Skip to main content
Log in

AT1 and Aldosterone Receptors Blockade Prevents the Chronic Effect of Nandrolone on the Exercise-Induced Cardioprotection in Perfused rat Heart Subjected to Ischemia and Reperfusion

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Myocardial tolerance to ischaemia/reperfusion (I/R) injury is improved by exercise training, but this cardioprotection is impaired by the chronic use of anabolic androgenic steroids (AAS). The present study evaluated whether blockade of angiotensin II receptor (AT1-R) with losartan and aldosterone receptor (mineralocorticoid receptor, MR) with spironolactone could prevent the deleterious effect of AAS on the exercise-induced cardioprotection.

Methods and Results

Male Wistar rats were exercised and treated with either vehicle, nandrolone decanoate (10 mg/kg/week i.m.) or the same dose of nandrolone plus losartan or spironolactone (20 mg/kg/day orally) for 8 weeks. Langendorff-perfused hearts were subjected to I/R and evaluated for the postischaemic recovery of left ventricle (LV) function and infarct size. mRNA and protein expression of angiotensin II type 1 receptor (AT1-R), mineralocorticoid receptor (MR), and KATP channels were determined by reverse-transcriptase polymerase chain reaction and Western blotting. Postischaemic recovery of LV function was better and infarct size was smaller in the exercised rat hearts than in the sedentary rat hearts. Nandrolone impaired the exercise-induced cardioprotection, but this effect was prevented by losartan (AT1-R antagonist) and spironolactone (MR antagonist) treatments. Myocardial AT1-R and MR expression levels were increased, and the expression of the KATP channel subunits SUR2a and Kir6.1 was decreased and Kir6.2 increased in the nandrolone-treated rat hearts. The nandrolone-induced changes of AT1-R, MR, and KATP subunits expression was normalized by the losartan and spironolactone treatments.

Conclusion

The chronic nandrolone treatment impairs the exercise-induced cardioprotection against ischaemia/reperfusion injury by activating the cardiac renin-angiotensin-aldosterone system and downregulating KATP channel expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, et al. Heart Disease and Stroke Statistics–2008 Update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117:e25–e146.

    Article  PubMed  Google Scholar 

  2. World Health Organization. Cardiovascular diseases (CVDs). Fact sheet No. 317, 2011.

  3. Shephard RJ, Balady GJ. Exercise as cardiovascular therapy. Circulation. 1999;99:963–72.

    Article  CAS  PubMed  Google Scholar 

  4. Myers J. Cardiology patient pages. Exercise and cardiovascular health. Circulation. 2003;107:e2–5.

    Article  PubMed  Google Scholar 

  5. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39:1423–34.

    Article  PubMed  Google Scholar 

  6. Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116:1094–105.

    Article  PubMed  Google Scholar 

  7. Leung FP, Yung LM, Laher I, Yao X, Chen ZY, Huang Y. Exercise, vascular wall and cardiovascular diseases: an update (part 1). Sports Med. 2008;38:1009–24.

    Article  PubMed  Google Scholar 

  8. McElroy CL, Gissen SA, Fishbein MC. Exercise-induced reduction in myocardial infarct size after coronary artery occlusion in the rat. Circulation. 1978;57:958–62.

    Article  CAS  PubMed  Google Scholar 

  9. Bowles DK, Farrar RP, Starnes JW. Exercise training improves cardiac function after ischemia in the isolated, working rat heart. Am J Physiol Heart Circ Physiol. 1992;263:H804–9.

    CAS  Google Scholar 

  10. Yamashita N, Baxter GF, Yellon DM. Exercise directly enhances myocardial tolerance to ischemia-reperfusion injury in the rat through a protein kinase C mediated mechanism. Heart. 2001;85:331–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gielen S, Schuler G, Adams V. Cardiovascular effects of exercise training–molecular mechanisms. Circulation. 2010;122:1221–38.

    Article  PubMed  Google Scholar 

  12. Frasier CR, Moore RL, Brown DA. Exercise-induced cardiac preconditioning: how exercise protects your achy-breaky heart. J Appl Physiol. 2011;111:905–15.

    Article  CAS  PubMed  Google Scholar 

  13. Brown DA, Chicco AJ, Jew KN, Johnson MS, Lynch JM, Watson PA, et al. Cardioprotection afforded by chronic exercise is mediated by sarcolemmal, and not the mitochondrial, isoform of the KATP channel in the rat. J Physiol. 2005;569:913–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Brown DA, Lynch JM, Armstrong CJ, Caruso NM, Ehlers LB, Johnson MS, et al. Susceptibility of the heart to ischaemia-reperfusion injury and exercise-induced cardioprotection are sex-dependent in the rat. J Physiol. 2005;564:619–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Chicco AJ, Johnson MS, Armstrong CJ, Lynch JM, Gardner RT, Fasen GS, et al. Sex-specific and exercise-acquired cardioprotection is abolished by sarcolemmal KATP channel blockade in the rat heart. Am J Physiol Heart Circ Physiol. 2007;292:H2432–7.

    Article  CAS  PubMed  Google Scholar 

  16. Quindry JC, Schreiber L, Hosick P, Wrieden J, Irwin JM, Hoyt E. Mitochondrial KATP channel inhibition blunts arrhythmia protection in ischemic exercised hearts. Am J Physiol Heart Circ Physiol. 2010;299:H175–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hartgens F, Kuipers H. Effects of androgenic-anabolic steroids in athletes. Sports Med. 2004;34:513–54.

    Article  PubMed  Google Scholar 

  18. Sjӧqvist F, Garle M, Rane A. Use of doping agents, particularly anabolic steroids, in sports and society. Lancet. 2008;371:1872–82.

    Article  Google Scholar 

  19. Sullivan ML, Martinez CM, Gennis P, Gallagher EJ. The cardiac toxicity of anabolic steroids. Prog Cardiovasc Dis. 1998;41:1–15.

    Article  CAS  PubMed  Google Scholar 

  20. Di Paolo M, Agozzino M, Toni C, Luciani AB, Molendini L, Scaglione M, et al. Sudden anabolic steroid abuse-related death in athletes. Int J Cardiol. 2007;114:114–7.

    Article  PubMed  Google Scholar 

  21. Fineschi V, Baroldi G, Monciotti F, Reattelli LP, Turillazzi E. Anabolic steroid abuse and cardiac sudden death: a pathologic study. Arch Pathol Lab Med. 2001;125:253–5.

    CAS  PubMed  Google Scholar 

  22. Urhausen A, Albers T, Kindermann W. Are the cardiac effects of anabolic steroid abuse in strength athletes reversible? Heart. 2004;90:496–501.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Du Toit EF, Rossouw E, Van Rooyen J, Lochner A. Proposed mechanisms for the anabolic steroid-induced increase in myocardial susceptibility to ischemia/reperfusion injury. Cardiovasc J South Afr. 2005;16:21–8.

    Google Scholar 

  24. Chaves EA, Pereira-Junior PP, Fortunato RS, Masuda MO, Carvalho ACC, Carvalho DP, et al. Nandrolone decanoate impairs exercise-induced cardioprotection: role of antioxidant enzymes. J Steroid Biochem Mol Biol. 2006;99:223–30.

    Article  CAS  PubMed  Google Scholar 

  25. Rocha FL, Carmo EC, Roque FR, Hashimoto NY, Rossoni LV, Frimm C, et al. Anabolic steroids induce cardiac renin-angiotensin system and impair the beneficial effects of aerobic training in rats. Am J Physiol Heart Circ Physiol. 2007;293:H3575–83.

    Article  CAS  PubMed  Google Scholar 

  26. Do Carmo EC, Fernandes T, Koike D, Da Silva Jr ND, Mattos KC, Rosa KT, et al. Anabolic steroid associated to physical training induces deleterious cardiac effects. Med Sci Sports Exerc. 2011;43:1836–48.

    Article  CAS  PubMed  Google Scholar 

  27. Marsh JD, Lehmann MH, Ritchie RH, Gwathmey JK, Green GE, Schiebinger RJ. Androgen receptors mediate hypertrophy in cardiac myocytes. Circulation. 1998;98:256–61.

    Article  CAS  PubMed  Google Scholar 

  28. Iwai N, Shimoike H, Kinoshita M. Cardiac rennin-angiotensin system in the hypertrophied heart. Circulation. 1995;92:2690–6.

    Article  CAS  PubMed  Google Scholar 

  29. Barauna VG, Magalhaes FC, Krieger JE, Oliveira EM. AT1 receptor participates in the cardiac hypertrophy induced by resistance training in rats. Am J Physiol Regul Integr Comp Physiol. 2008;295:R381–7.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang AD, Cat AND, Soukaseum C, Escoubet B, Cherfa A, Messaoudi S, et al. Cross-talk between mineralocorticoid and angiotensin II signaling for cardiac remodeling. Hypertension. 2008;52:1060–7.

    Article  CAS  PubMed  Google Scholar 

  31. Kalra D, Sivasubramanian N, Mann DL. Angiotensin II induces tumor necrosis factor biosynthesis in the adult mammalian heart through a protein kinase C–dependent pathway. Circulation. 2002;105:2198–205.

    Article  CAS  PubMed  Google Scholar 

  32. Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, et al. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-α and angiotensin II. 1998;98:794–9.

  33. Tavares NI, Philip-Couderc P, Baertschi AJ, Lerch R, Montessuit C. Angiotensin II and tumour necrosis factor α as mediators of ATP-dependent potassium channel remodeling in post-infarction heart failure. Cardiovasc Res. 2009;83:726–36.

    Article  Google Scholar 

  34. Serejo FC, Rodrigues-Junior LF, Tavares KCS, Campos de Carvalho AC, Nascimento JHM. Cardioprotective properties of humoral factors released from rat hearts subject to ischemic preconditioning. J Cardiovasc Pharmacol. 2007;49:214–20.

    Article  CAS  PubMed  Google Scholar 

  35. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.

    Article  CAS  PubMed  Google Scholar 

  36. Robert V, Heymes C, Silvestre JS, Sabri A, Swynghedauw B, Delcayre C. Angiotensin AT1 receptor subtype as a cardiac target of aldosterone: role in aldosterone-salt-induced fibrosis. Hypertension. 1999;33:981–6.

    Article  CAS  PubMed  Google Scholar 

  37. Takeda Y, Yoneda T, Demura M, Usukura M, Mabuchi H. Calcineurin inhibition attenuates mineralocorticoid-induced cardiac hypertrophy. Circulation. 2002;105:677–9.

    Article  CAS  PubMed  Google Scholar 

  38. Silvestre JS, Heymes C, Oubénaïssa A, Robert V, Aupetit-Faisant B, Carayon A, et al. Activation of cardiac aldosterone production in rat myocardial infarction. Circulation. 1999;99:2694–701.

    Article  CAS  PubMed  Google Scholar 

  39. Ullian ME, Schelling JR, Linas SL. Aldosterone enhances angiotensin II receptor binding and inositol phosphate responses. Hypertension. 1992;20:67–73.

    Article  CAS  PubMed  Google Scholar 

  40. Mill JG, Milanez MC, Rezende MM, Gomes MGS, Leite CM. Spironolactone prevents cardiac collagen proliferation after myocardial infarction in rats. Clin Exp Pharmacol Physiol. 2003;30:739–44.

    Article  CAS  PubMed  Google Scholar 

  41. Chai W, Garrelds IM, Arulmani U, Schoemaker RG, Lamers JMJ, Danser AHJ. Genomic and nongenomic effects of aldosterone in the rat: why is spironolactone cardioprotective. Br J Pharmacol. 2005;145:664–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Sato M, Engelman RM, Otani H, Maulik N, Rousou JA, Flack III JE, et al. Myocardial protection by preconditioning of heart with losartan, na angiotensin II type 1-receptor blocker: implication of bradykinin-dependent and bradykinin-independent mechanisms. Circulation. 2000;102(Supl 3):346–51.

    Google Scholar 

  43. Flynn JD, Akers WS. Effects of the angiotensin II subtype 1 receptor antagonist losartan on functional recovery of isolated rat hearts undergoing global myocardial ischemia-reperfusion. Pharmacotherapy. 2003;23:1401–10.

    Article  CAS  PubMed  Google Scholar 

  44. Tsounapi P, Saito M, Dimitriadis F, Kitatani K, Kinoshita Y, Shomori K, et al. The role of KATP channels on ischemia-reperfusion injury in the rat testis. Life Sci. 2012;90:649–56.

    Article  CAS  PubMed  Google Scholar 

  45. Seharaseyon J, Sasaki N, Ohler A, Sato T, Fraser H, Johns DC, et al. Evidence against functional heteromultimerization of the KATP channel subunits Kir6.1 and Kir6.2. 275. J Biol Chem. 2000;23:17561–5.

    Article  Google Scholar 

  46. Flagg TP, Kurata HT, Masia R, Caputa G, Magnuson MA, Lefer DJ, et al. Differential structure of atrial and ventricular KATP: atrial KATP channels require SUR1. Circ Res. 2008;103:1458–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Morrissey A, Rosner E, Lanning J, Parachuru L, Chowdhury PD, Han S, et al. Immunolocalization of KATP channel subunits in mouse and rat cardiac myocytes and the coronary vasculature. BMC Physiol. 2005;5:1.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Seharaseyon J, Ohler A, Sasaki N, Fraser H, Sato T, Johns DC, et al. Molecular composition of mitochondrial ATP-sensitive potassium channels probed by viral Kir gene transfer. J Mol Cell Cardiol. 2000;32:1923–30.

    Article  CAS  PubMed  Google Scholar 

  49. Cuong DV, Kim N, Joo H, Youm JB, Chung J-Y, Lee Y, et al. Subunit composition of ATP-sensitive potassium channels in mitochondria of rat hearts. Mitochondrion. 2005;5:121–33.

    Article  PubMed  Google Scholar 

  50. Foster DB, Rucker JJ, Marbán E. Is Kir6.1 a subunit of mitoKATP? Biochem Biophys Res Commun. 2008;366:649–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Kubo M, Quayle JM, Standen NB. Angiotensin II inhibition of ATP-sensitive K+ currents in rat arterial smooth muscle cells through protein kinase C. J Physiol. 1997;503:480–96.

    Article  Google Scholar 

  52. Sampson LJ, Davies LM, Barrett-Jolley R, Standen NB, Dart C. Angiotensin II-activated protein kinase C targets caveolae to inhibit aortic ATPsensitive potassium channels. Cardiovasc Res. 2007;76:61–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Source of Fundings

This work was supported by the FAPERJ–Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (grant E-26/110.342/2012). JHMN is a research fellow from CNPq. SRMN received a fellowship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Hamilton Matheus Nascimento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques-Neto, S.R., Ferraz, E.B., Rodrigues, D.C. et al. AT1 and Aldosterone Receptors Blockade Prevents the Chronic Effect of Nandrolone on the Exercise-Induced Cardioprotection in Perfused rat Heart Subjected to Ischemia and Reperfusion. Cardiovasc Drugs Ther 28, 125–135 (2014). https://doi.org/10.1007/s10557-013-6503-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-013-6503-8

Keywords

Navigation