Skip to main content

Advertisement

Log in

Ischemic Preconditioning Efficacy Following Anabolic Steroid Usage: A Clear Difference Between Sedentary and Exercise-Trained Rat Hearts

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Previous studies show that anabolic steroids impair innate cardioprotective mechanisms. Here, we investigated the effect of supraphysiological doses of nandrolone on ischemic preconditioning (IPC) as a potent cardioprotective tool against ischemia reperfusion (IR) injury in rat hearts. Male Wistar rats in two experimental settings of sedentary and exercise-trained (60 min/day swimming, 5 days/week, for 8 weeks) were either pretreated with intramuscular injections of arachis oil (Arach, n = 16) as vehicle or nandrolone decanoate (ND, n = 8), 10 mg/kg/week, for 8 weeks. At the end, the hearts were excised and perfused in a Langendorff system. Then, the vehicle-treated hearts subdivided into the IR (30 min of LAD coronary artery occlusion and 120 min reperfusion, n = 8) and IPC (three cycles of 3-min ischemia and 3-min reperfusion before test ischemia, n = 8) groups and nandrolone-treated hearts served as ND + IPC (nandrolone pretreatment before IR and IPC protocols, n = 8) group. Post-ischemic cardiac function and infarct size were assessed. Reperfusion arrhythmias were analyzed using a standard scoring system. In sedentary hearts, ND slightly increased heart-to-body weight ratio and increased baseline cardiac contractile function. In trained hearts, ND markedly increased heart-to-body weight ratio which was also associated with enhanced baseline cardiac function. ND pretreatment enhanced protective effects of IPC in sedentary group; however, abolished these effects in exercise-trained group. The arrhythmia score was not significantly different between nandrolone-treated groups vs. respective preconditioned groups. Our findings show that ND impairs IPC-induced cardioprotection in exercise-trained rat hearts. Cardiac hypertrophy seems to play a crucial role in this response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hausenloy, D. J., & Yellon, D. M. (2013). Myocardial ischemia-reperfusion injury: A neglected therapeutic target. Journal of Clinical Investigation, 123, 92–100.

    Article  CAS  PubMed  Google Scholar 

  2. Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation, 74, 1124–1136.

    Article  CAS  PubMed  Google Scholar 

  3. Lai, C. C., Tang, C. Y., Chiang, S. C., Tseng, K. W., & Huang, C. H. (2015). Ischemic preconditioning activates prosurvival kinases and reduces myocardial apoptosis. Journal of the Chinese Medical Association, 78, 460–468.

    Article  PubMed  Google Scholar 

  4. Iliodromitis, E. K., Lazou, A., & Kremastinos, D. T. (2007). Ischemic preconditioning: Protection against myocardial necrosis and apoptosis. Vascular Health and Risk Management, 3, 629–637.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, Y. W., Whittaker, P., & Kloner, R. A. (1992). The transient nature of the effect of ischemic preconditioning on myocardial infarct size and ventricular arrhythmia. American Heart Journal, 123, 346–353.

    Article  CAS  PubMed  Google Scholar 

  6. Galagudza, M. M., Sonin, D. L., Vlasov, T. D., Kurapeev, D. I., & Shlyakhto, E. V. (2016). Remote vs. local ischaemic preconditioning in the rat heart: Infarct limitation, suppression of ischaemic arrhythmia and the role of reactive oxygen species. International Journal of Experimental Pathology, 97, 66–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kersey, R. D., Elliot, D. L., Goldberg, L., Kanayama, G., Leone, J. E., Pavlovich, M., et al. (2012). National athletic trainers’ association position statement: Anabolic–androgenic steroids. Journal of Athletic Training, 47, 567–688.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Woerdeman, J., & de Ronde, W. (2011). Therapeutic effects of anabolic androgenic steroids on chronic diseases associated with muscle wasting. Expert Opinion on Investigational Drugs, 20, 87–97.

    Article  CAS  PubMed  Google Scholar 

  9. Marqueti, R. C., Micocci, K. C., Leite, R. D., & Selistre-de-Araujo, H. S. (2012). Nandrolone inhibits MMP-2 in the left ventricle of rats. International Journal of Sports Medicine, 33, 181–185.

    Article  CAS  PubMed  Google Scholar 

  10. Rosca, A. E., Stoian, I., Badiu, C., Gaman, L., Popescu, B. O., Iosif, L. et al. (2016). Impact of chronic administration of anabolic androgenic steroids and taurine on blood pressure in rats. Brazilian Journal of Medical and Biological Research. https://doi.org/10.1590/1414-431X20165116.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pirompol, P., Teekabut, V., Weerachatyanukul, W., Bupha-Intr, T., & Wattanapermpool, J. (2016). Supra-physiological dose of testosterone induces pathological cardiac hypertrophy. Journal of Endocrinology, 229, 13–23.

    Article  CAS  PubMed  Google Scholar 

  12. Ammar, E. M., Said, S. A., & Hassan, M. S. (2004). Enhanced vasoconstriction and reduced vasorelaxation induced by testosterone and nandrolone in hypercholesterolemic rabbits. Pharmacological Research, 50, 253–259.

    Article  CAS  PubMed  Google Scholar 

  13. Nascimento, J. H., & Medei, E. (2011). Cardiac effects of anabolic steroids: Hypertrophy, ischemia and electrical remodelling as potential triggers of sudden death. Mini Reviews in Medicinal Chemistry, 11, 425–429.

    Article  CAS  PubMed  Google Scholar 

  14. Fineschi, V., Riezzo, I., Centini, F., Silingardi, E., Licata, M., Beduschi, G., et al. (2007). Sudden cardiac death during anabolic steroid abuse: Morphologic and toxicologic findings in two fatal cases of bodybuilders. International Journal of Legal Medicine, 121, 48–53.

    Article  PubMed  Google Scholar 

  15. Du Toit, E. F., Rossouw, E., Van, Rooyen, J., & Lochner, A. (2005). Proposed mechanisms for the anabolic steroid-induced increase in myocardial susceptibility to ischaemia/reperfusion injury. Cardiovascular Journal of South Africa, 16, 21–28.

    CAS  PubMed  Google Scholar 

  16. Chaves, E. A., Fortunato, R. S., Carvalho, D. P., Nascimento, J. H. M., & Oliveira, M. F. (2013). Exercise-induced cardioprotection is impaired by anabolic steroid treatment through a redox-dependent mechanism. The Journal of Steroid Biochemistry and Molecular Biology, 138, 267–272.

    Article  CAS  PubMed  Google Scholar 

  17. Bissoli, N. S., Medeiros, A. R. S., Santos, M. C. S., Busato, V. C. W., Jarske, R. D., Abreu, G. R., et al. (2009). Long-term treatment with supraphysiological doses of nandrolone decanoate reduces the sensitivity of Bezold–Jarisch reflex control of heart rate and blood pressure. Pharmacological Research, 59, 379–384.

    Article  CAS  PubMed  Google Scholar 

  18. Abdollahi, F., Joukar, S., Najafipour, H., Karimi, A., Masumi, Y., & Binayi, F. (2016). The risk of life-threatening ventricular arrhythmias in presence of high-intensity endurance exercise along with chronic administration of nandrolone decanoate. Steroids, 105, 106–112.

    Article  CAS  PubMed  Google Scholar 

  19. Binayi, F., Joukar, S., Najafipour, H., Karimi, A., Abdollahi, F., & Masumi, Y. (2016). The effects of nandrolone decanoate along with prolonged low-intensity exercise on susceptibility to ventricular arrhythmias. Cardiovascular Toxicology, 16, 23–33.

    Article  CAS  PubMed  Google Scholar 

  20. Penna, C., Abbadessa, G., Mancardi, D., Tullio, F., Piccione, F., Spaccamiglio, A., et al. (2008). Synergistic effects against post-ischemic cardiac dysfunction by sub-chronic nandrolone pretreatment and postconditioning: Role of beta2-adrenoceptor. Journal of Physiology and Pharmacology, 59, 645–659.

    CAS  Google Scholar 

  21. Penna, C., Tullio, F., Perrelli, M. G., Moro, F., Abbadessa, G., Piccione, F., et al. (2011). Ischemia/reperfusion injury is increased and cardioprotection by a postconditioning protocol is lost as cardiac hypertrophy develops in nandrolone treated rats. Basic Research in Cardiology, 106, 409–420.

    Article  CAS  PubMed  Google Scholar 

  22. Do Carmo, E. C., Fernandes, T., Koike, D., Da Silva, N. D., Mattos, K. C., Rosa, K. T., et al. (2011). Anabolic steroid associated to physical training induces deleterious cardiac effects. Medicine and Science in Sports and Exercise, 43, 1836–1848.

    Article  CAS  PubMed  Google Scholar 

  23. Pereira-Junior, P. P., Chaves, E. A., Costa, E. S. R. H., Masuda, M. O., de Carvalho, A. C., & Nascimento, J. H. (2006). Cardiac autonomic dysfunction in rats chronically treated with anabolic steroid. European Journal of Applied Physiology, 96, 487–494.

    Article  CAS  PubMed  Google Scholar 

  24. Tanno, A. P., Neves, V. J. d., Rosa, K. T., Cunha, T. S., Giordano, F. C. L., & Calil, C. M. (2011). Nandrolone and resistance training induce heart remodeling: Role of fetal genes and implications for cardiac pathophysiology. Life Sciences, 89, 631–637.

    Article  CAS  PubMed  Google Scholar 

  25. Pope, Jr. H. G., Katz, D. L. (1988). Affective and psychotic symptoms associated with anabolic steroid use. American Journal of Psychiatry, 145, 487–490.

    Article  PubMed  Google Scholar 

  26. Norton, G. R., Trifunovic, B., Woodiwiss, A. J. (2000). Attenuated beta-adrenoceptor-mediated cardiac contractile responses following androgenic steroid administration to sedentary rats. European Journal of Applied Physiology, 81, 310–316.

    Article  CAS  PubMed  Google Scholar 

  27. Evans, N. A. (1997). Gym and tonic: A profile of 100 male steroid users. British Journal of Sports Medicine, 31, 54–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shokri, S., Aitken, R. J., Abdolvahhabi, M., Abolhasani, F., Ghasemi, F. M., Kashani, I., et al. (2009). Exercise and supraphysiological dose of nandrolone deconoate increase apoptosis in spermatogenic cells. Basic and Clinical Pharmacology and Toxicology, 106, 324–330.

    Article  CAS  PubMed  Google Scholar 

  29. Schultz, J. E., Hsu, A. K., & Gross, G. J. (1998). Ischemic preconditioning in the intact rat heart is mediated by delta1- but not mu- or kappa-opioid receptors. Circulation, 97, 1282–1289.

    Article  CAS  PubMed  Google Scholar 

  30. Walker, M. J., Curtis, M. J., Hearse, D. J., Campbell, R. W., Janse, M. J., Yellon, D. M., et al. (1988). The Lambeth Conventions: Guidelines for the study of arrhythmias in ischaemia infarction, and reperfusion. Cardiovascular Research, 22, 447–455.

    Article  CAS  PubMed  Google Scholar 

  31. Song, Y., Song, J. W., Lee, S., Jun, J. H., Kwak, Y. L., & Shim, J. K. (2017). Effects of remote ischemic preconditioning in patients with concentric myocardial hypertrophy: A randomized, controlled trial with molecular insights. International Journal of Cardiology, 249, 36–41.

    Article  PubMed  Google Scholar 

  32. Seara, F. A. C., Barbosa, R. A. Q., de Oliveira, D. F., Gran da Silva, D. L. S., Carvalho, A. B., Ferreira, A. C. et al. (2017). Administration of anabolic steroid during adolescence induces long-term cardiac hypertrophy and increases susceptibility to ischemia/reperfusion injury in adult Wistar rats. Journal of Steroid Biochem Molecular Biology, 171, 34–42.

    Article  CAS  Google Scholar 

  33. Beutel, A., Bergamaschi, C. T., & Campos, R. R. (2005). Effects of chronic anabolic steroid treatment on tonic and reflex cardiovascular control in male rats. The Journal of Steroid Biochemistry and Molecular Biology, 93, 43–48.

    Article  CAS  PubMed  Google Scholar 

  34. Rocha, F. L., Carmo, E. C., Roque, F. R., Hashimoto, N. Y., Rossoni, L. V., Frimm, C., et al. (2007). Anabolic steroids induce cardiac renin-angiotensin system and impair the beneficial effects of aerobic training in rats. American Journal of Physiology; Heart Circulation Physiology, 293, H3575–H3583.

    Article  CAS  Google Scholar 

  35. Lunz, W., Oliveira, E. C., Neves, M. T. D., Fontes, E. P. B., Dias, C. M. G. C., & Natali, A. J. (2006). Anabolic steroid and exercise induced cardiac stress protein (HSP72) in the rat. Brazillian Journal of Medical and Biological Research, 39, 889–893.

    Article  CAS  Google Scholar 

  36. Woodiwiss, A., Trifunovic, G., Philippides, M., & Norton, G. (2000). Effect of an androgenic steroid on exercise-induced cardiac remodeling in rats. Journal of Applied Physiology, 88, 409–415.

    Article  CAS  PubMed  Google Scholar 

  37. Pergolizzi, B., Carriero, V., Abbadessa, G., Penna, C., Berchialla, P., De Francia, S., et al. (2017). Subchronic nandrolone administration reduces cardiac oxidative markers during restraint stress by modulating protein expression patterns. Molecular Cell Biochemistry, 434, 51–60.

    Article  CAS  Google Scholar 

  38. Chaves, E. A., Pereira-Junior, P. P., Fortunato, R. S., Masuda, M. O., de Carvalho, A. C., de Carvalho, D. P., et al. (2006). Nandrolone decanoate impairs exercise-induced cardioprotection: Role of antioxidant enzymes. Journals of Steroid Biochemistry Molecular Biology, 99, 223–230.

    Article  CAS  Google Scholar 

  39. Xiao, J., Xu, T., Li, J., Lv, D., Chen, P., Zhou, Q., et al. (2014). Exercise-induced physiological hypertrophy initiates activation of cardiac progenitor cells. International Journal of Clinical and Experimental Pathology, 7, 663–669.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Brasil, G. A., Lima, E. M., Nascimento, A. M., Caliman, I. F., Medeiros, A. R., Silva, M. S., et al. (2015). Nandrolone decanoate induces cardiac and renal remodeling in female rats, without modification in physiological parameters: The role of ANP system. Life Sciences, 137, 65–73.

    Article  CAS  PubMed  Google Scholar 

  41. Iemitsu, M., Miyauchi, T., Maeda, S., Sakai, S., Kobayashi, T., Fujii, N., et al. (2001). Physiological and pathological cardiac hypertrophy induce different molecular phenotypes in the rat. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 281, R2029–R2036.

    Article  CAS  PubMed  Google Scholar 

  42. Molgaard, S., Faricelli, B., Salomonsson, M., Engstrom, T., & Treiman, M. (2016). Increased myocardial vulnerability to ischemia–reperfusion injury in the presence of left ventricular hypertrophy. Journal of Hypertension, 34, 513–523.

    Article  CAS  PubMed  Google Scholar 

  43. Yano, T., Miki, T., Tanno, M., Kuno, A., Itoh, T., Takada, A., et al. (2011). Hypertensive hypertrophied myocardium is vulnerable to infarction and refractory to erythropoietin-induced protection. Hypertension, 57, 110–115.

    Article  CAS  PubMed  Google Scholar 

  44. Snoeckx, L. H., van der Vusse, G. J., van der Veen, F. H., Coumans, W. A., & Reneman, R. S. (1989). Recovery of hypertrophied rat hearts after global ischemia and reperfusion at different perfusion pressures. Pflugers Archiv, 413, 303–312.

    Article  CAS  PubMed  Google Scholar 

  45. Friehs, I., Moran, A. M., Stamm, C., Choi, Y. H., Cowan, D. B., McGowan, F. X., et al. (2004). Promoting angiogenesis protects severely hypertrophied hearts from ischemic injury. The Annals of Thoracic Surgery, 77, 2004–2010.

    Article  PubMed  Google Scholar 

  46. Chen, C. H., Wu, C. W., Shih, C. D., Lien, W. H., Huang, S. L., & Huang, C. C. (2016). Attenuation of isoflurane preconditioning-induced acute cardioprotection in hypertensive hypertrophied hearts. Journal of Cardiothorac Vascular Anesthesia, 30, 1317–1323.

    Article  CAS  Google Scholar 

  47. Wagner, C., Ebner, B., Tillack, D., Strasser, R. H., & Weinbrenner, C. (2013). Cardioprotection by ischemic postconditioning is abrogated in hypertrophied myocardium of spontaneously hypertensive rats. Journal of Cardiovascular Pharmacolology, 61, 35–41.

    Article  CAS  Google Scholar 

  48. Fineschi, V., Di Paolo, M., Neri, M., Bello, S., D’Errico, S., Dinucci, D., et al. (2011). Anabolic steroid- and exercise-induced cardio-depressant cytokines and myocardial beta1 receptor expression in CD1 mice. Current Pharmacology Biotechnology, 12, 275–284.

    Article  Google Scholar 

  49. Stelzer, J. E., Brickson, S. L., Locher, M. R., & Moss, R. L. (2007). Role of myosin heavy chain composition in the stretch activation response of rat myocardium. Journal of Physiology, 579, 161–173.

    Article  CAS  PubMed  Google Scholar 

  50. Penna, C., Abbadessa, G., Mancardi, D., Spaccamiglio, A., Racca, S., & Pagliaro, P. (2007). Nandrolone-pretreatment enhances cardiac [beta]2-adrenoceptor expression and reverses heart contractile down-regulation in the post-stress period of acute-stressed rats. The Journal of Steroid Biochemistry and Molecular Biology, 107, 106–113.

    Article  CAS  PubMed  Google Scholar 

  51. das Neves, V. J., Tanno, A. P., Cunha, T. S., Fernandes, T., Guzzoni, V., da Silva, C. A., et al. (2013). Effects of nandrolone and resistance training on the blood pressure, cardiac electrophysiology, and expression of atrial beta-adrenergic receptors. Life Science, 92, 1029–1035.

    Article  CAS  Google Scholar 

  52. Marques-Neto, S. R., Ferraz, E. B., Rodrigues, D. C., Njaine, B., Rondinelli, E., Campos de Carvalho, A. C., et al. (2014). AT1 and aldosterone receptors blockade prevents the chronic effect of nandrolone on the exercise-induced cardioprotection in perfused rat heart subjected to ischemia and reperfusion. Cardiovascular Drugs Therapy, 28, 125–135.

    Article  CAS  PubMed  Google Scholar 

  53. Zhou, L. Y., Liu, J. P., Wang, K., Gao, J., Ding, S. L., Jiao, J. Q., et al. (2018). Mitochondrial function in cardiac hypertrophy. International Journal of Cardiology, 167, 1118–1125.

    Article  Google Scholar 

  54. Abeer, A. M., Noura, H. M., & Maha, Z. M. (2018). The Nandrolone effect on cardiac muscle of adult male albino rat and the possible role of nigella sativa: Light and electron microscopic studies. Journal of Biochemistry and Cell Biology, 1, 109.

    Google Scholar 

  55. Sun, M., Shen, W., Zhong, M., Wu, P., Chen, H., & Lu, A. (2013). Nandrolone attenuates aortic adaptation to exercise in rats. Cardiovascular Research, 97, 686–695.

    Article  CAS  PubMed  Google Scholar 

  56. Hanan, A. E. E., Adel, A. E. A., Mona, A. E. E. S., & Afaf, T. A. (2018). Effect of anabolic steroids on the cardiac and skeletal muscles of adult male rats. International Journal of Clinical and Developmental Anatomy, 4, 1–14.

    Article  Google Scholar 

  57. Hassan, N. A., Salem, M. F., & Sayed, M. A. (2009). Doping and effects of anabolic androgenic steroids on the heart: Histological, ultrastructural, and echocardiographic assessment in strength athletes. Human Experimental Toxicology, 28, 273–283.

    Article  CAS  PubMed  Google Scholar 

  58. Achar, S., Rostamian, A., & Narayan, S. M. (2010). Cardiac and metabolic effects of anabolic-androgenic steroid abuse on lipids, blood pressure, left ventricular dimensions, and rhythm. American Journal of Cardiology, 106, 893–901.

    Article  CAS  PubMed  Google Scholar 

  59. Phillis, B. D., Abeywardena, M. Y., Adams, M. J., Kennedy, J. A., & Irvine, R. J. (2007). Nandrolone potentiates arrhythmogenic effects of cardiac ischemia in the rat. Toxicology Science, 99, 605–611.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the Vice Chancellor for Research and Technology, Bushehr University of Medical Sciences for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Pourkhalili.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: James Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, Z., Esmailidehaj, M., Avarand, E. et al. Ischemic Preconditioning Efficacy Following Anabolic Steroid Usage: A Clear Difference Between Sedentary and Exercise-Trained Rat Hearts. Cardiovasc Toxicol 19, 287–296 (2019). https://doi.org/10.1007/s12012-018-9497-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-018-9497-4

Keywords

Navigation