, A. A. (1992). In:Charge and Field Effects in Biosystems (Allen, M. J., Clearly, S. E., Sowers, A. E., and Shillady, D. D., eds.), Birkhausen, Boston, Basel, Berlin, pp. 81–89.

    Google Scholar 

  • Trchounian, A. A. (1993).Bioelectrochem. Bioenerg., in press.

  • Trchounian, A. A., Ogandjanian, E. S., and Martirosov, S. M. (1987a).Bioelectrochem. Bioenerg. 17, 503–507.

    Google Scholar 

  • Trchounianan, A. A., Ter-Nikogossian, V. A., and Martirosov, S. M. (1987b).Bioelectrochem. Bioenerg. 17, 189–197.

    Google Scholar 

  • Trchounian, A. A., Ogandjanian, E. S., and Mironova, G. D. (1992).Bioelectrochem. Bioenerg. 27, 367–373.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was performed at the Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trchounian, A.A., Vassilian, A.V. Relationship between the F0F1-ATPase and the K+-transport system within the membrane of anaerobically grownEscherichia coli. N,N′-dicyclohexylcarbodiimide-sensitive ATPase activity in mutants with defects in K+-transport. J Bioenerg Biomembr 26, 563–571 (1994). https://doi.org/10.1007/BF00762741

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762741

Key words

Navigation