Skip to main content
Log in

Direct and Indirect Effect of Air Particles Exposure Induce Nrf2-Dependent Cardiomyocyte Cellular Response In Vitro

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Air particulate matter has been associated with adverse effects in the cardiorespiratory system leading to cytotoxic and pro-inflammatory effects. Particulate matter-associated cardiac effects may be direct or indirect. While direct interactions may occur when inhaled ultrafine particles and/or particle components cross the air–blood barrier reaching the cardiac tissue, indirect interactions may occur as the result of pulmonary inflammation and consequently the release of inflammatory and oxidative mediators into the blood circulation. The aim of the study is to investigate the direct or indirectly the effect of Urban Air particles from downtown Buenos Aires (UAP-BA) and residual oil fly ash (ROFA), a surrogate of ambient air pollution, on cardiomyocytes (HL-1 cells). HL-1 cultured cells were directly exposed to particulate matter [UAP-BA (10–200 µg/ml), ROFA (1–100 µg/ml)] or indirectly exposed to conditioned media (CM) from particle-exposed alveolar macrophages (AM). Metabolic activity, reactive oxygen species (ROS), and Nrf2 expression were assessed by MTT, DHR 123, and immunocytochemistry techniques, respectively. We found that direct exposure of cardiomyocytes to UAP-BA or ROFA increased ROS generation but the oxidative damage did not alter metabolic activity likely by a concomitant increase in the cytoplasmic and nuclear Nrf2 expression. However, indirect exposure through CM caused a marked reduction on cardiac metabolic activity probably due to the rise in ROS generation without Nrf2 translocation into the cell nuclei. In this in vitro model, our results indicate both direct and indirect PM effects on cardiomyocytes cells in culture. Our findings employing lung and cardiomyocytes cells provide support to the hypothesis that particle-induced cardiac alteration may possibly involve lung-derived mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brook, R. D., Rajagopalan, S., Pope, C. A., 3rd, Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., et al. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121(21), 2331–2378. https://doi.org/10.1161/CIR.0b013e3181dbece1.

    Article  CAS  PubMed  Google Scholar 

  2. Lee, B. J., Kim, B., & Lee, K. (2014). Air pollution exposure and cardiovascular disease. Toxicological Research, 30(2), 71–75. https://doi.org/10.5487/TR.2014.30.2.071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., et al. (2004). Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation, 109(21), 2655–2671. https://doi.org/10.1161/01.CIR.0000128587.30041.C8.

    Article  PubMed  Google Scholar 

  4. Pope, C. A., 3rd, & Dockery, D. W. (2006). Health effects of fine particulate air pollution: Lines that connect. Journal of the Air and Waste Management Association, 56(6), 709–742.

    Article  CAS  Google Scholar 

  5. Peters, A., Dockery, D. W., Muller, J. E., & Mittleman, M. A. (2001). Increased particulate air pollution and the triggering of myocardial infarction. Circulation, 103(23), 2810–2815.

    Article  CAS  Google Scholar 

  6. Analitis, A., Katsouyanni, K., Dimakopoulou, K., Samoli, E., Nikoloulopoulos, A. K., Petasakis, Y., et al. (2006). Short-term effects of ambient particles on cardiovascular and respiratory mortality. Epidemiology, 17(2), 230–233. https://doi.org/10.1097/01.ede.0000199439.57655.6b.

    Article  PubMed  Google Scholar 

  7. Pope, C. A., 3rd, Burnett, R. T., Thurston, G. D., Thun, M. J., Calle, E. E., Krewski, D., et al. (2004). Cardiovascular mortality and long-term exposure to particulate air pollution: Epidemiological evidence of general pathophysiological pathways of disease. Circulation, 109(1), 71–77. https://doi.org/10.1161/01.CIR.0000108927.80044.7F.

    Article  PubMed  Google Scholar 

  8. Martinelli, N., Olivieri, O., & Girelli, D. (2013). Air particulate matter and cardiovascular disease: A narrative review. European Journal of Internal Medicine, 24(4), 295–302. https://doi.org/10.1016/j.ejim.2013.04.001.

    Article  CAS  PubMed  Google Scholar 

  9. Nemmar, A., Hoet, P. H., Vanquickenborne, B., Dinsdale, D., Thomeer, M., Hoylaerts, M. F., et al. (2002). Passage of inhaled particles into the blood circulation in humans. Circulation, 105(4), 411–414.

    Article  CAS  Google Scholar 

  10. Oberdorster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Lunts, A., et al. (2002). Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. Journal of Toxicology and Environmental Health Part A, 65(20), 1531–1543. https://doi.org/10.1080/00984100290071658.

    Article  CAS  PubMed  Google Scholar 

  11. Wallenborn, J. G., McGee, J. K., Schladweiler, M. C., Ledbetter, A. D., & Kodavanti, U. P. (2007). Systemic translocation of particulate matter-associated metals following a single intratracheal instillation in rats. Toxicological Sciences: An Official Journal of the Society of Toxicology, 98(1), 231–239. https://doi.org/10.1093/toxsci/kfm088.

    Article  CAS  Google Scholar 

  12. Brook, R. D. (2008). Cardiovascular effects of air pollution. Clinical Science, 115(6), 175–187. https://doi.org/10.1042/CS20070444.

    Article  CAS  PubMed  Google Scholar 

  13. Mills, N. L., Donaldson, K., Hadoke, P. W., Boon, N. A., MacNee, W., Cassee, F. R., et al. (2009). Adverse cardiovascular effects of air pollution. Nature Clinical Practice Cardiovascular Medicine, 6(1), 36–44. https://doi.org/10.1038/ncpcardio1399.

    Article  CAS  PubMed  Google Scholar 

  14. Miller, M. R. (2014). The role of oxidative stress in the cardiovascular actions of particulate air pollution. Biochemical Society Transactions, 42(4), 1006–1011. https://doi.org/10.1042/BST20140090.

    Article  CAS  PubMed  Google Scholar 

  15. Yang, W., & Omaye, S. T. (2009). Air pollutants, oxidative stress and human health. Mutation Research, 674(1–2), 45–54. https://doi.org/10.1016/j.mrgentox.2008.10.005.

    Article  CAS  PubMed  Google Scholar 

  16. Valavanidis, A., Vlachogianni, T., Fiotakis, K., & Loridas, S. (2013). Pulmonary oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. International Journal of Environmental Research and Public Health, 10(9), 3886–3907. https://doi.org/10.3390/ijerph10093886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, H., Davies, K. J. A., & Forman, H. J. (2015). Oxidative stress response and Nrf2 signaling in aging. Free Radical Biology & Medicine, 88(Pt B), 314–336. https://doi.org/10.1016/j.freeradbiomed.2015.05.036.

    Article  CAS  Google Scholar 

  18. Kaspar, J. W., Niture, S. K., & Jaiswal, A. K. (2009). Nrf 2:INrf2 (Keap1) signaling in oxidative stress. Free Radical Biology & Medicine, 47(9), 1304–1309. https://doi.org/10.1016/j.freeradbiomed.2009.07.035.

    Article  CAS  Google Scholar 

  19. Jiang, S., Yang, Y., Li, T., Ma, Z., Hu, W., Deng, C., et al. (2016). An overview of the mechanisms and novel roles of Nrf2 in cardiovascular diseases. Expert Opinion on Therapeutic Targets, 20(12), 1413–1424. https://doi.org/10.1080/14728222.2016.1250887.

    Article  CAS  PubMed  Google Scholar 

  20. Martin, S., Dawidowski, L., Mandalunis, P., Cereceda-Balic, F., & Tasat, D. R. (2007). Characterization and biological effect of Buenos Aires urban air particles on mice lungs. Environmental Research, 105(3), 340–349. https://doi.org/10.1016/j.envres.2007.04.009.

    Article  CAS  PubMed  Google Scholar 

  21. Martin, S., Fernandez-Alanis, E., Delfosse, V., Evelson, P., Yakisich, J. S., Saldiva, P. H., et al. (2010). Low doses of urban air particles from Buenos Aires promote oxidative stress and apoptosis in mice lungs. Inhalation Toxicology, 22(13), 1064–1071. https://doi.org/10.3109/08958378.2010.523030.

    Article  CAS  PubMed  Google Scholar 

  22. Figueroa, D. A., Rodriguez-Sierra, C. J., & Jimenez-Velez, B. D. (2006). Concentrations of Ni and V, other heavy metals, arsenic, elemental and organic carbon in atmospheric fine particles (PM2.5) from Puerto Rico. Toxicology and Industrial Health, 22(2), 87–99. https://doi.org/10.1191/0748233706th247oa.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang, Y. C., & Ghio, A. J. (2006). Vascular effects of ambient pollutant particles and metals. Current Vascular Pharmacology, 4(3), 199–203.

    Article  CAS  Google Scholar 

  24. Dreher, K. L., Jaskot, R. H., Lehmann, J. R., Richards, J. H., McGee, J. K., Ghio, A. J., et al. (1997). Soluble transition metals mediate residual oil fly ash induced acute lung injury. Journal of Toxicology and Environmental Health, 50(3), 285–305.

    Article  CAS  Google Scholar 

  25. Marchini, T., Magnani, N. D., Paz, M. L., Vanasco, V., Tasat, D., Gonzalez Maglio, D. H., et al. (2014). Time course of systemic oxidative stress and inflammatory response induced by an acute exposure to residual oil fly ash. Toxicology and Applied Pharmacology, 274(2), 274–282. https://doi.org/10.1016/j.taap.2013.11.013.

    Article  CAS  PubMed  Google Scholar 

  26. Orona, N. S., Ferraro, S. A., Astort, F., Morales, C., Brites, F., Boero, L., et al. (2016). Acute exposure to Buenos Aires air particles (UAP-BA) induces local and systemic inflammatory response in middle-aged mice: A time course study. Environmental Pollution, 208(Pt A), 261–270. https://doi.org/10.1016/j.envpol.2015.07.020.

    Article  CAS  PubMed  Google Scholar 

  27. Baldauf, R. W., Lane, D. D., & Marote, G. A. (2001). Ambient air quality monitoring network design for assessing human health impacts from exposures to airborne contaminants. Environmental Monitoring and Assessment, 66(1), 63–76.

    Article  CAS  Google Scholar 

  28. Tasat, D. R., & de Rey, B. M. (1987). Cytotoxic effect of uranium dioxide on rat alveolar macrophages. Environmental Research, 44(1), 71–81.

    Article  CAS  Google Scholar 

  29. Claycomb, W. C., Lanson, N. A., Jr., Stallworth, B. S., Egeland, D. B., Delcarpio, J. B., Bahinski, A., et al. (1998). HL-1 cells: A cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proceedings of the National academy of Sciences of the United States of America, 95(6), 2979–2984.

    Article  CAS  Google Scholar 

  30. Longhin, E., Holme, J. A., Gualtieri, M., Camatini, M., & Ovrevik, J. (2018). Milan winter fine particulate matter (wPM2.5) induces IL-6 and IL-8 synthesis in human bronchial BEAS-2B cells, but specifically impairs IL-8 release. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 52, 365–373. https://doi.org/10.1016/j.tiv.2018.07.016.

    Article  CAS  Google Scholar 

  31. Li, N., Hao, M., Phalen, R. F., Hinds, W. C., & Nel, A. E. (2003). Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects. Clinical Immunology, 109(3), 250–265.

    Article  CAS  Google Scholar 

  32. Totlandsdal, A. I., Refsnes, M., Skomedal, T., Osnes, J. B., Schwarze, P. E., & Lag, M. (2008). Particle-induced cytokine responses in cardiac cell cultures—The effect of particles versus soluble mediators released by particle-exposed lung cells. Toxicological Sciences: An Official Journal of the Society of Toxicology, 106(1), 233–241. https://doi.org/10.1093/toxsci/kfn162.

    Article  CAS  Google Scholar 

  33. Orona, N. S., Astort, F., Maglione, G. A., Saldiva, P. H., Yakisich, J. S., & Tasat, D. R. (2014). Direct and indirect air particle cytotoxicity in human alveolar epithelial cells. Toxicology In Vitro: An International Journal Published in Association with BIBRA, 28(5), 796–802. https://doi.org/10.1016/j.tiv.2014.02.011.

    Article  CAS  Google Scholar 

  34. Morgan, D. M. (1998). Tetrazolium (MTT) assay for cellular viability and activity. Methods in Molecular Biology, 79, 179–183.

    CAS  PubMed  Google Scholar 

  35. Molinari, B. L., Tasat, D. R., Palmieri, M. A., O’Connor, S. E., & Cabrini, R. L. (2003). Cell-based quantitative evaluation of the MTT assay. Analytical and Quantitative Cytology and Histology, 25(5), 254–262.

    PubMed  Google Scholar 

  36. Segal, A. W. (1974). Nitroblue-tetrazolium tests. Lancet, 2(7891), 1248–1252.

    Article  CAS  Google Scholar 

  37. Molinari, B. L., Tasat, D. R., Fernandez, M. L., Duran, H. A., Curiale, J., Stoliar, A., et al. (2000). Automated image analysis for monitoring oxidative burst in macrophages. Analytical and Quantitative Cytology and Histology, 22(5), 423–427.

    CAS  PubMed  Google Scholar 

  38. Bueb, J. L., Gallois, A., Schneider, J. C., Parini, J. P., & Tschirhart, E. (1995). A double-labelling fluorescent assay for concomitant measurements of [Ca2+]i and O2 production in human macrophages. Biochimica et Biophysica Acta, 1244(1), 79–84.

    Article  Google Scholar 

  39. Ferraro, S. A., Yakisich, J. S., Gallo, F. T., & Tasat, D. R. (2011). Simvastatin pretreatment prevents ambient particle-induced lung injury in mice. Inhalation Toxicology, 23(14), 889–896. https://doi.org/10.3109/08958378.2011.623195.

    Article  CAS  PubMed  Google Scholar 

  40. Shanmugam, G., Narasimhan, M., Sakthivel, R., Kumar, R. R., Davidson, C., Palaniappan, S., et al. (2016). A biphasic effect of TNF-alpha in regulation of the Keap1/Nrf2 pathway in cardiomyocytes. Redox Biology, 9, 77–89. https://doi.org/10.1016/j.redox.2016.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kodavanti, U. P., Moyer, C. F., Ledbetter, A. D., Schladweiler, M. C., Costa, D. L., Hauser, R., et al. (2003). Inhaled environmental combustion particles cause myocardial injury in the Wistar Kyoto rat. Toxicological Sciences: An Official Journal of the Society of Toxicology, 71(2), 237–245.

    Article  CAS  Google Scholar 

  42. Astort, F., Sittner, M., Ferraro, S. A., Orona, N. S., Maglione, G. A., De la Hoz, A., et al. (2014). Pulmonary inflammation and cell death in mice after acute exposure to air particulate matter from an industrial region of Buenos Aires. Archives of Environmental Contamination and Toxicology, 67(1), 87–96. https://doi.org/10.1007/s00244-013-9975-4.

    Article  CAS  PubMed  Google Scholar 

  43. Riva, D. R., Magalhaes, C. B., Lopes, A. A., Lancas, T., Mauad, T., Malm, O., et al. (2011). Low dose of fine particulate matter (PM2.5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhalation Toxicology, 23(5), 257–267. https://doi.org/10.3109/08958378.2011.566290.

    Article  CAS  PubMed  Google Scholar 

  44. Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., O’Connor, T., & Yamamoto, M. (2003). Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 8(4), 379–391.

    Article  CAS  Google Scholar 

  45. Muthusamy, V. R., Kannan, S., Sadhaasivam, K., Gounder, S. S., Davidson, C. J., Boeheme, C., et al. (2012). Acute exercise stress activates Nrf2/ARE signaling and promotes antioxidant mechanisms in the myocardium. Free Radical Biology & Medicine, 52(2), 366–376. https://doi.org/10.1016/j.freeradbiomed.2011.10.440.

    Article  CAS  Google Scholar 

  46. Maeno, E., Ishizaki, Y., Kanaseki, T., Hazama, A., & Okada, Y. (2000). Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis. Proceedings of the National academy of Sciences of the United States of America, 97(17), 9487–9492. https://doi.org/10.1073/pnas.140216197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ling, S. H., & van Eeden, S. F. (2009). Particulate matter air pollution exposure: Role in the development and exacerbation of chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease, 4, 233–243.

    Article  CAS  Google Scholar 

  48. Hamanaka, R. B., & Mutlu, G. M. (2018). Particulate matter air pollution: Effects on the cardiovascular system. Frontiers in Endocrinology, 9, 680. https://doi.org/10.3389/fendo.2018.00680.

    Article  PubMed  PubMed Central  Google Scholar 

  49. van Eeden, S. F., Tan, W. C., Suwa, T., Mukae, H., Terashima, T., Fujii, T., et al. (2001). Cytokines involved in the systemic inflammatory response induced by exposure to particulate matter air pollutants (PM(10)). American Journal of Respiratory and Critical Care Medicine, 164(5), 826–830. https://doi.org/10.1164/ajrccm.164.5.2010160.

    Article  PubMed  Google Scholar 

  50. Sijan, Z., Antkiewicz, D. S., Heo, J., Kado, N. Y., Schauer, J. J., Sioutas, C., et al. (2015). An in vitro alveolar macrophage assay for the assessment of inflammatory cytokine expression induced by atmospheric particulate matter. Environmental Toxicology, 30(7), 836–851. https://doi.org/10.1002/tox.21961.

    Article  CAS  PubMed  Google Scholar 

  51. Gurgueira, S. A., Lawrence, J., Coull, B., Murthy, G. G., & Gonzalez-Flecha, B. (2002). Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environmental Health Perspectives, 110(8), 749–755. https://doi.org/10.1289/ehp.02110749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gorr, M. W., Youtz, D. J., Eichenseer, C. M., Smith, K. E., Nelin, T. D., Cormet-Boyaka, E., et al. (2015). In vitro particulate matter exposure causes direct and lung-mediated indirect effects on cardiomyocyte function. American Journal of Physiology Heart and Circulatory Physiology, 309(1), H53–H62. https://doi.org/10.1152/ajpheart.00162.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brook, R. D., & Rajagopalan, S. (2010). Particulate matter air pollution and atherosclerosis. Current Atherosclerosis Reports, 12(5), 291–300. https://doi.org/10.1007/s11883-010-0122-7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. W. Claycomb for the cardiomyocyte cell line and A. Perez de la Hoz for his assistance and technical expertise with the collector sampler.

Funding

This work was partially supported by Grants A147 and SJ10/54 from Universidad Nacional de San Martín Grants 2010-1661 and 2012-0328 from ANPCyT-PICT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Orona.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Research Involving Human and Animal Participants

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Handling Editor: John Allen Crow.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orona, N.S., Astort, F., Maglione, G.A. et al. Direct and Indirect Effect of Air Particles Exposure Induce Nrf2-Dependent Cardiomyocyte Cellular Response In Vitro. Cardiovasc Toxicol 19, 575–587 (2019). https://doi.org/10.1007/s12012-019-09530-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-019-09530-z

Keywords

Navigation