Skip to main content

Advertisement

Log in

Paraventricular Nucleus Infusion of Epigallocatechin-3-O-Gallate Improves Renovascular Hypertension

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Oxidative stress plays an important role in the pathogenesis of hypertension. Epigallocatechin-3-O-gallate (EGCG) is the main polyphenol present in green tea and is known for its potent antioxidant and anti-inflammatory properties. In the present study, we hypothesize that EGCG attenuates oxidative stress in the paraventricular nucleus of hypothalamus (PVN), thereby decreasing the blood pressure and sympathetic activity in renovascular hypertensive rats. After renovascular hypertension was induced in male Sprague-Dawley rats by the two-kidney one-clip (2K-1C) method, the rats received bilateral PVN infusion of EGCG (20 μg/h) or vehicle via osmotic minipump for 4 weeks. Our results were shown as follows: (1) Hypertension induced by 2K-1C was associated with the production of reactive oxygen species in the PVN; (2) chronic infusion of EGCG in the PVN decreased stress-related NAD(P)H oxidase subunit gp91phox and NOX-4 and increased the activity of antioxidant enzymes (SOD-1), also balanced the content of cytokines (IL-1β, IL-6, IL-10 and MCP-1) in the PVN, and attenuated the level of norepinephrine in plasma of 2K-1C rats. Our findings provide strong evidence that PVN infusion of EGCG inhibited renovascular hypertension progression through its potent anti-oxidative and anti-inflammatory activity in the PVN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alderman, M. H., & Ogihara, T. (2007). Global challenge for overcoming high blood pressure: Fukuoka Statement, 19 October 2006. Journal of Hypertension, 25, 727.

    Article  CAS  PubMed  Google Scholar 

  2. Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T., & Murray, C. J. (2006). Global and regional burden of disease and risk factors, 2001: Systematic analysis of population health data. Lancet, 367, 1747–1757.

    Article  PubMed  Google Scholar 

  3. Kearney, P. M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P. K., & He, J. (2005). Global burden of hypertension: Analysis of worldwide data. Lancet, 365, 217–223.

    Article  PubMed  Google Scholar 

  4. Behradmanesh, S., & Nasri, H. (2013). Association of serum calcium with level of blood pressure in type 2 diabetic patients. Journal of Nephropathology, 2, 254–257.

    PubMed  PubMed Central  Google Scholar 

  5. Lenfant, C., Chobanian, A. V., Jones, D. W., & Roccella, E. J. (2003). Seventh report of the Joint National Committee on the prevention, detection, evaluation, and treatment of high blood pressure (JNC 7): Resetting the hypertension sails. Hypertension, 41, 1178–1179.

    Article  CAS  PubMed  Google Scholar 

  6. Mittal, B. V., & Singh, A. K. (2010). Hypertension in the developing world: Challenges and opportunities. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation, 55, 590–598.

    Article  Google Scholar 

  7. Savoia, C., Burger, D., Nishigaki, N., Montezano, A., & Touyz, R. M. (2011). Angiotensin II and the vascular phenotype in hypertension. Expert Reviews in Molecular Medicine, 13, e11.

    Article  PubMed  Google Scholar 

  8. Belmonte, S. L., & Blaxall, B. C. (2011). G protein coupled receptor kinases as therapeutic targets in cardiovascular disease. Circulation Research, 109, 309–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zubcevic, J., Waki, H., Raizada, M. K., & Paton, J. F. (2011). Autonomic-immune-vascular interaction: an emerging concept for neurogenic hypertension. Hypertension, 57, 1026–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Muller, D. N., Kvakan, H., & Luft, F. C. (2011). Immune-related effects in hypertension and target-organ damage. Current Opinion in Nephrology and Hypertension, 20, 113–117.

    Article  CAS  PubMed  Google Scholar 

  11. Touyz, R. M. (2005). Molecular and cellular mechanisms in vascular injury in hypertension: Role of angiotensin II. Current Opinion in Nephrology and Hypertension, 14, 125–131.

    Article  CAS  PubMed  Google Scholar 

  12. Baylis, C. (2012). Nitric oxide synthase derangements and hypertension in kidney disease. Current Opinion in Nephrology and Hypertension, 21, 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rodrigo, R., Gonzalez, J., & Paoletto, F. (2011). The role of oxidative stress in the pathophysiology of hypertension. Hypertension Research: Official Journal of the Japanese Society of Hypertension, 34, 431–440.

    Article  CAS  Google Scholar 

  14. Wilcox, C. S. (2005). Oxidative stress and nitric oxide deficiency in the kidney: A critical link to hypertension? American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 289, R913–R935.

    Article  CAS  PubMed  Google Scholar 

  15. Vaziri, N. D. (2004). Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension. Current Opinion in Nephrology and Hypertension, 13, 93–99.

    Article  CAS  PubMed  Google Scholar 

  16. Touyz, R. M. (2004). Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: What is the clinical significance? Hypertension, 44, 248–252.

    Article  CAS  PubMed  Google Scholar 

  17. Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95.

    Article  CAS  PubMed  Google Scholar 

  18. Kakihana, T., Nagata, K., & Sitia, R. (2012). Peroxides and peroxidases in the endoplasmic reticulum: Integrating redox homeostasis and oxidative folding. Antioxidants and Redox Signaling, 16, 763–771.

    Article  CAS  PubMed  Google Scholar 

  19. Laurindo, F. R., Pescatore, L. A., & Fernandes Dde, C. (2012). Protein disulfide isomerase in redox cell signaling and homeostasis. Free Radical Biology and Medicine, 52, 1954–1969.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, J., Giordano, S., & Zhang, J. (2012). Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling. The Biochemical Journal, 441, 523–540.

    Article  CAS  PubMed  Google Scholar 

  21. Touyz, R. M., Briones, A. M., Sedeek, M., Burger, D., & Montezano, A. C. (2011). NOX isoforms and reactive oxygen species in vascular health. Molecular Interventions, 11, 27–35.

    Article  CAS  PubMed  Google Scholar 

  22. Vaziri, N. D., & Rodriguez-Iturbe, B. (2006). Mechanisms of disease: Oxidative stress and inflammation in the pathogenesis of hypertension. Nature Clinical Practice Nephrology, 2, 582–593.

    Article  CAS  PubMed  Google Scholar 

  23. Touyz, R. M., & Schiffrin, E. L. (2004). Reactive oxygen species in vascular biology: Implications in hypertension. Histochemistry and Cell Biology, 122, 339–352.

    Article  CAS  PubMed  Google Scholar 

  24. Touyz, R. M., & Briones, A. M. (2011). Reactive oxygen species and vascular biology: Implications in human hypertension. Hypertension Research: Official Journal of the Japanese Society of Hypertension, 34, 5–14.

    Article  CAS  Google Scholar 

  25. Chen, D. D., Dong, Y. G., Yuan, H., & Chen, A. F. (2012). Endothelin 1 activation of endothelin A receptor/NADPH oxidase pathway and diminished antioxidants critically contribute to endothelial progenitor cell reduction and dysfunction in salt-sensitive hypertension. Hypertension, 59, 1037–1043.

    Article  CAS  PubMed  Google Scholar 

  26. Huang, B. S., Zheng, H., Tan, J., Patel, K. P., & Leenen, F. H. (2011). Regulation of hypothalamic renin–angiotensin system and oxidative stress by aldosterone. Experimental Physiology, 96, 1028–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schupp, N., Kolkhof, P., Queisser, N., Gartner, S., Schmid, U., Kretschmer, A., et al. (2011). Mineralocorticoid receptor-mediated DNA damage in kidneys of DOCA-salt hypertensive rats. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 25, 968–978.

    Article  CAS  Google Scholar 

  28. Kimura, M., Umegaki, K., Kasuya, Y., Sugisawa, A., & Higuchi, M. (2002). The relation between single/double or repeated tea catechin ingestions and plasma antioxidant activity in humans. European Journal of Clinical Nutrition, 56, 1186–1193.

    Article  CAS  PubMed  Google Scholar 

  29. Frei, B., & Higdon, J. V. (2003). Antioxidant activity of tea polyphenols in vivo: Evidence from animal studies. The Journal of Nutrition, 133, 3275S–3284S.

    CAS  PubMed  Google Scholar 

  30. Higdon, J. V., & Frei, B. (2003). Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Critical Reviews in Food Science and Nutrition, 43, 89–143.

    Article  CAS  PubMed  Google Scholar 

  31. Thomas, R., & Kim, M. H. (2005). Epigallocatechin gallate inhibits HIF-1α degradation in prostate cancer cells. Biochemical and Biophysical Research Communications, 334, 543–548.

    Article  CAS  PubMed  Google Scholar 

  32. Zaveri, N. T. (2006). Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. Life Sciences, 78, 2073–2080.

    Article  CAS  PubMed  Google Scholar 

  33. Nakachi, K., Matsuyama, S., Miyake, S., Suganuma, M., & Imai, K. (2000). Preventive effects of drinking green tea on cancer and cardiovascular disease: Epidemiological evidence for multiple targeting prevention. BioFactors, 13, 49–54.

    Article  CAS  PubMed  Google Scholar 

  34. Kang, W. S., Lim, I. H., Yuk, D. Y., Chung, K. H., Park, J. B., Yoo, H. S., et al. (1999). Antithrombotic activities of green tea catechins and (–)-epigallocatechin gallate. Thrombosis Research, 96, 229–237.

    Article  CAS  PubMed  Google Scholar 

  35. Townsend, P. A., Scarabelli, T. M., Pasini, E., Gitti, G., Menegazzi, M., Suzuki, H., et al. (2004). Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 18, 1621–1623.

    CAS  Google Scholar 

  36. Lorenz, M., Wessler, S., Follmann, E., Michaelis, W., Dusterhoft, T., Baumann, G., et al. (2004). A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation. The Journal of Biological Chemistry, 279, 6190–6195.

    Article  CAS  PubMed  Google Scholar 

  37. Baluchnejadmojarad, T., & Roghani, M. (2011). Chronic epigallocatechin-3-gallate ameliorates learning and memory deficits in diabetic rats via modulation of nitric oxide and oxidative stress. Behavioural Brain Research, 224, 305–310.

    Article  CAS  PubMed  Google Scholar 

  38. Baba, Y., Sonoda, J. I., Hayashi, S., Tosuji, N., Sonoda, S., Makisumi, K., et al. (2012). Reduction of oxidative stress in liver cancer patients by oral green tea polyphenol tablets during hepatic arterial infusion chemotherapy. Experimental and Therapeutic Medicine, 4, 452–458.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kochi, T., Shimizu, M., Terakura, D., Baba, A., Ohno, T., Kubota, M., et al. (2014). Non-alcoholic steatohepatitis and preneoplastic lesions develop in the liver of obese and hypertensive rats: Suppressing effects of EGCG on the development of liver lesions. Cancer Letters, 342, 60–69.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, M. H., Chang, W. J., Soung, H. S., & Chang, K. C. (2012). (–)-Epigallocatechin-3-gallate decreases the impairment in learning and memory in spontaneous hypertension rats. Behavioural Pharmacology, 23, 771–780.

    Article  CAS  PubMed  Google Scholar 

  41. Hodgson, J. M., & Croft, K. D. (2010). Tea flavonoids and cardiovascular health. Molecular Aspects of Medicine, 31, 495–502.

    Article  CAS  PubMed  Google Scholar 

  42. Babu, P. V., & Liu, D. (2008). Green tea catechins and cardiovascular health: An update. Current Medicinal Chemistry, 15, 1840–1850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Potenza, M. A., Marasciulo, F. L., Tarquinio, M., Tiravanti, E., Colantuono, G., Federici, A., et al. (2007). EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. American Journal of Physiology. Endocrinology and metabolism, 292, E1378–E1387.

    Article  CAS  PubMed  Google Scholar 

  44. Su, Q., Qin, D. N., Wang, F. X., Ren, J., Li, H. B., Zhang, M., et al. (2014). Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin-angiotensin system and proinflammatory cytokines in hypertension. Toxicology and Applied Pharmacology, 276, 115–120.

    Article  CAS  PubMed  Google Scholar 

  45. Kang, Y. M., Ma, Y., Zheng, J. P., Elks, C., Sriramula, S., Yang, Z. M., et al. (2009). Brain nuclear factor-kappa B activation contributes to neurohumoral excitation in angiotensin II-induced hypertension. Cardiovascular Research, 82, 503–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cardinale, J. P., Sriramula, S., Mariappan, N., Agarwal, D., & Francis, J. (2012). Angiotensin II-induced hypertension is modulated by nuclear factor-kappa B in the paraventricular nucleus. Hypertension, 59, 113–121.

    Article  CAS  PubMed  Google Scholar 

  47. Zimmerman, M. C., Lazartigues, E., Sharma, R. V., & Davisson, R. L. (2004). Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circulation Research, 95, 210–216.

    Article  CAS  PubMed  Google Scholar 

  48. Kang, Y. M., Chen, J. Y., Ouyang, W., Qiao, J. T., Reyes-Vazquez, C., & Dafny, N. (2004). Serotonin modulates hypothalamic neuronal activity. The International Journal of Neuroscience, 114, 299–319.

    Article  CAS  PubMed  Google Scholar 

  49. Han, Y., Fan, Z. D., Yuan, N., Xie, G. Q., Gao, J., De, W., et al. (2011). Superoxide anions in the paraventricular nucleus mediate the enhanced cardiac sympathetic afferent reflex and sympathetic activity in renovascular hypertensive rats. Journal of Applied Physiology, 110, 646–652.

    Article  PubMed  Google Scholar 

  50. Zhu, G. Q., Xu, Y., Zhou, L. M., Li, Y. H., Fan, L. M., Wang, W., et al. (2009). Enhanced cardiac sympathetic afferent reflex involved in sympathetic overactivity in renovascular hypertensive rats. Experimental Physiology, 94, 785–794.

    Article  PubMed  Google Scholar 

  51. Kang, Y. M., He, R. L., Yang, L. M., Qin, D. N., Guggilam, A., Elks, C., et al. (2009). Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovascular Research, 83, 737–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Qi, J., Zhang, D. M., Suo, Y. P., Song, X. A., Yu, X. J., Elks, C., et al. (2013). Renin–angiotensin system modulates neurotransmitters in the paraventricular nucleus and contributes to angiotensin II-induced hypertensive response. Cardiovascular Toxicology, 13, 48–54.

    Article  CAS  PubMed  Google Scholar 

  53. Li, H. B., Qin, D. N., Ma, L., Miao, Y. W., Zhang, D. M., Lu, Y., et al. (2014). Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension. Toxicology and Applied Pharmacology, 279, 141–149.

    Article  CAS  PubMed  Google Scholar 

  54. Gao, L., Wang, W., Li, Y. L., Schultz, H. D., Liu, D., Cornish, K. G., et al. (2005). Sympathoexcitation by central ANG II: Roles for AT1 receptor upregulation and NAD(P)H oxidase in RVLM. American Journal of Physiology. Heart and circulatory Physiology, 288, H2271–H2279.

    Article  CAS  PubMed  Google Scholar 

  55. Kang, Y. M., Zhang, Z. H., Johnson, R. F., Yu, Y., Beltz, T., Johnson, A. K., et al. (2006). Novel effect of mineralocorticoid receptor antagonism to reduce proinflammatory cytokines and hypothalamic activation in rats with ischemia-induced heart failure. Circulation Research, 99, 758–766.

    Article  CAS  PubMed  Google Scholar 

  56. Agarwal, D., Welsch, M. A., Keller, J. N., & Francis, J. (2011). Chronic exercise modulates RAS components and improves balance between pro- and anti-inflammatory cytokines in the brain of SHR. Basic Research in Cardiology, 106, 1069–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Coote, J. H. (2007). Landmarks in understanding the central nervous control of the cardiovascular system. Experimental Physiology, 92, 3–18.

    Article  PubMed  Google Scholar 

  58. Joyner, M. J., Charkoudian, N., & Wallin, B. G. (2008). A sympathetic view of the sympathetic nervous system and human blood pressure regulation. Experimental Physiology, 93, 715–724.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Martinez-Maldonado, M. (1991). Pathophysiology of renovascular hypertension. Hypertension, 17, 707–719.

    Article  CAS  PubMed  Google Scholar 

  60. Katholi, R. E., Whitlow, P. L., Winternitz, S. R., & Oparil, S. (1982). Importance of the renal nerves in established two-kidney, one clip Goldblatt hypertension. Hypertension, 4, 166–174.

    CAS  PubMed  Google Scholar 

  61. Cohn, H. I., Harris, D. M., Pesant, S., Pfeiffer, M., Zhou, R. H., Koch, W. J., et al. (2008). Inhibition of vascular smooth muscle G protein-coupled receptor kinase 2 enhances α1D-adrenergic receptor constriction. American Journal of Physiology. Heart and circulatory physiology, 295, H1695–H1704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Campos, R. R., Oliveira-Sales, E. B., Nishi, E. E., Boim, M. A., Dolnikoff, M. S., & Bergamaschi, C. T. (2011). The role of oxidative stress in renovascular hypertension. Clinical and Experimental Pharmacology and Physiology, 38, 144–152.

    Article  CAS  PubMed  Google Scholar 

  63. Chen, A. D., Zhang, S. J., Yuan, N., Xu, Y., De, W., Gao, X. Y., et al. (2011). Angiotensin AT1 receptors in paraventricular nucleus contribute to sympathetic activation and enhanced cardiac sympathetic afferent reflex in renovascular hypertensive rats. Experimental Physiology, 96, 94–103.

    Article  CAS  PubMed  Google Scholar 

  64. Maliszewska-Scislo, M., Chen, H., Augustyniak, R. A., Seth, D., & Rossi, N. F. (2008). Subfornical organ differentially modulates baroreflex function in normotensive and two-kidney, one-clip hypertensive rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 295, R741–R750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kishi, T., & Hirooka, Y. (2012). Oxidative stress in the brain causes hypertension via sympathoexcitation. Frontiers in Physiology, 3, 335.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wu, K. L., Chan, S. H., & Chan, J. Y. (2012). Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation. Journal of Neuroinflammation, 9, 212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zimmerman, M. C., Sharma, R. V., & Davisson, R. L. (2005). Superoxide mediates angiotensin II-induced influx of extracellular calcium in neural cells. Hypertension, 45, 717–723.

    Article  CAS  PubMed  Google Scholar 

  68. Shi, Z., Gan, X. B., Fan, Z. D., Zhang, F., Zhou, Y. B., Gao, X. Y., et al. (2011). Inflammatory cytokines in paraventricular nucleus modulate sympathetic activity and cardiac sympathetic afferent reflex in rats. Acta Physiologica (Oxf), 203, 289–297.

    Article  CAS  Google Scholar 

  69. Taubert, D., Roesen, R., & Schomig, E. (2007). Effect of cocoa and tea intake on blood pressure: A meta-analysis. Archives of Internal Medicine, 167, 626–634.

    Article  CAS  PubMed  Google Scholar 

  70. Liu, P. L., Liu, J. T., Kuo, H. F., Chong, I. W., & Hsieh, C. C. (2014). Epigallocatechin gallate attenuates proliferation and oxidative stress in human vascular smooth muscle cells induced by interleukin-1beta via heme oxygenase-1. Mediators of Inflammation, 2014, 523684.

    PubMed  PubMed Central  Google Scholar 

  71. Steffen, Y., Gruber, C., Schewe, T., & Sies, H. (2008). Mono-O-methylated flavanols and other flavonoids as inhibitors of endothelial NADPH oxidase. Archives of Biochemistry and Biophysics, 469, 209–219.

    Article  CAS  PubMed  Google Scholar 

  72. Rodrigo, R. (2012). Prevention of postoperative atrial fibrillation: Novel and safe strategy based on the modulation of the antioxidant system. Frontiers in Physiology, 3, 93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Simic, D. V., Mimic-Oka, J., Pljesa-Ercegovac, M., Savic-Radojevic, A., Opacic, M., Matic, D., et al. (2006). Byproducts of oxidative protein damage and antioxidant enzyme activities in plasma of patients with different degrees of essential hypertension. Journal of Human Hypertension, 20, 149–155.

    Article  CAS  PubMed  Google Scholar 

  74. Roghani, M., & Baluchnejadmojarad, T. (2009). Chronic epigallocatechin-gallate improves aortic reactivity of diabetic rats: underlying mechanisms. Vascular Pharmacology, 51, 84–89.

    Article  CAS  PubMed  Google Scholar 

  75. Antonello, M., Montemurro, D., Bolognesi, M., Di Pascoli, M., Piva, A., Grego, F., et al. (2007). Prevention of hypertension, cardiovascular damage and endothelial dysfunction with green tea extracts. American Journal of Hypertension, 20, 1321–1328.

    Article  CAS  PubMed  Google Scholar 

  76. Khalaf, A. A., Moselhy, W. A., & Abdel-Hamed, M. I. (2012). The protective effect of green tea extract on lead induced oxidative and DNA damage on rat brain. Neurotoxicology, 33, 280–289.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Basic Research Program of China (No. 2012CB517805) and National Natural Science Foundation of China (Nos. 91439120, 81471471, 81170248, 81370356, 31171095). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Lian Shi or Yu-Ming Kang.

Ethics declarations

Conflict of interest

None of the listed authors has any financial or other interests that could be of conflict.

Additional information

Qiu-Yue Yi, Jie Qi and Xiao-Jing Yu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, QY., Qi, J., Yu, XJ. et al. Paraventricular Nucleus Infusion of Epigallocatechin-3-O-Gallate Improves Renovascular Hypertension. Cardiovasc Toxicol 16, 276–285 (2016). https://doi.org/10.1007/s12012-015-9335-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-015-9335-x

Keywords

Navigation