Skip to main content

Advertisement

Log in

Pulmonary Inflammation and Cell Death in Mice After Acute Exposure to Air Particulate Matter From an Industrial Region of Buenos Aires

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Epidemiological studies have shown that air particulate matter (PM) can increase respiratory morbidity and mortality being the lungs the main target organ to PM body entrance. Even more, several in vivo and in vitro studies have shown that air PM has a wide toxicity spectra depending among other parameters, on its size, morphology, and chemical composition. The Reconquista River is the second most polluted river from Buenos Aires, and people living around its basin are constantly exposed to its contaminated water, soil and air. However, the air PM from the Reconquista River (RR-PMa) has not been characterized, and its biological impact on lung has yet not been assessed. Therefore, the present investigation was undertaken to study (1) RR-PMa morphochemical characteristic and (2) RR-PMa lung acute effects after intranasal instillation exposure through the analysis of three end points: oxidative stress, inflammation, and apoptosis. A single acute exposure of RR-PMa (1 mg/kg body weight) after 24 h caused significant (p < 0.05) enrichment in bronchoalveolar total cell number and polymorphonuclear (PNM) fraction, superoxide anion generation, production of pro-inflammatory cytokines TNF-α and IL-6, and induction of apoptosis. It was also observed that in lung homogenates, none of the antioxidant enzymes assayed showed differences between exposed RR-PMa and control mice. These data demonstrate that air PM from the Reconquista River induce lung oxidative stress, inflammation, and cell death therefore represents a potential hazard to human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andreau K, Leroux M, Bouharrour A (2012) Health and cellular impacts of air pollutants: from cytoprotection to cytotoxicity. Biochem Res Int 2012:493894

    Article  Google Scholar 

  • Araujo JA (2010) Particulate air pollution, systemic oxidative stress, inflammation, and atherosclerosis. Air Qual Atmos Health 4(1):79–93

    Article  Google Scholar 

  • Baldauf RW, Lane DD, Marote GA (2001) Ambient air quality monitoring network design for assessing human health impacts from exposures to airborne contaminants. Environ Monit Assess 66(1):63–76

    Article  CAS  Google Scholar 

  • Beelen R, Hoek G, Houthuijs D, van den Brandt PA, Goldbohm RA, Fischer P et al (2009) The joint association of air pollution and noise from road traffic with cardiovascular mortality in a cohort study. Occup Environ Med 66(4):243–250

    CAS  Google Scholar 

  • Chirino YI, Sanchez-Perez Y, Osornio-Vargas AR, Morales-Barcenas R, Gutierrez-Ruiz MC, Segura-Garcia Y et al (2010) PM(10) impairs the antioxidant defense system and exacerbates oxidative stress driven cell death. Toxicol Lett 193(3):209–216

    Article  CAS  Google Scholar 

  • Dick CA, Singh P, Daniels M, Evansky P, Becker S, Gilmour MI (2003) Murine pulmonary inflammatory responses following instillation of size-fractionated ambient particulate matter. J Toxicol Environ Health A 66(23):2193–2207

    Article  CAS  Google Scholar 

  • Donaldson K, Stone V, Borm PJ, Jimenez LA, Gilmour PS, Schins RP et al (2003) Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic Biol Med 34(11):1369–1382

    Article  CAS  Google Scholar 

  • Dreher KL, Jaskot RH, Lehmann JR, Richards JH, McGee JK, Ghio AJ et al (1997) Soluble transition metals mediate residual oil fly ash induced acute lung injury. J Toxicol Environ Health 50(3):285–305

    Article  CAS  Google Scholar 

  • Dye JA, Lehmann JR, McGee JK, Winsett DW, Ledbetter AD, Everitt JI et al (2001) Acute pulmonary toxicity of particulate matter filter extracts in rats: Coherence with epidemiologic studies in Utah Valley residents. Environ Health Perspect 109(Suppl 3):395–403

    Article  CAS  Google Scholar 

  • Evelson P, Gonzalez-Flecha B (2000) Time course and quantitative analysis of the adaptive responses to 85 % oxygen in the rat lung and heart. Biochim Biophys Acta 1523(2–3):209–216

    Article  CAS  Google Scholar 

  • Ferraro SA, Yakisich JS, Gallo FT, Tasat DR (2011) Simvastatin pretreatment prevents ambient particle-induced lung injury in mice. Inhal Toxicol 23(14):889–896

    Article  CAS  Google Scholar 

  • Ferraro SA, Curutchet G, Tasat DR (2012) Bioaccessible heavy metals-sediment particles from Reconquista River induce lung inflammation in mice. Environ Toxicol Chem 31(9):2059–2068

    Article  CAS  Google Scholar 

  • Forastiere F, Stafoggia M, Picciotto S, Bellander T, D’Ippoliti D, Lanki T et al (2005) A case-crossover analysis of out-of-hospital coronary deaths and air pollution in Rome, Italy. Am J Respir Crit Care Med 172(12):1549–1555

    Article  Google Scholar 

  • Ghio AJ, Devlin RB (2001) Inflammatory lung injury after bronchial instillation of air pollution particles. Am J Respir Crit Care Med 164(4):704–708

    Article  CAS  Google Scholar 

  • Ghio AJ, Suliman HB, Carter JD, Abushamaa AM, Folz RJ (2002) Overexpression of extracellular superoxide dismutase decreases lung injury after exposure to oil fly ash. Am J Physiol Lung Cell Mol Physiol 283(1):L211–L218

    CAS  Google Scholar 

  • GoogleMaps La Carcova, Buenos Aires Argentina. Images ©2012 Cnes/Spot Image, DigitalGlobe, TerraMetrics, data from map ©2012 Google, Inav/Geosystems SRL. Undetermined scale, “Google Maps.” https://maps.google.com.ar/?ll=-34.522788,-58.581719&spn=0.020048,0.042272&t=k&z=15. Accessed 2 Dec 2013

  • Gurgueira SA, Lawrence J, Coull B, Murthy GG, Gonzalez-Flecha B (2002) Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ Health Perspect 110(8):749–755

    Article  CAS  Google Scholar 

  • Henderson RF (2005) Use of bronchoalveolar lavage to detect respiratory tract toxicity of inhaled material. Exp Toxicol Pathol 57(Suppl 1):155–159

    Article  CAS  Google Scholar 

  • Krewski D, Snyder R, Beatty P, Granville G, Meek B, Sonawane B (2000) Assessing the health risks of benzene: a report on the benzene state-of-the-science workshop. J Toxicol Environ Health A 61(5–6):307–338

    CAS  Google Scholar 

  • Leong BK, Coombs JK, Sabaitis CP, Rop DA, Aaron CS (1998) Quantitative morphometric analysis of pulmonary deposition of aerosol particles inhaled via intratracheal nebulization, intratracheal instillation or nose-only inhalation in rats. J Appl Toxicol 18(2):149–160

    Article  CAS  Google Scholar 

  • Li N, Venkatesan MI, Miguel A, Kaplan R, Gujuluva C, Alam J et al (2000) Induction of heme oxygenase-1 expression in macrophages by diesel exhaust particle chemicals and quinones via the antioxidant-responsive element. J Immunol 165(6):3393–3401

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  Google Scholar 

  • Maehly AC, Chance B (1954) The assay of catalases and peroxidases. Methods Biochem Anal 1:357–424

    Article  CAS  Google Scholar 

  • Magnani ND, Marchini T, Tasat DR, Alvarez S, Evelson PA (2011) Lung oxidative metabolism after exposure to ambient particles. Biochem Biophys Res Commun 412(4):667–672

    Article  CAS  Google Scholar 

  • Mantecca P, Farina F, Moschini E, Gallinotti D, Gualtieri M, Rohr A et al (2010) Comparative acute lung inflammation induced by atmospheric PM and size-fractionated tire particles. Toxicol Lett 198(2):244–254

    Article  CAS  Google Scholar 

  • Marchini T, Magnani N, D’Annunzio V, Tasat D, Gelpi RJ, Alvarez S et al (2013) Impaired cardiac mitochondrial function and contractile reserve following an acute exposure to environmental particulate matter. Biochim Biophys Acta 1830(3):2545–2552

    Article  CAS  Google Scholar 

  • Miller MR, Shaw CA, Langrish JP (2012) From particles to patients: Oxidative stress and the cardiovascular effects of air pollution. Future Cardiol 8(4):577–602

    Article  CAS  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247(10):3170–3175

    CAS  Google Scholar 

  • Molinari BL, Tasat DR, Fernandez ML, Duran HA, Curiale J, Stoliar A et al (2000) Automated image analysis for monitoring oxidative burst in macrophages. Anal Quant Cytol Histol 22(5):423–427

    CAS  Google Scholar 

  • Nel AE, Diaz-Sanchez D, Li N (2001) The role of particulate pollutants in pulmonary inflammation and asthma: Evidence for the involvement of organic chemicals and oxidative stress. Curr Opin Pulm Med 7(1):20–26

    Article  CAS  Google Scholar 

  • Nurkiewicz TR, Porter DW, Barger M, Millecchia L, Rao KM, Marvar PJ et al (2006) Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure. Environ Health Perspect 114(3):412–419

    Article  Google Scholar 

  • Oberdorster G (2001) Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74(1):1–8

    Article  CAS  Google Scholar 

  • Osornio-Vargas AR, Bonner JC, Alfaro-Moreno E, Martinez L, Garcia-Cuellar C, Ponce-de-Leon Rosales S et al (2003) Proinflammatory and cytotoxic effects of Mexico City air pollution particulate matter in vitro are dependent on particle size and composition. Environ Health Perspect 111(10):1289–1293

    Article  CAS  Google Scholar 

  • Perrone MG, Gualtieri M, Consonni V, Ferrero L, Sangiorgi G, Longhin E et al (2013) Particle size, chemical composition, seasons of the year and urban, rural or remote site origins as determinants of biological effects of particulate matter on pulmonary cells. Environ Pollut 176:215–227

    Article  CAS  Google Scholar 

  • Pope CA 3rd, Burnett RT, Krewski D, Jerrett M, Shi Y, Calle EE et al (2009) Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke: shape of the exposure–response relationship. Circulation 120(11):941–948

    Article  CAS  Google Scholar 

  • Ristovski ZD, Miljevic B, Surawski NC, Morawska L, Fong KM, Goh F et al (2012) Respiratory health effects of diesel particulate matter. Respirology 17(2):201–212

    Article  Google Scholar 

  • Rosas Perez I, Serrano J, Alfaro-Moreno E, Baumgardner D, Garcia-Cuellar C, Martin Del Campo JM et al (2007) Relations between PM10 composition and cell toxicity: A multivariate and graphical approach. Chemosphere 67(6):1218–1228

    Article  CAS  Google Scholar 

  • Saldiva PH (1998) Air pollution in urban areas: the role of automotive emissions as a public health problem. Int J Tuberc Lung Dis 2(11):868

    CAS  Google Scholar 

  • Schins RP (2002) Mechanisms of genotoxicity of particles and fibers. Inhal Toxicol 14(1):57–78

    Article  CAS  Google Scholar 

  • Segal AW (1974) Nitroblue-tetrazolium tests. Lancet 2(7891):1248–1252

    Article  CAS  Google Scholar 

  • Singhal PC, Sharma P, Kapasi AA, Reddy K, Franki N, Gibbons N (1998) Morphine enhances macrophage apoptosis. J Immunol 160(4):1886–1893

    CAS  Google Scholar 

  • Southam DS, Dolovich M, O’Byrne PM, Inman MD (2002) Distribution of intranasal instillations in mice: Effects of volume, time, body position, and anesthesia. Am J Physiol Lung Cell Mol Physiol 282(4):L833–L839

    CAS  Google Scholar 

  • Tao F, Gonzalez-Flecha B, Kobzik L (2003) Reactive oxygen species in pulmonary inflammation by ambient particulates. Free Radic Biol Med 35(4):327–340

    Article  CAS  Google Scholar 

  • Tasat DR, de Rey BM (1987) Cytotoxic effect of uranium dioxide on rat alveolar macrophages. Environ Res 44(1):71–81

    Article  CAS  Google Scholar 

  • Torricelli AA, Novaes P, Matsuda M, Alves MR, Monteiro ML (2011) Ocular surface adverse effects of ambient levels of air pollution. Arq Bras Oftalmol 74(5):377–381

    Article  Google Scholar 

Download references

Acknowledgments

We especially thank Gisela Maxia for technical assistance with SEM and EDX and Paulo H. Saldiva for kindly providing the collector sampler. This study was supported by the Agencia de Promoción Científica y Técnica from Argentina (Grant No. PICT-2010-1660).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Astort.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astort, F., Sittner, M., Ferraro, S.A. et al. Pulmonary Inflammation and Cell Death in Mice After Acute Exposure to Air Particulate Matter From an Industrial Region of Buenos Aires. Arch Environ Contam Toxicol 67, 87–96 (2014). https://doi.org/10.1007/s00244-013-9975-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-013-9975-4

Keywords

Navigation